Exemplo n.º 1
0
int card_init_queue(struct card_queue *cq, struct memory_card *card,
		    spinlock_t * lock)
{
	struct card_host *host = card->host;
	u64 limit = BLK_BOUNCE_HIGH;
	int ret=0;

	if (host->parent->dma_mask && *host->parent->dma_mask)
		limit = *host->parent->dma_mask;

	cq->card = card;
	cq->queue = blk_init_queue(card_request, lock);
	if (!cq->queue)
		return -ENOMEM;

	blk_queue_prep_rq(cq->queue, card_prep_request);
	card_init_bounce_buf(cq, card);
	
	if(!cq->bounce_buf){
		blk_queue_bounce_limit(cq->queue, limit);
		blk_queue_max_hw_sectors(cq->queue, host->max_sectors);
		//blk_queue_max_hw_phys_segments(cq->queue, host->max_phys_segs);
		blk_queue_max_segments(cq->queue, host->max_hw_segs);
		blk_queue_max_segment_size(cq->queue, host->max_seg_size);

		cq->queue->queuedata = cq;
		cq->req = NULL;

		cq->sg = kmalloc(sizeof(struct scatterlist) * host->max_phys_segs, GFP_KERNEL);
		if (!cq->sg) {
			ret = -ENOMEM;
			blk_cleanup_queue(cq->queue);
			return ret;
		}
	}

	/*change card io scheduler from cfq to deadline*/
	cq->queue->queuedata = cq;
	elevator_exit(cq->queue->elevator);
	cq->queue->elevator = NULL;
	ret = elevator_init(cq->queue, "deadline");
	if (ret) {
             printk("[card_init_queue] elevator_init deadline fail\n");
		blk_cleanup_queue(cq->queue);
		return ret;
	}


	init_MUTEX(&cq->thread_sem);
	cq->thread = kthread_run(card_queue_thread, cq, "%s_queue", card->name);
	if (IS_ERR(cq->thread)) {
		ret = PTR_ERR(cq->thread);
		//goto free_bounce_sg;
	}

	cq->nb.notifier_call = card_reboot_notifier;
	register_reboot_notifier(&cq->nb);

	return ret;
}
Exemplo n.º 2
0
/**
 * mmc_init_queue - initialise a queue structure.
 * @mq: mmc queue
 * @card: mmc card to attach this queue
 * @lock: queue lock
 *
 * Initialise a MMC card request queue.
 */
int mmc_init_queue(struct mmc_queue *mq, struct mmc_card *card, spinlock_t *lock)
{
	struct mmc_host *host = card->host;
	u64 limit = BLK_BOUNCE_HIGH;
	int ret;

	if (host->dev->dma_mask && *host->dev->dma_mask)
		limit = *host->dev->dma_mask;

	mq->card = card;
	mq->queue = blk_init_queue(mmc_request, lock);
	if (!mq->queue)
		return -ENOMEM;

	blk_queue_prep_rq(mq->queue, mmc_prep_request);
	blk_queue_bounce_limit(mq->queue, limit);
	blk_queue_max_sectors(mq->queue, host->max_sectors);
	blk_queue_max_phys_segments(mq->queue, host->max_phys_segs);
	blk_queue_max_hw_segments(mq->queue, host->max_hw_segs);
	blk_queue_max_segment_size(mq->queue, host->max_seg_size);

	mq->queue->queuedata = mq;
	mq->req = NULL;

	mq->sg = kmalloc(sizeof(struct scatterlist) * host->max_phys_segs,
			 GFP_KERNEL);
	if (!mq->sg) {
		ret = -ENOMEM;
		goto cleanup;
	}

	init_completion(&mq->thread_complete);
	init_waitqueue_head(&mq->thread_wq);
	init_MUTEX(&mq->thread_sem);

	ret = kernel_thread(mmc_queue_thread, mq, CLONE_KERNEL);
	if (ret >= 0) {
		wait_for_completion(&mq->thread_complete);
		init_completion(&mq->thread_complete);
		ret = 0;
		goto out;
	}

 cleanup:
	kfree(mq->sg);
	mq->sg = NULL;

	blk_cleanup_queue(mq->queue);
 out:
	return ret;
}
Exemplo n.º 3
0
/**
 * mmc_init_queue - initialise a queue structure.
 * @mq: mmc queue
 * @card: mmc card to attach this queue
 * @lock: queue lock
 *
 * Initialise a MMC card request queue.
 */
int mmc_init_queue(struct mmc_queue *mq, struct mmc_card *card, spinlock_t *lock)
{
    struct mmc_host *host = card->host;
    u64 limit = BLK_BOUNCE_HIGH;
    int ret;

    if (mmc_dev(host)->dma_mask && *mmc_dev(host)->dma_mask)
        limit = *mmc_dev(host)->dma_mask;

    mq->card = card;
    mq->queue = blk_init_queue(mmc_request, lock);
    if (!mq->queue)
        return -ENOMEM;

    blk_queue_prep_rq(mq->queue, mmc_prep_request);
    blk_queue_bounce_limit(mq->queue, limit);
    blk_queue_max_sectors(mq->queue, host->max_req_size / 512);
    blk_queue_max_phys_segments(mq->queue, host->max_phys_segs);
    blk_queue_max_hw_segments(mq->queue, host->max_hw_segs);
    blk_queue_max_segment_size(mq->queue, host->max_seg_size);

    mq->queue->queuedata = mq;
    mq->req = NULL;

    mq->sg = kmalloc(sizeof(struct scatterlist) * host->max_phys_segs,
                     GFP_KERNEL);
    if (!mq->sg) {
        ret = -ENOMEM;
        goto cleanup_queue;
    }

    init_MUTEX(&mq->thread_sem);

    mq->thread = kthread_run(mmc_queue_thread, mq, "mmcqd");
    if (IS_ERR(mq->thread)) {
        ret = PTR_ERR(mq->thread);
        goto free_sg;
    }

    return 0;

free_sg:
    kfree(mq->sg);
    mq->sg = NULL;
cleanup_queue:
    blk_cleanup_queue(mq->queue);
    return ret;
}
Exemplo n.º 4
0
int cyasblkdev_init_queue(struct cyasblkdev_queue *bq, spinlock_t *lock)
{
    int ret;

    DBGPRN_FUNC_NAME;

    /* 1st param is a function that wakes up the queue thread */
    bq->queue = blk_init_queue(cyasblkdev_request, lock);
    if (!bq->queue)
        return -ENOMEM;

    blk_queue_prep_rq(bq->queue, cyasblkdev_prep_request);

    blk_queue_bounce_limit(bq->queue, BLK_BOUNCE_ANY);
    blk_queue_max_hw_sectors(bq->queue, Q_MAX_SECTORS);

    /* As of now, we have the HAL/driver support to
     * merge scattered segments and handle them simultaneously.
     * so, setting the max_phys_segments to 8. */
    /*blk_queue_max_phys_segments(bq->queue, Q_MAX_SGS);
    blk_queue_max_hw_segments(bq->queue, Q_MAX_SGS);*/
    blk_queue_max_segments(bq->queue, Q_MAX_SGS);

