Exemplo n.º 1
0
void
MPU9250::measure()
{
	if (hrt_absolute_time() < _reset_wait) {
		// we're waiting for a reset to complete
		return;
	}

	struct MPUReport mpu_report;

	struct Report {
		int16_t		accel_x;
		int16_t		accel_y;
		int16_t		accel_z;
		int16_t		temp;
		int16_t		gyro_x;
		int16_t		gyro_y;
		int16_t		gyro_z;
	} report;

	/* start measuring */
	perf_begin(_sample_perf);

	/*
	 * Fetch the full set of measurements from the MPU9250 in one pass.
	 */
	if (OK != _interface->read(MPU9250_SET_SPEED(MPUREG_INT_STATUS, MPU9250_HIGH_BUS_SPEED),
				   (uint8_t *)&mpu_report,
				   sizeof(mpu_report))) {
		return;
	}

	check_registers();

	if (check_duplicate(&mpu_report.accel_x[0])) {
		return;
	}

#ifdef USE_I2C

	if (_mag->is_passthrough()) {
#endif
		_mag->_measure(mpu_report.mag);
#ifdef USE_I2C

	} else {
		_mag->measure();
	}

#endif

	/*
	 * Convert from big to little endian
	 */
	report.accel_x = int16_t_from_bytes(mpu_report.accel_x);
	report.accel_y = int16_t_from_bytes(mpu_report.accel_y);
	report.accel_z = int16_t_from_bytes(mpu_report.accel_z);
	report.temp    = int16_t_from_bytes(mpu_report.temp);
	report.gyro_x  = int16_t_from_bytes(mpu_report.gyro_x);
	report.gyro_y  = int16_t_from_bytes(mpu_report.gyro_y);
	report.gyro_z  = int16_t_from_bytes(mpu_report.gyro_z);

	if (check_null_data((uint32_t *)&report, sizeof(report) / 4)) {
		return;
	}

	if (_register_wait != 0) {
		// we are waiting for some good transfers before using the sensor again
		// We still increment _good_transfers, but don't return any data yet
		_register_wait--;
		return;
	}

	/*
	 * Swap axes and negate y
	 */
	int16_t accel_xt = report.accel_y;
	int16_t accel_yt = ((report.accel_x == -32768) ? 32767 : -report.accel_x);

	int16_t gyro_xt = report.gyro_y;
	int16_t gyro_yt = ((report.gyro_x == -32768) ? 32767 : -report.gyro_x);

	/*
	 * Apply the swap
	 */
	report.accel_x = accel_xt;
	report.accel_y = accel_yt;
	report.gyro_x = gyro_xt;
	report.gyro_y = gyro_yt;

	/*
	 * Report buffers.
	 */
	accel_report		arb;
	gyro_report		grb;

	/*
	 * Adjust and scale results to m/s^2.
	 */
	grb.timestamp = arb.timestamp = hrt_absolute_time();

	// report the error count as the sum of the number of bad
	// transfers and bad register reads. This allows the higher
	// level code to decide if it should use this sensor based on
	// whether it has had failures
	grb.error_count = arb.error_count = perf_event_count(_bad_transfers) + perf_event_count(_bad_registers);

	/*
	 * 1) Scale raw value to SI units using scaling from datasheet.
	 * 2) Subtract static offset (in SI units)
	 * 3) Scale the statically calibrated values with a linear
	 *    dynamically obtained factor
	 *
	 * Note: the static sensor offset is the number the sensor outputs
	 * 	 at a nominally 'zero' input. Therefore the offset has to
	 * 	 be subtracted.
	 *
	 *	 Example: A gyro outputs a value of 74 at zero angular rate
	 *	 	  the offset is 74 from the origin and subtracting
	 *		  74 from all measurements centers them around zero.
	 */

	/* NOTE: Axes have been swapped to match the board a few lines above. */

	arb.x_raw = report.accel_x;
	arb.y_raw = report.accel_y;
	arb.z_raw = report.accel_z;

	float xraw_f = report.accel_x;
	float yraw_f = report.accel_y;
	float zraw_f = report.accel_z;

	// apply user specified rotation
	rotate_3f(_rotation, xraw_f, yraw_f, zraw_f);

	float x_in_new = ((xraw_f * _accel_range_scale) - _accel_scale.x_offset) * _accel_scale.x_scale;
	float y_in_new = ((yraw_f * _accel_range_scale) - _accel_scale.y_offset) * _accel_scale.y_scale;
	float z_in_new = ((zraw_f * _accel_range_scale) - _accel_scale.z_offset) * _accel_scale.z_scale;

	arb.x = _accel_filter_x.apply(x_in_new);
	arb.y = _accel_filter_y.apply(y_in_new);
	arb.z = _accel_filter_z.apply(z_in_new);

	math::Vector<3> aval(x_in_new, y_in_new, z_in_new);
	math::Vector<3> aval_integrated;

	bool accel_notify = _accel_int.put(arb.timestamp, aval, aval_integrated, arb.integral_dt);
	arb.x_integral = aval_integrated(0);
	arb.y_integral = aval_integrated(1);
	arb.z_integral = aval_integrated(2);

	arb.scaling = _accel_range_scale;
	arb.range_m_s2 = _accel_range_m_s2;

