Exemplo n.º 1
0
b2BlockAllocator::~b2BlockAllocator()
{
	for (int32 i = 0; i < m_chunkCount; ++i)
	{
		b2Free(m_chunks[i].blocks);
	}

	b2Free(m_chunks);
}
Exemplo n.º 2
0
void* b2StackAllocator::Reallocate(void* p, int32 size)
{
	b2Assert(m_entryCount > 0);
	b2StackEntry* entry = m_entries + m_entryCount - 1;
	b2Assert(p == entry->data);
	B2_NOT_USED(p);
	int32 incrementSize = size - entry->size;
	if (incrementSize > 0)
	{
		if (entry->usedMalloc)
		{
			void* data = b2Alloc(size);
			memcpy(data, entry->data, entry->size);
			b2Free(entry->data);
			entry->data = (char*)data;
		}
		else if (m_index + incrementSize > b2_stackSize)
		{
			void* data = b2Alloc(size);
			memcpy(data, entry->data, entry->size);
			m_index -= entry->size;
			entry->data = (char*)data;
			entry->usedMalloc = true;
		}
		else
		{
			m_index += incrementSize;
			m_allocation += incrementSize;
			m_maxAllocation = b2Max(m_maxAllocation, m_allocation);
		}
		entry->size = size;
	}

	return entry->data;
}
Exemplo n.º 3
0
// Allocate a node from the pool. Grow the pool if necessary.
int32 b2DynamicTree::AllocateNode()
{
	// Expand the node pool as needed.
	if (m_freeList == b2_nullNode)
	{
		b2Assert(m_nodeCount == m_nodeCapacity);

		// The free list is empty. Rebuild a bigger pool.
		b2DynamicTreeNode* oldNodes = m_nodes;
		m_nodeCapacity *= 2;
		m_nodes = (b2DynamicTreeNode*)b2Alloc(m_nodeCapacity * sizeof(b2DynamicTreeNode));
		memcpy(m_nodes, oldNodes, m_nodeCount * sizeof(b2DynamicTreeNode));
		b2Free(oldNodes);

		// Build a linked list for the free list. The parent
		// pointer becomes the "next" pointer.
		for (int32 i = m_nodeCount; i < m_nodeCapacity - 1; ++i)
		{
			m_nodes[i].next = i + 1;
		}
		m_nodes[m_nodeCapacity-1].next = b2_nullNode;
		m_freeList = m_nodeCount;
	}

	// Peel a node off the free list.
	int32 nodeId = m_freeList;
	m_freeList = m_nodes[nodeId].next;
	m_nodes[nodeId].parent = b2_nullNode;
	m_nodes[nodeId].child1 = b2_nullNode;
	m_nodes[nodeId].child2 = b2_nullNode;
	++m_nodeCount;
	return nodeId;
}
Exemplo n.º 4
0
void* b2BlockAllocator::Allocate(int32 size)
{
	if (size == 0)
		return NULL;

	b2Assert(0 < size);

	if (size > b2_maxBlockSize)
	{
		return m_giants.Allocate(size);
	}

	int32 index = s_blockSizeLookup[size];
	b2Assert(0 <= index && index < b2_blockSizes);

	if (m_freeLists[index])
	{
		b2Block* block = m_freeLists[index];
		m_freeLists[index] = block->next;
		return block;
	}
	else
	{
		if (m_chunkCount == m_chunkSpace)
		{
			b2Chunk* oldChunks = m_chunks;
			m_chunkSpace += b2_chunkArrayIncrement;
			m_chunks = (b2Chunk*)b2Alloc(m_chunkSpace * sizeof(b2Chunk));
			memcpy(m_chunks, oldChunks, m_chunkCount * sizeof(b2Chunk));
			memset(m_chunks + m_chunkCount, 0, b2_chunkArrayIncrement * sizeof(b2Chunk));
			b2Free(oldChunks);
		}

		b2Chunk* chunk = m_chunks + m_chunkCount;
		chunk->blocks = (b2Block*)b2Alloc(b2_chunkSize);
#if DEBUG
		memset(chunk->blocks, 0xcd, b2_chunkSize);
#endif
		int32 blockSize = s_blockSizes[index];
		chunk->blockSize = blockSize;
		int32 blockCount = b2_chunkSize / blockSize;
		b2Assert(blockCount * blockSize <= b2_chunkSize);
		for (int32 i = 0; i < blockCount - 1; ++i)
		{
			b2Block* block = (b2Block*)((int8*)chunk->blocks + blockSize * i);
			b2Block* next = (b2Block*)((int8*)chunk->blocks + blockSize * (i + 1));
			block->next = next;
		}
		b2Block* last = (b2Block*)((int8*)chunk->blocks + blockSize * (blockCount - 1));
		last->next = NULL;