    /* should be < then HAL can handle */
    blk_queue_max_segment_size(bq->queue, 512*Q_MAX_SECTORS);

    bq->queue->queuedata = bq;
    bq->req = NULL;

    init_completion(&bq->thread_complete);
    init_waitqueue_head(&bq->thread_wq);
    sema_init(&bq->thread_sem, 1);

    ret = kernel_thread(cyasblkdev_queue_thread, bq, CLONE_KERNEL);
    if (ret >= 0) {
        /* wait until the thread is spawned */
        wait_for_completion(&bq->thread_complete);

        /* reinitialize the completion */
        init_completion(&bq->thread_complete);
        ret = 0;
        goto out;
    }

out:
    return ret;
}
Exemplo n.º 5
0
static int sm_probe(struct device* dev)
{
    struct scsi_device *sdp = to_scsi_device(dev);
    int error = -ENODEV;

    if(sdp->type != TYPE_MEM)
        goto OUT;

    LogPath();
	struct gendisk* gd = NULL;
	gd = alloc_disk(1);
	if(!gd)
	{
		Log("[Error] alloc_disk failed.");
		return -1;
	}
	gd->major = SM_MAJOR;
	gd->first_minor = 0;
	gd->fops = &sm_fops;
	gd->private_data = sdp;
	sprintf(gd->disk_name,"sm-scsi");
	gd->queue = sdp->request_queue;
	gd->driverfs_dev = &sdp->sdev_gendev;
	//gd->flags = GENHD_FL_DRIVERFS;
	if(sdp->removable)
		gd->flags |= GENHD_FL_REMOVABLE;
	
	//dev->p->driver_data = (void*)gd;
	dev_set_drvdata(dev,(void*)gd);
	
	sm_spinup_mem_disk(sdp);
	sm_read_capacity(sdp);
	
	set_capacity(gd,g_mem_capacity >> 9);
	blk_queue_prep_rq(sdp->request_queue,sm_prep_fn);
	add_disk(gd);
	
	return 0;
OUT:
    return error;
}
Exemplo n.º 6
0
/**
 * mmc_init_queue - initialise a queue structure.
 * @mq: mmc queue
 * @card: mmc card to attach this queue
 * @lock: queue lock
 * @subname: partition subname
 *
 * Initialise a MMC card request queue.
 */
int mmc_init_queue(struct mmc_queue *mq, struct mmc_card *card,
		   spinlock_t *lock, const char *subname)
{
	struct mmc_host *host = card->host;
	int ret = -ENOMEM;

	mq->card = card;
	mq->queue = blk_alloc_queue(GFP_KERNEL);
	if (!mq->queue)
		return -ENOMEM;
	mq->queue->queue_lock = lock;
	mq->queue->request_fn = mmc_request_fn;
	mq->queue->init_rq_fn = mmc_init_request;
	mq->queue->exit_rq_fn = mmc_exit_request;
	mq->queue->cmd_size = sizeof(struct mmc_queue_req);
	mq->queue->queuedata = mq;
	mq->qcnt = 0;
	ret = blk_init_allocated_queue(mq->queue);
	if (ret) {
		blk_cleanup_queue(mq->queue);
		return ret;
	}

	blk_queue_prep_rq(mq->queue, mmc_prep_request);

	mmc_setup_queue(mq, card);

	mq->thread = kthread_run(mmc_queue_thread, mq, "mmcqd/%d%s",
		host->index, subname ? subname : "");

	if (IS_ERR(mq->thread)) {
		ret = PTR_ERR(mq->thread);
		goto cleanup_queue;
	}

	return 0;

cleanup_queue:
	blk_cleanup_queue(mq->queue);
	return ret;
}
Exemplo n.º 7
0
/*
 * Fully initialize a .request_fn request-based queue.
 */
int dm_old_init_request_queue(struct mapped_device *md)
{
	/* Fully initialize the queue */
	if (!blk_init_allocated_queue(md->queue, dm_old_request_fn, NULL))
		return -EINVAL;

	/* disable dm_old_request_fn's merge heuristic by default */
	md->seq_rq_merge_deadline_usecs = 0;

	dm_init_normal_md_queue(md);
	blk_queue_softirq_done(md->queue, dm_softirq_done);
	blk_queue_prep_rq(md->queue, dm_old_prep_fn);

	/* Initialize the request-based DM worker thread */
	init_kthread_worker(&md->kworker);
	md->kworker_task = kthread_run(kthread_worker_fn, &md->kworker,
				       "kdmwork-%s", dm_device_name(md));

	elv_register_queue(md->queue);

	return 0;
}
Exemplo n.º 8
0
static int null_add_dev(void)
{
	struct gendisk *disk;
	struct nullb *nullb;
	sector_t size;
	int rv;

	nullb = kzalloc_node(sizeof(*nullb), GFP_KERNEL, home_node);
	if (!nullb) {
		rv = -ENOMEM;
		goto out;
	}

	spin_lock_init(&nullb->lock);

	if (queue_mode == NULL_Q_MQ && use_per_node_hctx)
		submit_queues = nr_online_nodes;

	rv = setup_queues(nullb);
	if (rv)
		goto out_free_nullb;

	if (queue_mode == NULL_Q_MQ) {
		nullb->tag_set.ops = &null_mq_ops;
		nullb->tag_set.nr_hw_queues = submit_queues;
		nullb->tag_set.queue_depth = hw_queue_depth;
		nullb->tag_set.numa_node = home_node;
		nullb->tag_set.cmd_size	= sizeof(struct nullb_cmd);
		nullb->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
		nullb->tag_set.driver_data = nullb;

		rv = blk_mq_alloc_tag_set(&nullb->tag_set);
		if (rv)
			goto out_cleanup_queues;

		nullb->q = blk_mq_init_queue(&nullb->tag_set);
		if (IS_ERR(nullb->q)) {
			rv = -ENOMEM;
			goto out_cleanup_tags;
		}
	} else if (queue_mode == NULL_Q_BIO) {
		nullb->q = blk_alloc_queue_node(GFP_KERNEL, home_node);
		if (!nullb->q) {
			rv = -ENOMEM;
			goto out_cleanup_queues;
		}
		blk_queue_make_request(nullb->q, null_queue_bio);
		rv = init_driver_queues(nullb);
		if (rv)
			goto out_cleanup_blk_queue;
	} else {
		nullb->q = blk_init_queue_node(null_request_fn, &nullb->lock, home_node);
		if (!nullb->q) {
			rv = -ENOMEM;
			goto out_cleanup_queues;
		}
		blk_queue_prep_rq(nullb->q, null_rq_prep_fn);
		blk_queue_softirq_done(nullb->q, null_softirq_done_fn);
		rv = init_driver_queues(nullb);
		if (rv)
			goto out_cleanup_blk_queue;
	}

	nullb->q->queuedata = nullb;
	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, nullb->q);
	queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, nullb->q);