	_last_temperature = (report.temp) / 361.0f + 35.0f;

	arb.temperature_raw = report.temp;
	arb.temperature = _last_temperature;

	grb.x_raw = report.gyro_x;
	grb.y_raw = report.gyro_y;
	grb.z_raw = report.gyro_z;

	xraw_f = report.gyro_x;
	yraw_f = report.gyro_y;
	zraw_f = report.gyro_z;

	// apply user specified rotation
	rotate_3f(_rotation, xraw_f, yraw_f, zraw_f);

	float x_gyro_in_new = ((xraw_f * _gyro_range_scale) - _gyro_scale.x_offset) * _gyro_scale.x_scale;
	float y_gyro_in_new = ((yraw_f * _gyro_range_scale) - _gyro_scale.y_offset) * _gyro_scale.y_scale;
	float z_gyro_in_new = ((zraw_f * _gyro_range_scale) - _gyro_scale.z_offset) * _gyro_scale.z_scale;

	grb.x = _gyro_filter_x.apply(x_gyro_in_new);
	grb.y = _gyro_filter_y.apply(y_gyro_in_new);
	grb.z = _gyro_filter_z.apply(z_gyro_in_new);

	math::Vector<3> gval(x_gyro_in_new, y_gyro_in_new, z_gyro_in_new);
	math::Vector<3> gval_integrated;

	bool gyro_notify = _gyro_int.put(arb.timestamp, gval, gval_integrated, grb.integral_dt);
	grb.x_integral = gval_integrated(0);
	grb.y_integral = gval_integrated(1);
	grb.z_integral = gval_integrated(2);

	grb.scaling = _gyro_range_scale;
	grb.range_rad_s = _gyro_range_rad_s;

	grb.temperature_raw = report.temp;
	grb.temperature = _last_temperature;

	_accel_reports->force(&arb);
	_gyro_reports->force(&grb);

	/* notify anyone waiting for data */
	if (accel_notify) {
		poll_notify(POLLIN);
	}

	if (gyro_notify) {
		_gyro->parent_poll_notify();
	}

	if (accel_notify && !(_pub_blocked)) {
		/* log the time of this report */
		perf_begin(_controller_latency_perf);
		/* publish it */
		orb_publish(ORB_ID(sensor_accel), _accel_topic, &arb);
	}

	if (gyro_notify && !(_pub_blocked)) {
		/* publish it */
		orb_publish(ORB_ID(sensor_gyro), _gyro->_gyro_topic, &grb);
	}

	/* stop measuring */
	perf_end(_sample_perf);
}
Exemplo n.º 2
0
void
BMI160::measure()
{
	if (hrt_absolute_time() < _reset_wait) {
		// we're waiting for a reset to complete
		return;
	}

	struct BMIReport bmi_report;

	struct Report {
		int16_t		accel_x;
		int16_t		accel_y;
		int16_t		accel_z;
		int16_t		temp;
		int16_t		gyro_x;
		int16_t		gyro_y;
		int16_t		gyro_z;
	} report;

	/* start measuring */
	perf_begin(_sample_perf);

	/*
	 * Fetch the full set of measurements from the BMI160 in one pass.
	 */
	bmi_report.cmd = BMIREG_GYR_X_L | DIR_READ;

	uint8_t		status = read_reg(BMIREG_STATUS);

	if (OK != transfer((uint8_t *)&bmi_report, ((uint8_t *)&bmi_report), sizeof(bmi_report))) {
		return;
	}

	check_registers();

	if ((!(status & (0x80))) && (!(status & (0x04)))) {
		perf_end(_sample_perf);
		perf_count(_duplicates);
		_got_duplicate = true;
		return;
	}