		m_freeLists[index] = chunk->blocks->next;
		++m_chunkCount;

		return chunk->blocks;
	}
}
Exemplo n.º 5
0
void b2BlockAllocator::Clear()
{
	for (int32 i = 0; i < m_chunkCount; ++i)
	{
		b2Free(m_chunks[i].blocks);
	}

	m_chunkCount = 0;
	memset(m_chunks, 0, m_chunkSpace * sizeof(b2Chunk));

	memset(m_freeLists, 0, sizeof(m_freeLists));
}
Exemplo n.º 6
0
void b2BroadPhase::BufferMove(int32 proxyId) {
	if (m_moveCount == m_moveCapacity) {
		int32* oldBuffer = m_moveBuffer;
		m_moveCapacity *= 2;
		m_moveBuffer = (int32*) b2Alloc(m_moveCapacity * sizeof(int32));
		memcpy(m_moveBuffer, oldBuffer, m_moveCount * sizeof(int32));
		b2Free(oldBuffer);
	}

	m_moveBuffer[m_moveCount] = proxyId;
	++m_moveCount;
}
Exemplo n.º 7
0
void b2StackAllocator::Free(void* p) {
	b2Assert(m_entryCount > 0);
	b2StackEntry* entry = m_entries + m_entryCount - 1;
	b2Assert(p == entry->data);
	if (entry->usedMalloc) {
		b2Free(p);
	} else {
		m_index -= entry->size;
	}
	m_allocation -= entry->size;
	--m_entryCount;

	p = NULL;
}
Exemplo n.º 8
0
b2Rope::~b2Rope()
{
	b2Free(m_ps);
	b2Free(m_p0s);
	b2Free(m_vs);
	b2Free(m_ims);
	b2Free(m_Ls);
	b2Free(m_as);
}
Exemplo n.º 9
0
void b2BlockAllocator::Free(void* p, int32 size)
{
	if (size == 0)
	{
		return;
	}

	b2Assert(0 < size);

	if (size > b2_maxBlockSize)
	{
		b2Free(p);
		return;
	}

	int32 index = s_blockSizeLookup[size];
	b2Assert(0 <= index && index < b2_blockSizes);

#ifdef _DEBUG
	// Verify the memory address and size is valid.
	int32 blockSize = s_blockSizes[index];
	bool found = false;
	for (int32 i = 0; i < m_chunkCount; ++i)
	{
		b2Chunk* chunk = m_chunks + i;
		if (chunk->blockSize != blockSize)
		{
			b2Assert(	(int8*)p + blockSize <= (int8*)chunk->blocks ||
						(int8*)chunk->blocks + b2_chunkSize <= (int8*)p);
		}
		else
		{
			if ((int8*)chunk->blocks <= (int8*)p && (int8*)p + blockSize <= (int8*)chunk->blocks + b2_chunkSize)
			{
				found = true;
			}
		}
	}

	b2Assert(found);

	memset(p, 0xfd, blockSize);
#endif

	b2Block* block = (b2Block*)p;
	block->next = m_freeLists[index];
	m_freeLists[index] = block;
}
Exemplo n.º 10
0
// This is called from b2DynamicTree::Query when we are gathering pairs.
bool b2BroadPhase::QueryCallback(int32 proxyId) {
	// A proxy cannot form a pair with itself.
	if (proxyId == m_queryProxyId) {
		return true;
	}

	// Grow the pair buffer as needed.
	if (m_pairCount == m_pairCapacity) {
		b2Pair* oldBuffer = m_pairBuffer;
		m_pairCapacity *= 2;
		m_pairBuffer = (b2Pair*) b2Alloc(m_pairCapacity * sizeof(b2Pair));
		memcpy(m_pairBuffer, oldBuffer, m_pairCount * sizeof(b2Pair));
		b2Free(oldBuffer);
	}

	m_pairBuffer[m_pairCount].proxyIdA = b2Min(proxyId, m_queryProxyId);
	m_pairBuffer[m_pairCount].proxyIdB = b2Max(proxyId, m_queryProxyId);
	++m_pairCount;

	return true;
}
Exemplo n.º 11
0
// Allocate a node from the pool. Grow the pool if necessary.
uint16 b2DynamicTree::AllocateNode()
{
	// Peel a node off the free list.
	if (m_freeList != b2_nullNode)
	{
		uint16 node = m_freeList;
		m_freeList = m_nodes[node].parent;
		m_nodes[node].parent = b2_nullNode;
		m_nodes[node].child1 = b2_nullNode;
		m_nodes[node].child2 = b2_nullNode;
		return node;
	}