	disk = nullb->disk = alloc_disk_node(1, home_node);
	if (!disk) {
		rv = -ENOMEM;
		goto out_cleanup_blk_queue;
	}

	mutex_lock(&lock);
	list_add_tail(&nullb->list, &nullb_list);
	nullb->index = nullb_indexes++;
	mutex_unlock(&lock);

	blk_queue_logical_block_size(nullb->q, bs);
	blk_queue_physical_block_size(nullb->q, bs);

	size = gb * 1024 * 1024 * 1024ULL;
	sector_div(size, bs);
	set_capacity(disk, size);

	disk->flags |= GENHD_FL_EXT_DEVT | GENHD_FL_SUPPRESS_PARTITION_INFO;
	disk->major		= null_major;
	disk->first_minor	= nullb->index;
	disk->fops		= &null_fops;
	disk->private_data	= nullb;
	disk->queue		= nullb->q;
	sprintf(disk->disk_name, "nullb%d", nullb->index);
	add_disk(disk);
	return 0;

out_cleanup_blk_queue:
	blk_cleanup_queue(nullb->q);
out_cleanup_tags:
	if (queue_mode == NULL_Q_MQ)
		blk_mq_free_tag_set(&nullb->tag_set);
out_cleanup_queues:
	cleanup_queues(nullb);
out_free_nullb:
	kfree(nullb);
out:
	return rv;
}
Exemplo n.º 9
0
/**
 * mmc_init_queue - initialise a queue structure.
 * @mq: mmc queue
 * @card: mmc card to attach this queue
 * @lock: queue lock
 * @subname: partition subname
 *
 * Initialise a MMC card request queue.
 */
int mmc_init_queue(struct mmc_queue *mq, struct mmc_card *card,
                   spinlock_t *lock, const char *subname)
{
    struct mmc_host *host = card->host;
    u64 limit = BLK_BOUNCE_HIGH;
    int ret;

    if (mmc_dev(host)->dma_mask && *mmc_dev(host)->dma_mask)
        limit = *mmc_dev(host)->dma_mask;

    mq->card = card;
    mq->queue = blk_init_queue(mmc_request, lock);
    if (!mq->queue)
        return -ENOMEM;

    mq->queue->queuedata = mq;
    mq->req = NULL;

    blk_queue_prep_rq(mq->queue, mmc_prep_request);
    queue_flag_set_unlocked(QUEUE_FLAG_NONROT, mq->queue);
    if (mmc_can_erase(card)) {
        queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mq->queue);
        mq->queue->limits.max_discard_sectors = UINT_MAX;
        if (card->erased_byte == 0)
            mq->queue->limits.discard_zeroes_data = 1;
        mq->queue->limits.discard_granularity = card->pref_erase << 9;
        if (mmc_can_secure_erase_trim(card))
            queue_flag_set_unlocked(QUEUE_FLAG_SECDISCARD,
                                    mq->queue);
    }

#ifdef CONFIG_MMC_BLOCK_BOUNCE
    if (host->max_segs == 1) {
        unsigned int bouncesz;

        bouncesz = MMC_QUEUE_BOUNCESZ;

        if (bouncesz > host->max_req_size)
            bouncesz = host->max_req_size;
        if (bouncesz > host->max_seg_size)
            bouncesz = host->max_seg_size;
        if (bouncesz > (host->max_blk_count * 512))
            bouncesz = host->max_blk_count * 512;

        if (bouncesz > 512) {
            mq->bounce_buf = kmalloc(bouncesz, GFP_KERNEL);
            if (!mq->bounce_buf) {
                printk(KERN_WARNING "%s: unable to "
                       "allocate bounce buffer\n",
                       mmc_card_name(card));
            }
        }

        if (mq->bounce_buf) {
            blk_queue_bounce_limit(mq->queue, BLK_BOUNCE_ANY);
            blk_queue_max_hw_sectors(mq->queue, bouncesz / 512);
            blk_queue_max_segments(mq->queue, bouncesz / 512);
            blk_queue_max_segment_size(mq->queue, bouncesz);

            mq->sg = kmalloc(sizeof(struct scatterlist),
                             GFP_KERNEL);
            if (!mq->sg) {
                ret = -ENOMEM;
                goto cleanup_queue;
            }
            sg_init_table(mq->sg, 1);

            mq->bounce_sg = kmalloc(sizeof(struct scatterlist) *
                                    bouncesz / 512, GFP_KERNEL);
            if (!mq->bounce_sg) {
                ret = -ENOMEM;
                goto cleanup_queue;
            }
            sg_init_table(mq->bounce_sg, bouncesz / 512);
        }
    }
#endif

    if (!mq->bounce_buf) {
        blk_queue_bounce_limit(mq->queue, limit);
        blk_queue_max_hw_sectors(mq->queue,
                                 min(host->max_blk_count, host->max_req_size / 512));
        blk_queue_max_segments(mq->queue, host->max_segs);
        blk_queue_max_segment_size(mq->queue, host->max_seg_size);

        mq->sg = kmalloc(sizeof(struct scatterlist) *
                         host->max_segs, GFP_KERNEL);
        if (!mq->sg) {
            ret = -ENOMEM;
            goto cleanup_queue;
        }
        sg_init_table(mq->sg, host->max_segs);
    }

    sema_init(&mq->thread_sem, 1);

    mq->thread = kthread_run(mmc_queue_thread, mq, "mmcqd/%d%s",
                             host->index, subname ? subname : "");

    if (IS_ERR(mq->thread)) {
        ret = PTR_ERR(mq->thread);
        goto free_bounce_sg;
    }

    return 0;
free_bounce_sg:
    if (mq->bounce_sg)
        kfree(mq->bounce_sg);
    mq->bounce_sg = NULL;
cleanup_queue:
    if (mq->sg)
        kfree(mq->sg);
    mq->sg = NULL;
    if (mq->bounce_buf)
        kfree(mq->bounce_buf);
    mq->bounce_buf = NULL;
    blk_cleanup_queue(mq->queue);
    return ret;
}
Exemplo n.º 10
0
static int null_add_dev(void)
{
	struct nullb *nullb;
	int rv;

	nullb = kzalloc_node(sizeof(*nullb), GFP_KERNEL, home_node);
	if (!nullb) {
		rv = -ENOMEM;
		goto out;
	}

	spin_lock_init(&nullb->lock);

	if (queue_mode == NULL_Q_MQ && use_per_node_hctx)
		submit_queues = nr_online_nodes;

	rv = setup_queues(nullb);
	if (rv)
		goto out_free_nullb;

	if (queue_mode == NULL_Q_MQ) {
		nullb->tag_set.ops = &null_mq_ops;
		nullb->tag_set.nr_hw_queues = submit_queues;
		nullb->tag_set.queue_depth = hw_queue_depth;
		nullb->tag_set.numa_node = home_node;
		nullb->tag_set.cmd_size	= sizeof(struct nullb_cmd);
		nullb->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
		nullb->tag_set.driver_data = nullb;