	_last_accel[0] = bmi_report.accel_x;
	_last_accel[1] = bmi_report.accel_y;
	_last_accel[2] = bmi_report.accel_z;
	_got_duplicate = false;

	uint8_t temp_l = read_reg(BMIREG_TEMP_0);
	uint8_t temp_h = read_reg(BMIREG_TEMP_1);

	report.temp = ((temp_h << 8) + temp_l);

	report.accel_x = bmi_report.accel_x;
	report.accel_y = bmi_report.accel_y;
	report.accel_z = bmi_report.accel_z;

	report.gyro_x = bmi_report.gyro_x;
	report.gyro_y = bmi_report.gyro_y;
	report.gyro_z = bmi_report.gyro_z;

	if (report.accel_x == 0 &&
	    report.accel_y == 0 &&
	    report.accel_z == 0 &&
	    report.temp == 0 &&
	    report.gyro_x == 0 &&
	    report.gyro_y == 0 &&
	    report.gyro_z == 0) {
		// all zero data - probably a SPI bus error
		perf_count(_bad_transfers);
		perf_end(_sample_perf);
		// note that we don't call reset() here as a reset()
		// costs 20ms with interrupts disabled. That means if
		// the bmi160 does go bad it would cause a FMU failure,
		// regardless of whether another sensor is available,
		return;
	}

	perf_count(_good_transfers);

	if (_register_wait != 0) {
		// we are waiting for some good transfers before using
		// the sensor again. We still increment
		// _good_transfers, but don't return any data yet
		_register_wait--;
		return;
	}

	/*
	 * Report buffers.
	 */
	accel_report		arb;
	gyro_report		grb;

	/*
	 * Adjust and scale results to m/s^2.
	 */
	grb.timestamp = arb.timestamp = hrt_absolute_time();

	// report the error count as the sum of the number of bad
	// transfers and bad register reads. This allows the higher
	// level code to decide if it should use this sensor based on
	// whether it has had failures
	grb.error_count = arb.error_count = perf_event_count(_bad_transfers) + perf_event_count(_bad_registers);

	/*
	 * 1) Scale raw value to SI units using scaling from datasheet.
	 * 2) Subtract static offset (in SI units)
	 * 3) Scale the statically calibrated values with a linear
	 *    dynamically obtained factor
	 *
	 * Note: the static sensor offset is the number the sensor outputs
	 * 	 at a nominally 'zero' input. Therefore the offset has to
	 * 	 be subtracted.
	 *
	 *	 Example: A gyro outputs a value of 74 at zero angular rate
	 *	 	  the offset is 74 from the origin and subtracting
	 *		  74 from all measurements centers them around zero.
	 */


	/* NOTE: Axes have been swapped to match the board a few lines above. */

	arb.x_raw = report.accel_x;
	arb.y_raw = report.accel_y;
	arb.z_raw = report.accel_z;

	float xraw_f = report.accel_x;
	float yraw_f = report.accel_y;
	float zraw_f = report.accel_z;

	// apply user specified rotation
	rotate_3f(_rotation, xraw_f, yraw_f, zraw_f);

	float x_in_new = ((xraw_f * _accel_range_scale) - _accel_scale.x_offset) * _accel_scale.x_scale;
	float y_in_new = ((yraw_f * _accel_range_scale) - _accel_scale.y_offset) * _accel_scale.y_scale;
	float z_in_new = ((zraw_f * _accel_range_scale) - _accel_scale.z_offset) * _accel_scale.z_scale;

	arb.x = _accel_filter_x.apply(x_in_new);
	arb.y = _accel_filter_y.apply(y_in_new);
	arb.z = _accel_filter_z.apply(z_in_new);

	math::Vector<3> aval(x_in_new, y_in_new, z_in_new);
	math::Vector<3> aval_integrated;

	bool accel_notify = _accel_int.put(arb.timestamp, aval, aval_integrated, arb.integral_dt);
	arb.x_integral = aval_integrated(0);
	arb.y_integral = aval_integrated(1);
	arb.z_integral = aval_integrated(2);

	arb.scaling = _accel_range_scale;
	arb.range_m_s2 = _accel_range_m_s2;

	_last_temperature = 23 + report.temp * 1.0f / 512.0f;

	arb.temperature_raw = report.temp;
	arb.temperature = _last_temperature;

	/* return device ID */
	arb.device_id = _device_id.devid;

	grb.x_raw = report.gyro_x;
	grb.y_raw = report.gyro_y;
	grb.z_raw = report.gyro_z;

	xraw_f = report.gyro_x;
	yraw_f = report.gyro_y;
	zraw_f = report.gyro_z;