	// The free list is empty. Rebuild a bigger pool.
	int32 newPoolCount = b2Min(2 * m_nodeCount, USHRT_MAX - 1);
	b2Assert(newPoolCount > m_nodeCount);
	b2DynamicTreeNode* newPool = (b2DynamicTreeNode*)b2Alloc(newPoolCount * sizeof(b2DynamicTreeNode));
	memcpy(newPool, m_nodes, m_nodeCount * sizeof(b2DynamicTreeNode));
	memset(newPool + m_nodeCount, 0, (newPoolCount - m_nodeCount) * sizeof(b2DynamicTreeNode));

	// Build a linked list for the free list. The parent
	// pointer becomes the "next" pointer.
	for (int32 i = m_nodeCount; i < newPoolCount - 1; ++i)
	{
		newPool[i].parent = uint16(i + 1);
	}
	newPool[newPoolCount-1].parent = b2_nullNode;
	m_freeList = uint16(m_nodeCount);

	b2Free(m_nodes);
	m_nodes = newPool;
	m_nodeCount = newPoolCount;

	// Finally peel a node off the new free list.
	uint16 node = m_freeList;
	m_freeList = m_nodes[node].parent;
	return node;
}
Exemplo n.º 12
0
void b2ChainShape::Clear()
{
	b2Free(m_vertices);
	m_vertices = NULL;
	m_count = 0;
}
Exemplo n.º 13
0
b2ChainShape::~b2ChainShape()
{
	b2Free(m_vertices);
	m_vertices = NULL;
	m_count = 0;
}
Exemplo n.º 14
0
b2BroadPhase::~b2BroadPhase()
{
	b2Free(m_moveBuffer);
	b2Free(m_pairBuffer);
}
Exemplo n.º 15
0
b2World::~b2World()
{
	DestroyBody(m_groundBody);
	m_broadPhase->~b2BroadPhase();
	b2Free(m_broadPhase);
}
Exemplo n.º 16
0
void b2DynamicTree::RebuildBottomUp()
{
	int32* nodes = (int32*)b2Alloc(m_nodeCount * sizeof(int32));
	int32 count = 0;

	// Build array of leaves. Free the rest.
	for (int32 i = 0; i < m_nodeCapacity; ++i)
	{
		if (m_nodes[i].height < 0)
		{
			// free node in pool
			continue;
		}

		if (m_nodes[i].IsLeaf())
		{
			m_nodes[i].parent = b2_nullNode;
			nodes[count] = i;
			++count;
		}
		else
		{
			FreeNode(i);
		}
	}

	while (count > 1)
	{
		float32 minCost = b2_maxFloat;
		int32 iMin = -1, jMin = -1;
		for (int32 i = 0; i < count; ++i)
		{
			b2AABB aabbi = m_nodes[nodes[i]].aabb;

			for (int32 j = i + 1; j < count; ++j)
			{
				b2AABB aabbj = m_nodes[nodes[j]].aabb;
				b2AABB b;
				b.Combine(aabbi, aabbj);
				float32 cost = b.GetPerimeter();
				if (cost < minCost)
				{
					iMin = i;
					jMin = j;
					minCost = cost;
				}
			}
		}

		int32 index1 = nodes[iMin];
		int32 index2 = nodes[jMin];
		b2TreeNode* child1 = m_nodes + index1;
		b2TreeNode* child2 = m_nodes + index2;

		int32 parentIndex = AllocateNode();
		b2TreeNode* parent = m_nodes + parentIndex;
		parent->child1 = index1;
		parent->child2 = index2;
		parent->height = 1 + b2Max(child1->height, child2->height);
		parent->aabb.Combine(child1->aabb, child2->aabb);
		parent->parent = b2_nullNode;

		child1->parent = parentIndex;
		child2->parent = parentIndex;

		nodes[jMin] = nodes[count-1];
		nodes[iMin] = parentIndex;
		--count;
	}

	m_root = nodes[0];
	b2Free(nodes);

	Validate();
}
Exemplo n.º 17
0
b2DynamicTree::~b2DynamicTree()
{
	// This frees the entire tree in one shot.
	b2Free(m_nodes);
}
Exemplo n.º 18
0
/// Free a b2TrackedBlock.
void b2TrackedBlock::Free(b2TrackedBlock *block)
{
	b2Assert(block);
	block->~b2TrackedBlock();
	b2Free(block);
}