		rv = blk_mq_alloc_tag_set(&nullb->tag_set);
		if (rv)
			goto out_cleanup_queues;

		nullb->q = blk_mq_init_queue(&nullb->tag_set);
		if (IS_ERR(nullb->q)) {
			rv = -ENOMEM;
			goto out_cleanup_tags;
		}
	} else if (queue_mode == NULL_Q_BIO) {
		nullb->q = blk_alloc_queue_node(GFP_KERNEL, home_node);
		if (!nullb->q) {
			rv = -ENOMEM;
			goto out_cleanup_queues;
		}
		blk_queue_make_request(nullb->q, null_queue_bio);
		rv = init_driver_queues(nullb);
		if (rv)
			goto out_cleanup_blk_queue;
	} else {
		nullb->q = blk_init_queue_node(null_request_fn, &nullb->lock, home_node);
		if (!nullb->q) {
			rv = -ENOMEM;
			goto out_cleanup_queues;
		}
		blk_queue_prep_rq(nullb->q, null_rq_prep_fn);
		blk_queue_softirq_done(nullb->q, null_softirq_done_fn);
		rv = init_driver_queues(nullb);
		if (rv)
			goto out_cleanup_blk_queue;
	}

	nullb->q->queuedata = nullb;
	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, nullb->q);
	queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, nullb->q);

	mutex_lock(&lock);
	nullb->index = nullb_indexes++;
	mutex_unlock(&lock);

	blk_queue_logical_block_size(nullb->q, bs);
	blk_queue_physical_block_size(nullb->q, bs);

	sprintf(nullb->disk_name, "nullb%d", nullb->index);

	if (use_lightnvm)
		rv = null_nvm_register(nullb);
	else
		rv = null_gendisk_register(nullb);

	if (rv)
		goto out_cleanup_blk_queue;

	mutex_lock(&lock);
	list_add_tail(&nullb->list, &nullb_list);
	mutex_unlock(&lock);

	return 0;
out_cleanup_blk_queue:
	blk_cleanup_queue(nullb->q);
out_cleanup_tags:
	if (queue_mode == NULL_Q_MQ)
		blk_mq_free_tag_set(&nullb->tag_set);
out_cleanup_queues:
	cleanup_queues(nullb);
out_free_nullb:
	kfree(nullb);
out:
	return rv;
}
Exemplo n.º 11
0
/**
 * mmc_init_queue - initialise a queue structure.
 * @mq: mmc queue
 * @card: mmc card to attach this queue
 * @lock: queue lock
 *
 * Initialise a MMC card request queue.
 */
int mmc_init_queue(struct mmc_queue *mq, struct mmc_card *card, spinlock_t *lock)
{
	struct mmc_host *host = card->host;
	u64 limit = BLK_BOUNCE_HIGH;
	int ret;

	if (mmc_dev(host)->dma_mask && *mmc_dev(host)->dma_mask)
		limit = *mmc_dev(host)->dma_mask;

	mq->card = card;
	mq->queue = blk_init_queue(mmc_request, lock);
	if (!mq->queue)
		return -ENOMEM;

	mq->queue->queuedata = mq;
	mq->req = NULL;

	blk_queue_prep_rq(mq->queue, mmc_prep_request);
	blk_queue_ordered(mq->queue, QUEUE_ORDERED_DRAIN, NULL);
	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, mq->queue);

	/* Set max discard size, << 11 converts to megabytes in sectors */
	blk_queue_max_discard_sectors(mq->queue, 16 << 11);

	if (card->csd.cmdclass & CCC_ERASE)
		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
					mq->queue);

	/*
	 * Calculating a correct span is way to messy if this
	 * assumption is broken, so remove the erase support
	 */
	if (unlikely(mmc_card_blockaddr(card) &&
			(card->csd.erase_size % 512)))
		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
					  mq->queue);

#ifdef CONFIG_MMC_BLOCK_BOUNCE
	if (host->max_hw_segs == 1) {
		unsigned int bouncesz;

		bouncesz = MMC_QUEUE_BOUNCESZ;

		if (bouncesz > host->max_req_size)
			bouncesz = host->max_req_size;
		if (bouncesz > host->max_seg_size)
			bouncesz = host->max_seg_size;
		if (bouncesz > (host->max_blk_count * 512))
			bouncesz = host->max_blk_count * 512;

		if (bouncesz > 512) {
			mq->bounce_buf = kmalloc(bouncesz, GFP_KERNEL);
			if (!mq->bounce_buf) {
				printk(KERN_WARNING "%s: unable to "
					"allocate bounce buffer\n",
					mmc_card_name(card));
			}
		}

		if (mq->bounce_buf) {
			blk_queue_bounce_limit(mq->queue, BLK_BOUNCE_ANY);
			blk_queue_max_hw_sectors(mq->queue, bouncesz / 512);
			blk_queue_max_segments(mq->queue, bouncesz / 512);
			blk_queue_max_segment_size(mq->queue, bouncesz);

			mq->sg = kmalloc(sizeof(struct scatterlist),
				GFP_KERNEL);
			if (!mq->sg) {
				ret = -ENOMEM;
				goto cleanup_queue;
			}
			sg_init_table(mq->sg, 1);

			mq->bounce_sg = kmalloc(sizeof(struct scatterlist) *
				bouncesz / 512, GFP_KERNEL);
			if (!mq->bounce_sg) {
				ret = -ENOMEM;
				goto cleanup_queue;
			}
			sg_init_table(mq->bounce_sg, bouncesz / 512);
		}
	}
#endif

	if (!mq->bounce_buf) {
		blk_queue_bounce_limit(mq->queue, limit);
		blk_queue_max_hw_sectors(mq->queue,
			min(host->max_blk_count, host->max_req_size / 512));
		blk_queue_max_segments(mq->queue, host->max_hw_segs);
		blk_queue_max_segment_size(mq->queue, host->max_seg_size);

		mq->sg = kmalloc(sizeof(struct scatterlist) *
			host->max_phys_segs, GFP_KERNEL);
		if (!mq->sg) {
			ret = -ENOMEM;
			goto cleanup_queue;
		}
		sg_init_table(mq->sg, host->max_phys_segs);
	}

	init_MUTEX(&mq->thread_sem);

	mq->thread = kthread_run(mmc_queue_thread, mq, "mmcqd");
	if (IS_ERR(mq->thread)) {
		ret = PTR_ERR(mq->thread);
		goto free_bounce_sg;
	}

	return 0;
 free_bounce_sg:
 	if (mq->bounce_sg)
 		kfree(mq->bounce_sg);
 	mq->bounce_sg = NULL;
 cleanup_queue:
 	if (mq->sg)
		kfree(mq->sg);
	mq->sg = NULL;
	if (mq->bounce_buf)
		kfree(mq->bounce_buf);
	mq->bounce_buf = NULL;
	blk_cleanup_queue(mq->queue);
	return ret;
}
Exemplo n.º 12
0
/**
 * mmc_init_queue - initialise a queue structure.
 * @mq: mmc queue
 * @card: mmc card to attach this queue
 * @lock: queue lock
 * @subname: partition subname
 *
 * Initialise a MMC card request queue.
 */
int mmc_init_queue(struct mmc_queue *mq, struct mmc_card *card,
		   spinlock_t *lock, const char *subname)
{
	struct mmc_host *host = card->host;
	u64 limit = BLK_BOUNCE_HIGH;
	bool bounce = false;
	int ret = -ENOMEM;