	// apply user specified rotation
	rotate_3f(_rotation, xraw_f, yraw_f, zraw_f);

	float x_gyro_in_new = ((xraw_f * _gyro_range_scale) - _gyro_scale.x_offset) * _gyro_scale.x_scale;
	float y_gyro_in_new = ((yraw_f * _gyro_range_scale) - _gyro_scale.y_offset) * _gyro_scale.y_scale;
	float z_gyro_in_new = ((zraw_f * _gyro_range_scale) - _gyro_scale.z_offset) * _gyro_scale.z_scale;

	grb.x = _gyro_filter_x.apply(x_gyro_in_new);
	grb.y = _gyro_filter_y.apply(y_gyro_in_new);
	grb.z = _gyro_filter_z.apply(z_gyro_in_new);

	math::Vector<3> gval(x_gyro_in_new, y_gyro_in_new, z_gyro_in_new);
	math::Vector<3> gval_integrated;

	bool gyro_notify = _gyro_int.put(arb.timestamp, gval, gval_integrated, grb.integral_dt);
	grb.x_integral = gval_integrated(0);
	grb.y_integral = gval_integrated(1);
	grb.z_integral = gval_integrated(2);

	grb.scaling = _gyro_range_scale;
	grb.range_rad_s = _gyro_range_rad_s;

	grb.temperature_raw = report.temp;
	grb.temperature = _last_temperature;

	/* return device ID */
	grb.device_id = _gyro->_device_id.devid;

	_accel_reports->force(&arb);
	_gyro_reports->force(&grb);

	/* notify anyone waiting for data */
	if (accel_notify) {
		poll_notify(POLLIN);
	}

	if (gyro_notify) {
		_gyro->parent_poll_notify();
	}

	if (accel_notify && !(_pub_blocked)) {
		/* log the time of this report */
		perf_begin(_controller_latency_perf);
		/* publish it */
		orb_publish(ORB_ID(sensor_accel), _accel_topic, &arb);
	}

	if (gyro_notify && !(_pub_blocked)) {
		/* publish it */
		orb_publish(ORB_ID(sensor_gyro), _gyro->_gyro_topic, &grb);
	}

	/* stop measuring */
	perf_end(_sample_perf);
}
Exemplo n.º 3
0
void
BMI055_accel::measure()
{
	uint8_t index = 0, accel_data[7];
	uint16_t lsb, msb, msblsb;
	uint8_t status_x, status_y, status_z;

	if (hrt_absolute_time() < _reset_wait) {
		// we're waiting for a reset to complete
		return;
	}

	struct Report {
		int16_t     accel_x;
		int16_t     accel_y;
		int16_t     accel_z;
		int16_t     temp;
	} report;

	/* start measuring */
	perf_begin(_sample_perf);

	/*
	 * Fetch the full set of measurements from the BMI055 in one pass.
	 */
	accel_data[index] = BMI055_ACC_X_L | DIR_READ;

	if (OK != transfer(accel_data, accel_data, sizeof(accel_data))) {
		return;
	}

	check_registers();

	/* Extracting accel data from the read data */
	index = 1;
	lsb = (uint16_t)accel_data[index++];
	status_x = (lsb & BMI055_NEW_DATA_MASK);
	msb = (uint16_t)accel_data[index++];
	msblsb = (msb << 8) | lsb;
	report.accel_x = ((int16_t)msblsb >> 4); /* Data in X axis */

	lsb = (uint16_t)accel_data[index++];
	status_y = (lsb & BMI055_NEW_DATA_MASK);
	msb = (uint16_t)accel_data[index++];
	msblsb = (msb << 8) | lsb;
	report.accel_y = ((int16_t)msblsb >> 4); /* Data in Y axis */

	lsb = (uint16_t)accel_data[index++];
	status_z = (lsb & BMI055_NEW_DATA_MASK);
	msb = (uint16_t)accel_data[index++];
	msblsb = (msb << 8) | lsb;
	report.accel_z = ((int16_t)msblsb >> 4); /* Data in Z axis */

	// Checking the status of new data
	if ((!status_x) || (!status_y) || (!status_z)) {
		perf_end(_sample_perf);
		perf_count(_duplicates);
		_got_duplicate = true;
		return;
	}


	_got_duplicate = false;

	uint8_t temp = read_reg(BMI055_ACC_TEMP);
	report.temp = temp;

	if (report.accel_x == 0 &&
	    report.accel_y == 0 &&
	    report.accel_z == 0 &&
	    report.temp == 0) {
		// all zero data - probably a SPI bus error
		perf_count(_bad_transfers);
		perf_end(_sample_perf);
		// note that we don't call reset() here as a reset()
		// costs 20ms with interrupts disabled. That means if
		// the bmi055 accel does go bad it would cause a FMU failure,
		// regardless of whether another sensor is available,
		return;
	}


	perf_count(_good_transfers);

	if (_register_wait != 0) {
		// we are waiting for some good transfers before using
		// the sensor again. We still increment
		// _good_transfers, but don't return any data yet
		_register_wait--;
		return;
	}

	/*
	 * Report buffers.
	 */
	accel_report        arb;


	arb.timestamp = hrt_absolute_time();


	// report the error count as the sum of the number of bad
	// transfers and bad register reads. This allows the higher
	// level code to decide if it should use this sensor based on
	// whether it has had failures
	arb.error_count = perf_event_count(_bad_transfers) + perf_event_count(_bad_registers);

	/*
	 * 1) Scale raw value to SI units using scaling from datasheet.
	 * 2) Subtract static offset (in SI units)
	 * 3) Scale the statically calibrated values with a linear
	 *    dynamically obtained factor
	 *
	 * Note: the static sensor offset is the number the sensor outputs
	 *   at a nominally 'zero' input. Therefore the offset has to
	 *   be subtracted.
	 *
	 */

	arb.x_raw = report.accel_x;
	arb.y_raw = report.accel_y;
	arb.z_raw = report.accel_z;

	float xraw_f = report.accel_x;
	float yraw_f = report.accel_y;
	float zraw_f = report.accel_z;

	// apply user specified rotation
	rotate_3f(_rotation, xraw_f, yraw_f, zraw_f);

	float x_in_new = ((xraw_f * _accel_range_scale) - _accel_scale.x_offset) * _accel_scale.x_scale;
	float y_in_new = ((yraw_f * _accel_range_scale) - _accel_scale.y_offset) * _accel_scale.y_scale;
	float z_in_new = ((zraw_f * _accel_range_scale) - _accel_scale.z_offset) * _accel_scale.z_scale;

	arb.x = _accel_filter_x.apply(x_in_new);
	arb.y = _accel_filter_y.apply(y_in_new);
	arb.z = _accel_filter_z.apply(z_in_new);

	math::Vector<3> aval(x_in_new, y_in_new, z_in_new);
	math::Vector<3> aval_integrated;

	bool accel_notify = _accel_int.put(arb.timestamp, aval, aval_integrated, arb.integral_dt);
	arb.x_integral = aval_integrated(0);
	arb.y_integral = aval_integrated(1);
	arb.z_integral = aval_integrated(2);

	arb.scaling = _accel_range_scale;
	arb.range_m_s2 = _accel_range_m_s2;

	_last_temperature = 23 + report.temp * 1.0f / 512.0f;

	arb.temperature_raw = report.temp;
	arb.temperature = _last_temperature;
	arb.device_id = _device_id.devid;

	_accel_reports->force(&arb);

	/* notify anyone waiting for data */
	if (accel_notify) {
		poll_notify(POLLIN);
	}

	if (accel_notify && !(_pub_blocked)) {
		/* log the time of this report */
		perf_begin(_controller_latency_perf);
		/* publish it */
		orb_publish(ORB_ID(sensor_accel), _accel_topic, &arb);
	}

	/* stop measuring */
	perf_end(_sample_perf);
}
Exemplo n.º 4
0
void
FXOS8700CQ::measure()
{
	/* status register and data as read back from the device */

#pragma pack(push, 1)
	struct {
		uint8_t		cmd[2];
		uint8_t		status;
		int16_t		x;
		int16_t		y;
		int16_t		z;
		int16_t		mx;
		int16_t		my;
		int16_t		mz;
	} raw_accel_mag_report;
#pragma pack(pop)

	accel_report accel_report;

	/* start the performance counter */
	perf_begin(_accel_sample_perf);

	check_registers();

	if (_register_wait != 0) {
		// we are waiting for some good transfers before using
		// the sensor again.
		_register_wait--;
		perf_end(_accel_sample_perf);
		return;
	}

	/* fetch data from the sensor */
	memset(&raw_accel_mag_report, 0, sizeof(raw_accel_mag_report));
	raw_accel_mag_report.cmd[0] = DIR_READ(FXOS8700CQ_DR_STATUS);
	raw_accel_mag_report.cmd[1] = ADDR_7(FXOS8700CQ_DR_STATUS);
	transfer((uint8_t *)&raw_accel_mag_report, (uint8_t *)&raw_accel_mag_report, sizeof(raw_accel_mag_report));

	if (!(raw_accel_mag_report.status & DR_STATUS_ZYXDR)) {
		perf_end(_accel_sample_perf);
		perf_count(_accel_duplicates);
		return;
	}

	/*
	 * 1) Scale raw value to SI units using scaling from datasheet.
	 * 2) Subtract static offset (in SI units)
	 * 3) Scale the statically calibrated values with a linear
	 *    dynamically obtained factor
	 *
	 * Note: the static sensor offset is the number the sensor outputs
	 * 	 at a nominally 'zero' input. Therefore the offset has to
	 * 	 be subtracted.
	 *
	 *	 Example: A gyro outputs a value of 74 at zero angular rate
	 *	 	  the offset is 74 from the origin and subtracting
	 *		  74 from all measurements centers them around zero.
	 */

	accel_report.timestamp = hrt_absolute_time();