	if (mmc_dev(host)->dma_mask && *mmc_dev(host)->dma_mask)
		limit = (u64)dma_max_pfn(mmc_dev(host)) << PAGE_SHIFT;

	mq->card = card;
	mq->queue = blk_init_queue(mmc_request_fn, lock);
	if (!mq->queue)
		return -ENOMEM;

	mq->qdepth = 2;
	mq->mqrq = kcalloc(mq->qdepth, sizeof(struct mmc_queue_req),
			   GFP_KERNEL);
	if (!mq->mqrq)
		goto blk_cleanup;
	mq->mqrq_cur = &mq->mqrq[0];
	mq->mqrq_prev = &mq->mqrq[1];
	mq->queue->queuedata = mq;

	blk_queue_prep_rq(mq->queue, mmc_prep_request);
	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, mq->queue);
	queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, mq->queue);
	if (mmc_can_erase(card))
		mmc_queue_setup_discard(mq->queue, card);

#ifdef CONFIG_MMC_BLOCK_BOUNCE
	if (host->max_segs == 1) {
		unsigned int bouncesz;

		bouncesz = MMC_QUEUE_BOUNCESZ;

		if (bouncesz > host->max_req_size)
			bouncesz = host->max_req_size;
		if (bouncesz > host->max_seg_size)
			bouncesz = host->max_seg_size;
		if (bouncesz > (host->max_blk_count * 512))
			bouncesz = host->max_blk_count * 512;

		if (bouncesz > 512 &&
		    mmc_queue_alloc_bounce_bufs(mq, bouncesz)) {
			blk_queue_bounce_limit(mq->queue, BLK_BOUNCE_ANY);
			blk_queue_max_hw_sectors(mq->queue, bouncesz / 512);
			blk_queue_max_segments(mq->queue, bouncesz / 512);
			blk_queue_max_segment_size(mq->queue, bouncesz);

			ret = mmc_queue_alloc_bounce_sgs(mq, bouncesz);
			if (ret)
				goto cleanup_queue;
			bounce = true;
		}
	}
#endif

	if (!bounce) {
		blk_queue_bounce_limit(mq->queue, limit);
		blk_queue_max_hw_sectors(mq->queue,
			min(host->max_blk_count, host->max_req_size / 512));
		blk_queue_max_segments(mq->queue, host->max_segs);
		blk_queue_max_segment_size(mq->queue, host->max_seg_size);

		ret = mmc_queue_alloc_sgs(mq, host->max_segs);
		if (ret)
			goto cleanup_queue;
	}

	sema_init(&mq->thread_sem, 1);

	mq->thread = kthread_run(mmc_queue_thread, mq, "mmcqd/%d%s",
		host->index, subname ? subname : "");

	if (IS_ERR(mq->thread)) {
		ret = PTR_ERR(mq->thread);
		goto cleanup_queue;
	}

	return 0;

 cleanup_queue:
	mmc_queue_reqs_free_bufs(mq);
	kfree(mq->mqrq);
	mq->mqrq = NULL;
blk_cleanup:
	blk_cleanup_queue(mq->queue);
	return ret;
}
Exemplo n.º 13
0
int card_init_queue(struct card_queue *cq, struct memory_card *card,
		    spinlock_t * lock)
{
	struct card_host *host = card->host;
	u64 limit = BLK_BOUNCE_HIGH;
	int ret=0, card_quene_num;
	struct card_queue_list *cq_node_current;
	struct card_queue_list *cq_node_prev = NULL;

	if (host->parent->dma_mask && *host->parent->dma_mask)
		limit = *host->parent->dma_mask;

	cq->card = card;
	cq->queue = blk_init_queue(card_request, lock);
	if (!cq->queue)
		return -ENOMEM;

	blk_queue_prep_rq(cq->queue, card_prep_request);
	card_init_bounce_buf(cq, card);
	
	if(!cq->bounce_buf){
		blk_queue_bounce_limit(cq->queue, limit);
		blk_queue_max_hw_sectors(cq->queue, host->max_sectors);
		//blk_queue_max_hw_phys_segments(cq->queue, host->max_phys_segs);
		blk_queue_max_segments(cq->queue, host->max_hw_segs);
		blk_queue_max_segment_size(cq->queue, host->max_seg_size);

		cq->queue->queuedata = cq;
		cq->req = NULL;

		cq->sg = kmalloc(sizeof(struct scatterlist) * host->max_phys_segs, GFP_KERNEL);
		if (!cq->sg) {
			ret = -ENOMEM;
			blk_cleanup_queue(cq->queue);
			return ret;
		}
	}

	if (card_queue_head == NULL)
	{
		card_queue_head = kmalloc(sizeof(struct card_queue_list), GFP_KERNEL);
		if (card_queue_head == NULL) 
		{
			ret = -ENOMEM;
			kfree(card_queue_head);
			card_queue_head = NULL;
			return ret;
		}
		card_queue_head->cq = cq;
		card_queue_head->cq_num = 0;
		card_queue_head->cq_flag = 0;
		card_queue_head->cq_next = NULL;

		init_completion(&card_thread_complete);
		init_waitqueue_head(&card_thread_wq);
		init_MUTEX(&card_thread_sem);
		host->queue_task = kthread_run(card_queue_thread, cq, "card_queue");
		if (host->queue_task)
		{
			wait_for_completion(&card_thread_complete);
			init_completion(&card_thread_complete);
			ret = 0;
			return ret;
		}
	} 
	else
	{
		card_quene_num = 0;
		cq_node_current = card_queue_head;
		do
		{
			card_quene_num = cq_node_current->cq_num;
			cq_node_prev = cq_node_current;
			cq_node_current = cq_node_current->cq_next;
		} while (cq_node_current != NULL);

		cq_node_current = kmalloc(sizeof(struct card_queue_list), GFP_KERNEL);
		if (cq_node_current == NULL)
		{
			ret = -ENOMEM;
			kfree(cq_node_current);
			cq_node_current = NULL;
			return ret;
		}
		cq_node_prev->cq_next = cq_node_current;
		cq_node_current->cq = cq;
		cq_node_current->cq_next = NULL;
		cq_node_current->cq_num = (++card_quene_num);
		cq_node_current->cq_flag = 0;