	/*
	 * Eight-bit 2’s complement sensor temperature value with 0.96 °C/LSB sensitivity.
	 * Temperature data is only valid between –40 °C and 125 °C. The temperature sensor
	 * output is only valid when M_CTRL_REG1[m_hms] > 0b00. Please note that the
	 * temperature sensor is uncalibrated and its output for a given temperature will vary from
	 * one device to the next
	 */

	write_checked_reg(FXOS8700CQ_M_CTRL_REG1, M_CTRL_REG1_HMS_A | M_CTRL_REG1_OS(7));
	_last_temperature = (read_reg(FXOS8700CQ_TEMP)) * 0.96f;
	write_checked_reg(FXOS8700CQ_M_CTRL_REG1, M_CTRL_REG1_HMS_AM | M_CTRL_REG1_OS(7));

	accel_report.temperature = _last_temperature;

	// report the error count as the sum of the number of bad
	// register reads and bad values. This allows the higher level
	// code to decide if it should use this sensor based on
	// whether it has had failures
	accel_report.error_count = perf_event_count(_bad_registers) + perf_event_count(_bad_values);

	accel_report.x_raw = swap16RightJustify14(raw_accel_mag_report.x);
	accel_report.y_raw = swap16RightJustify14(raw_accel_mag_report.y);
	accel_report.z_raw = swap16RightJustify14(raw_accel_mag_report.z);

	/* Save off the Mag readings todo: revist integrating theses */

	_last_raw_mag_x = swap16(raw_accel_mag_report.mx);
	_last_raw_mag_y = swap16(raw_accel_mag_report.my);
	_last_raw_mag_z = swap16(raw_accel_mag_report.mz);

	float xraw_f = accel_report.x_raw;
	float yraw_f = accel_report.y_raw;
	float zraw_f = accel_report.z_raw;

	// apply user specified rotation
	rotate_3f(_rotation, xraw_f, yraw_f, zraw_f);

	float x_in_new = ((xraw_f * _accel_range_scale) - _accel_scale.x_offset) * _accel_scale.x_scale;
	float y_in_new = ((yraw_f * _accel_range_scale) - _accel_scale.y_offset) * _accel_scale.y_scale;
	float z_in_new = ((zraw_f * _accel_range_scale) - _accel_scale.z_offset) * _accel_scale.z_scale;

	/*
	  we have logs where the accelerometers get stuck at a fixed
	  large value. We want to detect this and mark the sensor as
	  being faulty
	 */
	if (fabsf(_last_accel[0] - x_in_new) < 0.001f &&
	    fabsf(_last_accel[1] - y_in_new) < 0.001f &&
	    fabsf(_last_accel[2] - z_in_new) < 0.001f &&
	    fabsf(x_in_new) > 20 &&
	    fabsf(y_in_new) > 20 &&
	    fabsf(z_in_new) > 20) {
		_constant_accel_count += 1;

	} else {
		_constant_accel_count = 0;
	}

	if (_constant_accel_count > 100) {
		// we've had 100 constant accel readings with large
		// values. The sensor is almost certainly dead. We
		// will raise the error_count so that the top level
		// flight code will know to avoid this sensor, but
		// we'll still give the data so that it can be logged
		// and viewed
		perf_count(_bad_values);
		_constant_accel_count = 0;
	}

	_last_accel[0] = x_in_new;
	_last_accel[1] = y_in_new;
	_last_accel[2] = z_in_new;

	accel_report.x = _accel_filter_x.apply(x_in_new);
	accel_report.y = _accel_filter_y.apply(y_in_new);
	accel_report.z = _accel_filter_z.apply(z_in_new);

	math::Vector<3> aval(x_in_new, y_in_new, z_in_new);
	math::Vector<3> aval_integrated;

	bool accel_notify = _accel_int.put(accel_report.timestamp, aval, aval_integrated, accel_report.integral_dt);
	accel_report.x_integral = aval_integrated(0);
	accel_report.y_integral = aval_integrated(1);
	accel_report.z_integral = aval_integrated(2);

	accel_report.scaling = _accel_range_scale;
	accel_report.range_m_s2 = _accel_range_m_s2;

	/* return device ID */
	accel_report.device_id = _device_id.devid;

	_accel_reports->force(&accel_report);

	/* notify anyone waiting for data */
	if (accel_notify) {
		poll_notify(POLLIN);

		if (!(_pub_blocked)) {
			/* publish it */
			orb_publish(ORB_ID(sensor_accel), _accel_topic, &accel_report);
		}
	}

	_accel_read++;

	/* stop the perf counter */
	perf_end(_accel_sample_perf);
}
Exemplo n.º 5
0
void
MPU9250::measure()
{

	if (hrt_absolute_time() < _reset_wait) {
		// we're waiting for a reset to complete
		return;
	}

	struct MPUReport mpu_report;

	struct ICMReport icm_report;

	struct Report {
		int16_t		accel_x;
		int16_t		accel_y;
		int16_t		accel_z;
		int16_t		temp;
		int16_t		gyro_x;
		int16_t		gyro_y;
		int16_t		gyro_z;
	} report;

	/* start measuring */
	perf_begin(_sample_perf);

	/*
	 * Fetch the full set of measurements from the MPU9250 in one pass
	 */

	if ((!_magnetometer_only || _mag->is_passthrough()) && _register_wait == 0) {
		if (_whoami == MPU_WHOAMI_9250 || _whoami == MPU_WHOAMI_6500) {
			if (OK != read_reg_range(MPUREG_INT_STATUS, MPU9250_HIGH_BUS_SPEED, (uint8_t *)&mpu_report, sizeof(mpu_report))) {
				perf_end(_sample_perf);
				return;
			}

		} else {    // ICM20948
			select_register_bank(REG_BANK(ICMREG_20948_ACCEL_XOUT_H));

			if (OK != read_reg_range(ICMREG_20948_ACCEL_XOUT_H, MPU9250_HIGH_BUS_SPEED, (uint8_t *)&icm_report,
						 sizeof(icm_report))) {
				perf_end(_sample_perf);
				return;
			}
		}

		check_registers();

		if (check_duplicate(MPU_OR_ICM(&mpu_report.accel_x[0], &icm_report.accel_x[0]))) {
			return;
		}
	}

	/*
	 * In case of a mag passthrough read, hand the magnetometer data over to _mag. Else,
	 * try to read a magnetometer report.
	 */

#   ifdef USE_I2C

	if (_mag->is_passthrough()) {
#   endif

		_mag->_measure(mpu_report.mag);

#   ifdef USE_I2C

	} else {
		_mag->measure();
	}

#   endif

	/*
	 * Continue evaluating gyro and accelerometer results
	 */
	if (!_magnetometer_only && _register_wait == 0) {

		/*
		 * Convert from big to little endian
		 */
		if (_whoami == ICM_WHOAMI_20948) {
			report.accel_x = int16_t_from_bytes(icm_report.accel_x);
			report.accel_y = int16_t_from_bytes(icm_report.accel_y);
			report.accel_z = int16_t_from_bytes(icm_report.accel_z);
			report.temp    = int16_t_from_bytes(icm_report.temp);
			report.gyro_x  = int16_t_from_bytes(icm_report.gyro_x);
			report.gyro_y  = int16_t_from_bytes(icm_report.gyro_y);
			report.gyro_z  = int16_t_from_bytes(icm_report.gyro_z);

		} else { // MPU9250/MPU6500
			report.accel_x = int16_t_from_bytes(mpu_report.accel_x);
			report.accel_y = int16_t_from_bytes(mpu_report.accel_y);
			report.accel_z = int16_t_from_bytes(mpu_report.accel_z);
			report.temp    = int16_t_from_bytes(mpu_report.temp);
			report.gyro_x  = int16_t_from_bytes(mpu_report.gyro_x);
			report.gyro_y  = int16_t_from_bytes(mpu_report.gyro_y);
			report.gyro_z  = int16_t_from_bytes(mpu_report.gyro_z);
		}

		if (check_null_data((uint16_t *)&report, sizeof(report) / 2)) {
			return;
		}
	}

	if (_register_wait != 0) {
		/*
		 * We are waiting for some good transfers before using the sensor again.
		 * We still increment _good_transfers, but don't return any data yet.
		 *
		*/
		_register_wait--;
		return;
	}

	/*
	 * Get sensor temperature
	 */
	_last_temperature = (report.temp) / 333.87f + 21.0f;


	/*
	 * Convert and publish accelerometer and gyrometer data.
	 */

	if (!_magnetometer_only) {

		/*
		 * Keeping the axes as they are for ICM20948 so orientation will match the actual chip orientation
		 */
		if (_whoami != ICM_WHOAMI_20948) {
			/*
			 * Swap axes and negate y
			 */

			int16_t accel_xt = report.accel_y;
			int16_t accel_yt = ((report.accel_x == -32768) ? 32767 : -report.accel_x);

			int16_t gyro_xt = report.gyro_y;
			int16_t gyro_yt = ((report.gyro_x == -32768) ? 32767 : -report.gyro_x);

			/*
			 * Apply the swap
			 */
			report.accel_x = accel_xt;
			report.accel_y = accel_yt;
			report.gyro_x = gyro_xt;
			report.gyro_y = gyro_yt;
		}

		/*
		 * Report buffers.
		 */
		sensor_accel_s		arb;
		sensor_gyro_s			grb;

		/*
		 * Adjust and scale results to m/s^2.
		 */
		grb.timestamp = arb.timestamp = hrt_absolute_time();