		ret = 0;
		return ret;
	}

	return ret;
}
Exemplo n.º 14
0
/*
 * Generic MMC request handler.  This is called for any queue on a
 * particular host.  When the host is not busy, we look for a request
 * on any queue on this host, and attempt to issue it.  This may
 * not be the queue we were asked to process.
 */
static void mmc_request(struct request_queue *q)
{
	struct mmc_queue *mq = q->queuedata;
	struct request *req;
	int ret;
#if 0
	if (!mq) {
#else
    //插着USB线(充电姿态),拔插卡,有偶尔死机现象。出现mq->thread为空的现象;modifyed by xbw
    if (!mq ||!mq->thread) {
#endif	
		printk(KERN_ERR "MMC: killing requests for dead queue\n");
		while ((req = elv_next_request(q)) != NULL) {
			do {
				ret = __blk_end_request(req, -EIO,
							blk_rq_cur_bytes(req));
			} while (ret);
		}
		return;
	}

	if (!mq->req)
		wake_up_process(mq->thread);
}

/**
 * mmc_init_queue - initialise a queue structure.
 * @mq: mmc queue
 * @card: mmc card to attach this queue
 * @lock: queue lock
 *
 * Initialise a MMC card request queue.
 */
int mmc_init_queue(struct mmc_queue *mq, struct mmc_card *card, spinlock_t *lock)
{
	struct mmc_host *host = card->host;
	u64 limit = BLK_BOUNCE_ANY ; // BLK_BOUNCE_HIGH;
	int ret;

	if (mmc_dev(host)->dma_mask && *mmc_dev(host)->dma_mask)
		limit = *mmc_dev(host)->dma_mask;

	mq->card = card;
	mq->queue = blk_init_queue(mmc_request, lock);
	if (!mq->queue)
		return -ENOMEM;

	mq->queue->queuedata = mq;
	mq->req = NULL;

	blk_queue_prep_rq(mq->queue, mmc_prep_request);

#ifdef CONFIG_MMC_BLOCK_BOUNCE
	if (host->max_hw_segs == 1) {
		unsigned int bouncesz;

		bouncesz = MMC_QUEUE_BOUNCESZ;

		if (bouncesz > host->max_req_size)
			bouncesz = host->max_req_size;
		if (bouncesz > host->max_seg_size)
			bouncesz = host->max_seg_size;

		mq->bounce_buf = kmalloc(bouncesz, GFP_KERNEL);
		if (!mq->bounce_buf) {
			printk(KERN_WARNING "%s: unable to allocate "
				"bounce buffer\n", mmc_card_name(card));
		} else {
			blk_queue_bounce_limit(mq->queue, BLK_BOUNCE_HIGH);
			blk_queue_max_sectors(mq->queue, bouncesz / 512);
			blk_queue_max_phys_segments(mq->queue, bouncesz / 512);
			blk_queue_max_hw_segments(mq->queue, bouncesz / 512);
			blk_queue_max_segment_size(mq->queue, bouncesz);

			mq->sg = kmalloc(sizeof(struct scatterlist),
				GFP_KERNEL);
			if (!mq->sg) {
				ret = -ENOMEM;
				goto cleanup_queue;
			}
			sg_init_table(mq->sg, 1);

			mq->bounce_sg = kmalloc(sizeof(struct scatterlist) *
				bouncesz / 512, GFP_KERNEL);
			if (!mq->bounce_sg) {
				ret = -ENOMEM;
				goto cleanup_queue;
			}
			sg_init_table(mq->bounce_sg, bouncesz / 512);
		}
	}
#endif

	if (!mq->bounce_buf) {
		blk_queue_bounce_limit(mq->queue, limit);
		blk_queue_max_sectors(mq->queue, host->max_req_size / 512);
		blk_queue_max_phys_segments(mq->queue, host->max_phys_segs);
		blk_queue_max_hw_segments(mq->queue, host->max_hw_segs);
		blk_queue_max_segment_size(mq->queue, host->max_seg_size);

		mq->sg = kmalloc(sizeof(struct scatterlist) *
			host->max_phys_segs, GFP_KERNEL);
		if (!mq->sg) {
			ret = -ENOMEM;
			goto cleanup_queue;
		}
		sg_init_table(mq->sg, host->max_phys_segs);
	}

	init_MUTEX(&mq->thread_sem);

	mq->thread = kthread_run(mmc_queue_thread, mq, "mmcqd");
	if (IS_ERR(mq->thread)) {
		ret = PTR_ERR(mq->thread);
		goto free_bounce_sg;
	}

	return 0;
 free_bounce_sg:
 	if (mq->bounce_sg)
 		kfree(mq->bounce_sg);
 	mq->bounce_sg = NULL;
 cleanup_queue:
 	if (mq->sg)
		kfree(mq->sg);
	mq->sg = NULL;
	if (mq->bounce_buf)
		kfree(mq->bounce_buf);
	mq->bounce_buf = NULL;
	blk_cleanup_queue(mq->queue);
	return ret;
}

void mmc_cleanup_queue(struct mmc_queue *mq)
{
	struct request_queue *q = mq->queue;
	unsigned long flags;

	/* Mark that we should start throwing out stragglers */
	spin_lock_irqsave(q->queue_lock, flags);
	q->queuedata = NULL;
	spin_unlock_irqrestore(q->queue_lock, flags);

	/* Make sure the queue isn't suspended, as that will deadlock */
	mmc_queue_resume(mq);

	/* Then terminate our worker thread */
	kthread_stop(mq->thread);

 	if (mq->bounce_sg)
 		kfree(mq->bounce_sg);
 	mq->bounce_sg = NULL;

	kfree(mq->sg);
	mq->sg = NULL;

	if (mq->bounce_buf)
		kfree(mq->bounce_buf);
	mq->bounce_buf = NULL;

	blk_cleanup_queue(mq->queue);

	mq->card = NULL;
}
EXPORT_SYMBOL(mmc_cleanup_queue);

/**
 * mmc_queue_suspend - suspend a MMC request queue
 * @mq: MMC queue to suspend
 *
 * Stop the block request queue, and wait for our thread to
 * complete any outstanding requests.  This ensures that we
 * won't suspend while a request is being processed.
 */
void mmc_queue_suspend(struct mmc_queue *mq)
{
	struct request_queue *q = mq->queue;
	unsigned long flags;

	if (!(mq->flags & MMC_QUEUE_SUSPENDED)) {
		mq->flags |= MMC_QUEUE_SUSPENDED;

		spin_lock_irqsave(q->queue_lock, flags);
		blk_stop_queue(q);
		spin_unlock_irqrestore(q->queue_lock, flags);

		down(&mq->thread_sem);
	}
}

/**
 * mmc_queue_resume - resume a previously suspended MMC request queue
 * @mq: MMC queue to resume
 */
void mmc_queue_resume(struct mmc_queue *mq)
{
	struct request_queue *q = mq->queue;
	unsigned long flags;

	if (mq->flags & MMC_QUEUE_SUSPENDED) {
		mq->flags &= ~MMC_QUEUE_SUSPENDED;

		up(&mq->thread_sem);

		spin_lock_irqsave(q->queue_lock, flags);
		blk_start_queue(q);
		spin_unlock_irqrestore(q->queue_lock, flags);
	}
}

static void copy_sg(struct scatterlist *dst, unsigned int dst_len,
	struct scatterlist *src, unsigned int src_len)
{
	unsigned int chunk;
	char *dst_buf, *src_buf;
	unsigned int dst_size, src_size;

	dst_buf = NULL;
	src_buf = NULL;
	dst_size = 0;
	src_size = 0;

	while (src_len) {
		BUG_ON(dst_len == 0);

		if (dst_size == 0) {
			dst_buf = sg_virt(dst);
			dst_size = dst->length;
		}

		if (src_size == 0) {
			src_buf = sg_virt(src);
			src_size = src->length;
		}

		chunk = min(dst_size, src_size);

		memcpy(dst_buf, src_buf, chunk);

		dst_buf += chunk;
		src_buf += chunk;
		dst_size -= chunk;
		src_size -= chunk;

		if (dst_size == 0) {
			dst++;
			dst_len--;
		}

		if (src_size == 0) {
			src++;
			src_len--;
		}
	}
}
/**
 * mmc_init_queue - initialise a queue structure.
 * @mq: mmc queue
 * @card: mmc card to attach this queue
 * @lock: queue lock
 * @subname: partition subname
 *
 * Initialise a MMC card request queue.
 */
int mmc_init_queue(struct mmc_queue *mq, struct mmc_card *card,
		   spinlock_t *lock, const char *subname)
{
	struct mmc_host *host = card->host;
	u64 limit = BLK_BOUNCE_HIGH;
	int ret;
	struct mmc_queue_req *mqrq_cur = &mq->mqrq[0];
	struct mmc_queue_req *mqrq_prev = &mq->mqrq[1];

	if (mmc_dev(host)->dma_mask && *mmc_dev(host)->dma_mask)
		limit = *mmc_dev(host)->dma_mask;

	mq->card = card;
	mq->queue = blk_init_queue(mmc_request, lock);
	if (!mq->queue)
		return -ENOMEM;

	memset(&mq->mqrq_cur, 0, sizeof(mq->mqrq_cur));
	memset(&mq->mqrq_prev, 0, sizeof(mq->mqrq_prev));
	mq->mqrq_cur = mqrq_cur;
	mq->mqrq_prev = mqrq_prev;
	mq->queue->queuedata = mq;

	blk_queue_prep_rq(mq->queue, mmc_prep_request);
	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, mq->queue);
	if (mmc_can_erase(card))
		mmc_queue_setup_discard(mq->queue, card);

#ifdef CONFIG_MMC_BLOCK_BOUNCE
	if (host->max_segs == 1) {
		unsigned int bouncesz;

		if(!mmc_card_sd(card))
			bouncesz = MMC_QUEUE_BOUNCESZ;
		else
			bouncesz = MMC_QUEUE_SD_BOUNCESZ;

		if (bouncesz > host->max_req_size)
			bouncesz = host->max_req_size;
		if (bouncesz > host->max_seg_size)
			bouncesz = host->max_seg_size;
		if (bouncesz > (host->max_blk_count * 512))
			bouncesz = host->max_blk_count * 512;

		if (bouncesz > 512) {
			if(!mmc_card_sd(card))
				mqrq_cur->bounce_buf = kmalloc(bouncesz, GFP_KERNEL);
			else
				mqrq_cur->bounce_buf = mmc_queue_cur_bounce_buf;
			if (!mqrq_cur->bounce_buf) {
				printk(KERN_WARNING "%s: unable to "
					"allocate bounce cur buffer\n",
					mmc_card_name(card));
			}
			if(!mmc_card_sd(card))
				mqrq_prev->bounce_buf = kmalloc(bouncesz, GFP_KERNEL);
			else
				mqrq_prev->bounce_buf = mmc_queue_prev_bounce_buf;
			if (!mqrq_prev->bounce_buf) {
				printk(KERN_WARNING "%s: unable to "
					"allocate bounce prev buffer\n",
					mmc_card_name(card));
				kfree(mqrq_cur->bounce_buf);
				mqrq_cur->bounce_buf = NULL;
			}
		}

		if (mqrq_cur->bounce_buf && mqrq_prev->bounce_buf) {
			blk_queue_bounce_limit(mq->queue, BLK_BOUNCE_ANY);
			blk_queue_max_hw_sectors(mq->queue, bouncesz / 512);
			blk_queue_max_segments(mq->queue, bouncesz / 512);
			blk_queue_max_segment_size(mq->queue, bouncesz);

			mqrq_cur->sg = mmc_alloc_sg(1, &ret);
			if (ret)
				goto cleanup_queue;

			mqrq_cur->bounce_sg =
				mmc_alloc_sg(bouncesz / 512, &ret);
			if (ret)
				goto cleanup_queue;

			mqrq_prev->sg = mmc_alloc_sg(1, &ret);
			if (ret)
				goto cleanup_queue;

			mqrq_prev->bounce_sg =
				mmc_alloc_sg(bouncesz / 512, &ret);
			if (ret)
				goto cleanup_queue;
		}
	}
#endif

	if (!mqrq_cur->bounce_buf && !mqrq_prev->bounce_buf) {
		blk_queue_bounce_limit(mq->queue, limit);
		blk_queue_max_hw_sectors(mq->queue,
			min(host->max_blk_count, host->max_req_size / 512));
		blk_queue_max_segments(mq->queue, host->max_segs);
		blk_queue_max_segment_size(mq->queue, host->max_seg_size);

		mqrq_cur->sg = mmc_alloc_sg(host->max_segs, &ret);
		if (ret)
			goto cleanup_queue;


		mqrq_prev->sg = mmc_alloc_sg(host->max_segs, &ret);
		if (ret)
			goto cleanup_queue;
	}

	sema_init(&mq->thread_sem, 1);

	mq->thread = kthread_run(mmc_queue_thread, mq, "mmcqd/%d%s",
		host->index, subname ? subname : "");

	if (IS_ERR(mq->thread)) {
		ret = PTR_ERR(mq->thread);
		goto free_bounce_sg;
	}

	return 0;
 free_bounce_sg:
	kfree(mqrq_cur->bounce_sg);
	mqrq_cur->bounce_sg = NULL;
	kfree(mqrq_prev->bounce_sg);
	mqrq_prev->bounce_sg = NULL;

 cleanup_queue:
	kfree(mqrq_cur->sg);
	mqrq_cur->sg = NULL;
	if(!mmc_card_sd(card))
		kfree(mqrq_cur->bounce_buf);
	mqrq_cur->bounce_buf = NULL;

	kfree(mqrq_prev->sg);
	mqrq_prev->sg = NULL;
	if(!mmc_card_sd(card))
		kfree(mqrq_prev->bounce_buf);
	mqrq_prev->bounce_buf = NULL;

	blk_cleanup_queue(mq->queue);
	return ret;
}
Exemplo n.º 16
0
/**
 * mmc_init_queue - initialise a queue structure.
 * @mq: mmc queue
 * @card: mmc card to attach this queue
 * @lock: queue lock
 *
 * Initialise a MMC card request queue.
 */
int mmc_init_queue(struct mmc_queue *mq, struct mmc_card *card, spinlock_t *lock)
{
	struct mmc_host *host = card->host;
	u64 limit = BLK_BOUNCE_HIGH;
	int ret;

	if (mmc_dev(host)->dma_mask && *mmc_dev(host)->dma_mask)
		limit = *mmc_dev(host)->dma_mask;

	mq->card = card;
	mq->queue = blk_init_queue(mmc_request, lock);
	if (!mq->queue)
		return -ENOMEM;

	mq->queue->queuedata = mq;
	mq->req = NULL;

	blk_queue_prep_rq(mq->queue, mmc_prep_request);
	blk_queue_ordered(mq->queue, QUEUE_ORDERED_DRAIN, NULL);
	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, mq->queue);