		// report the error count as the sum of the number of bad
		// transfers and bad register reads. This allows the higher
		// level code to decide if it should use this sensor based on
		// whether it has had failures
		grb.error_count = arb.error_count = perf_event_count(_bad_transfers) + perf_event_count(_bad_registers);

		/*
		 * 1) Scale raw value to SI units using scaling from datasheet.
		 * 2) Subtract static offset (in SI units)
		 * 3) Scale the statically calibrated values with a linear
		 *    dynamically obtained factor
		 *
		 * Note: the static sensor offset is the number the sensor outputs
		 * 	 at a nominally 'zero' input. Therefore the offset has to
		 * 	 be subtracted.
		 *
		 *	 Example: A gyro outputs a value of 74 at zero angular rate
		 *	 	  the offset is 74 from the origin and subtracting
		 *		  74 from all measurements centers them around zero.
		 */

		/* NOTE: Axes have been swapped to match the board a few lines above. */

		arb.x_raw = report.accel_x;
		arb.y_raw = report.accel_y;
		arb.z_raw = report.accel_z;

		float xraw_f = report.accel_x;
		float yraw_f = report.accel_y;
		float zraw_f = report.accel_z;

		// apply user specified rotation
		rotate_3f(_rotation, xraw_f, yraw_f, zraw_f);

		float x_in_new = ((xraw_f * _accel_range_scale) - _accel_scale.x_offset) * _accel_scale.x_scale;
		float y_in_new = ((yraw_f * _accel_range_scale) - _accel_scale.y_offset) * _accel_scale.y_scale;
		float z_in_new = ((zraw_f * _accel_range_scale) - _accel_scale.z_offset) * _accel_scale.z_scale;

		arb.x = _accel_filter_x.apply(x_in_new);
		arb.y = _accel_filter_y.apply(y_in_new);
		arb.z = _accel_filter_z.apply(z_in_new);

		matrix::Vector3f aval(x_in_new, y_in_new, z_in_new);
		matrix::Vector3f aval_integrated;

		bool accel_notify = _accel_int.put(arb.timestamp, aval, aval_integrated, arb.integral_dt);
		arb.x_integral = aval_integrated(0);
		arb.y_integral = aval_integrated(1);
		arb.z_integral = aval_integrated(2);

		arb.scaling = _accel_range_scale;

		arb.temperature = _last_temperature;

		/* return device ID */
		arb.device_id = _accel->_device_id.devid;

		grb.x_raw = report.gyro_x;
		grb.y_raw = report.gyro_y;
		grb.z_raw = report.gyro_z;

		xraw_f = report.gyro_x;
		yraw_f = report.gyro_y;
		zraw_f = report.gyro_z;

		// apply user specified rotation
		rotate_3f(_rotation, xraw_f, yraw_f, zraw_f);

		float x_gyro_in_new = ((xraw_f * _gyro_range_scale) - _gyro_scale.x_offset) * _gyro_scale.x_scale;
		float y_gyro_in_new = ((yraw_f * _gyro_range_scale) - _gyro_scale.y_offset) * _gyro_scale.y_scale;
		float z_gyro_in_new = ((zraw_f * _gyro_range_scale) - _gyro_scale.z_offset) * _gyro_scale.z_scale;

		grb.x = _gyro_filter_x.apply(x_gyro_in_new);
		grb.y = _gyro_filter_y.apply(y_gyro_in_new);
		grb.z = _gyro_filter_z.apply(z_gyro_in_new);

		matrix::Vector3f gval(x_gyro_in_new, y_gyro_in_new, z_gyro_in_new);
		matrix::Vector3f gval_integrated;

		bool gyro_notify = _gyro_int.put(arb.timestamp, gval, gval_integrated, grb.integral_dt);
		grb.x_integral = gval_integrated(0);
		grb.y_integral = gval_integrated(1);
		grb.z_integral = gval_integrated(2);

		grb.scaling = _gyro_range_scale;

		grb.temperature = _last_temperature;

		/* return device ID */
		grb.device_id = _gyro->_device_id.devid;

		_accel_reports->force(&arb);
		_gyro_reports->force(&grb);

		/* notify anyone waiting for data */
		if (accel_notify) {
			_accel->poll_notify(POLLIN);
		}

		if (gyro_notify) {
			_gyro->parent_poll_notify();
		}

		if (accel_notify && !(_accel->_pub_blocked)) {
			/* publish it */
			orb_publish(ORB_ID(sensor_accel), _accel_topic, &arb);
		}

		if (gyro_notify && !(_gyro->_pub_blocked)) {
			/* publish it */
			orb_publish(ORB_ID(sensor_gyro), _gyro->_gyro_topic, &grb);
		}
	}

	/* stop measuring */
	perf_end(_sample_perf);
}