#ifdef CONFIG_MMC_BLOCK_BOUNCE
	if (host->max_hw_segs == 1) {
		unsigned int bouncesz;

		bouncesz = MMC_QUEUE_BOUNCESZ;

		if (bouncesz > host->max_req_size)
			bouncesz = host->max_req_size;
		if (bouncesz > host->max_seg_size)
			bouncesz = host->max_seg_size;
		if (bouncesz > (host->max_blk_count * 512))
			bouncesz = host->max_blk_count * 512;

		if (bouncesz > 512) {
			mq->bounce_buf = kmalloc(bouncesz, GFP_KERNEL);
			if (!mq->bounce_buf) {
				printk(KERN_WARNING "%s: unable to "
					"allocate bounce buffer\n",
					mmc_card_name(card));
			}
		}

		if (mq->bounce_buf) {
			blk_queue_bounce_limit(mq->queue, BLK_BOUNCE_ANY);
			blk_queue_max_sectors(mq->queue, bouncesz / 512);
			blk_queue_max_phys_segments(mq->queue, bouncesz / 512);
			blk_queue_max_hw_segments(mq->queue, bouncesz / 512);
			blk_queue_max_segment_size(mq->queue, bouncesz);

			mq->sg = kmalloc(sizeof(struct scatterlist),
				GFP_KERNEL);
			if (!mq->sg) {
				ret = -ENOMEM;
				goto cleanup_queue;
			}
			sg_init_table(mq->sg, 1);

			mq->bounce_sg = kmalloc(sizeof(struct scatterlist) *
				bouncesz / 512, GFP_KERNEL);
			if (!mq->bounce_sg) {
				ret = -ENOMEM;
				goto cleanup_queue;
			}
			sg_init_table(mq->bounce_sg, bouncesz / 512);
		}
	}
#endif

	if (!mq->bounce_buf) {
		blk_queue_bounce_limit(mq->queue, limit);
		blk_queue_max_sectors(mq->queue,
			min(host->max_blk_count, host->max_req_size / 512));
		blk_queue_max_phys_segments(mq->queue, host->max_phys_segs);
		blk_queue_max_hw_segments(mq->queue, host->max_hw_segs);
		blk_queue_max_segment_size(mq->queue, host->max_seg_size);

		mq->sg = kmalloc(sizeof(struct scatterlist) *
			host->max_phys_segs, GFP_KERNEL);
		if (!mq->sg) {
			ret = -ENOMEM;
			goto cleanup_queue;
		}
		sg_init_table(mq->sg, host->max_phys_segs);
	}

	init_MUTEX(&mq->thread_sem);

	mq->thread = kthread_run(mmc_queue_thread, mq, "mmcqd");
	if (IS_ERR(mq->thread)) {
		ret = PTR_ERR(mq->thread);
		goto free_bounce_sg;
	}

	return 0;
 free_bounce_sg:
 	if (mq->bounce_sg)
 		kfree(mq->bounce_sg);
 	mq->bounce_sg = NULL;
 cleanup_queue:
 	if (mq->sg)
		kfree(mq->sg);
	mq->sg = NULL;
	if (mq->bounce_buf)
		kfree(mq->bounce_buf);
	mq->bounce_buf = NULL;
	blk_cleanup_queue(mq->queue);
	return ret;
}
Exemplo n.º 17
0
static int null_add_dev(void)
{
	struct gendisk *disk;
	struct nullb *nullb;
	sector_t size;

	nullb = kzalloc_node(sizeof(*nullb), GFP_KERNEL, home_node);
	if (!nullb)
		return -ENOMEM;

	spin_lock_init(&nullb->lock);

	if (setup_queues(nullb))
		goto err;

	if (queue_mode == NULL_Q_MQ) {
		null_mq_reg.numa_node = home_node;
		null_mq_reg.queue_depth = hw_queue_depth;

		if (use_per_node_hctx) {
			null_mq_reg.ops->alloc_hctx = null_alloc_hctx;
			null_mq_reg.ops->free_hctx = null_free_hctx;

			null_mq_reg.nr_hw_queues = nr_online_nodes;
		} else {
			null_mq_reg.ops->alloc_hctx = blk_mq_alloc_single_hw_queue;
			null_mq_reg.ops->free_hctx = blk_mq_free_single_hw_queue;

			null_mq_reg.nr_hw_queues = submit_queues;
		}

		nullb->q = blk_mq_init_queue(&null_mq_reg, nullb);
	} else if (queue_mode == NULL_Q_BIO) {
		nullb->q = blk_alloc_queue_node(GFP_KERNEL, home_node);
		blk_queue_make_request(nullb->q, null_queue_bio);
	} else {
		nullb->q = blk_init_queue_node(null_request_fn, &nullb->lock, home_node);
		blk_queue_prep_rq(nullb->q, null_rq_prep_fn);
		if (nullb->q)
			blk_queue_softirq_done(nullb->q, null_softirq_done_fn);
	}

	if (!nullb->q)
		goto queue_fail;

	nullb->q->queuedata = nullb;
	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, nullb->q);

	disk = nullb->disk = alloc_disk_node(1, home_node);
	if (!disk) {
queue_fail:
		if (queue_mode == NULL_Q_MQ)
			blk_mq_free_queue(nullb->q);
		else
			blk_cleanup_queue(nullb->q);
		cleanup_queues(nullb);
err:
		kfree(nullb);
		return -ENOMEM;
	}

	mutex_lock(&lock);
	list_add_tail(&nullb->list, &nullb_list);
	nullb->index = nullb_indexes++;
	mutex_unlock(&lock);

	blk_queue_logical_block_size(nullb->q, bs);
	blk_queue_physical_block_size(nullb->q, bs);

	size = gb * 1024 * 1024 * 1024ULL;
	sector_div(size, bs);
	set_capacity(disk, size);

	disk->flags |= GENHD_FL_EXT_DEVT;
	disk->major		= null_major;
	disk->first_minor	= nullb->index;
	disk->fops		= &null_fops;
	disk->private_data	= nullb;
	disk->queue		= nullb->q;
	sprintf(disk->disk_name, "nullb%d", nullb->index);
	add_disk(disk);
	return 0;
}