Exemplo n.º 1
0
void rx_task ()
{
  uint8_t i, len, rssi;
  int8_t val;
	//char *local_rx_buf;
  nrk_time_t check_period;
  printf ("rx_task PID=%d\r\n", nrk_get_pid ());

  // init bmac on channel 24 
  bmac_init (24);
	
  // Enable AES 128 bit encryption
  // When encryption is active, messages from plaintext
  // source will still be received. 
	
	// Commented out by MB
  //bmac_encryption_set_key(aes_key,16);
  //bmac_encryption_enable();
	// bmac_encryption_disable();

	
  // By default the RX check rate is 200ms
  // below shows how to change that
  //check_period.secs=0;
  //check_period.nano_secs=200*NANOS_PER_MS;
  //val=bmac_set_rx_check_rate(check_period);

  // The default Clear Channel Assement RSSI threshold.
  // Setting this value higher means that you will only trigger
  // receive with a very strong signal.  Setting this lower means
  // bmac will try to receive fainter packets.  If the value is set
  // too high or too low performance will suffer greatly.
   bmac_set_cca_thresh(DEFAULT_BMAC_CCA); 


  // This sets the next RX buffer.
  // This can be called at anytime before releaseing the packet
  // if you wish to do a zero-copy buffer switch
  bmac_rx_pkt_set_buffer (rx_buf, RF_MAX_PAYLOAD_SIZE);

  while (1) {
    // Wait until an RX packet is received
    //val = bmac_wait_until_rx_pkt ();
		//printf("Hi..\n");
    // Get the RX packet 
    nrk_led_set (ORANGE_LED);
    
	
	length1=len;
    nrk_led_clr (ORANGE_LED);
   
		// Release the RX buffer so future packets can arrive 
    bmac_rx_pkt_release ();
		
		// this is necessary
    nrk_wait_until_next_period ();

  }

}
Exemplo n.º 2
0
void rx_task() {
    uint8_t i, len, rssi, *local_rx_buf;
    bmac_set_cca_thresh(DEFAULT_BMAC_CCA);
    bmac_rx_pkt_set_buffer ((char*)rx_buf, RF_MAX_PAYLOAD_SIZE);
    while (1) {
        if(cache[0]==MyOwnAddress) {
            nrk_led_set(RED_LED);
        }
        else {
            nrk_led_clr(RED_LED);
        }
        bmac_wait_until_rx_pkt();
        nrk_led_set(ORANGE_LED);
        (char*)local_rx_buf = bmac_rx_pkt_get (&len, &rssi);

        for(i=0; i<len; i++) {
            putchar(local_rx_buf[i]);
        }
        RxPacketProcess(local_rx_buf,len);


        nrk_led_clr (ORANGE_LED);
        bmac_rx_pkt_release();
        nrk_wait_until_next_period ();
    }
}
Exemplo n.º 3
0
void rx_task ()
{ 
    uint8_t rssi,len,*local_rx_buf,mole, from, received_round;;
    int i,r; 
    bmac_set_cca_thresh(DEFAULT_BMAC_CCA);
    bmac_rx_pkt_set_buffer (rx_buf,102);
    //cleaning up the target sector in the flash
    iap.erase(TARGET_SECTOR,TARGET_SECTOR);
    while(!bmac_started());
    printf("Receiver node Bmac initialised\n");
  
        while(1) {
            nrk_wait_until_next_period();
            
					  if( !bmac_rx_pkt_ready())
                continue;
            printf("received packet\n\r");
            nrk_led_toggle(ORANGE_LED);
            local_rx_buf = (uint8_t *)bmac_rx_pkt_get (&len, &rssi);
            
            
            for(i=0;i<2;i++)
							printf("%d", local_rx_buf[i]);
                             
            printf("\r\n");
						for(i = 2; i < len; i++)
							printf("0x%X ", local_rx_buf[i]);
                            
                      
           // getting function code
            for(i = 0; i < 200; i++){
							code[i] = local_rx_buf[i+2];
            }
            //getting function size
            functionSize=local_rx_buf[1];
            iap.prepare(TARGET_SECTOR, TARGET_SECTOR);
                       
            //alloting space and writing the cvode in the flash
             if(functionSize % 256 ==0)
               r  = iap.write( code, sector_start_adress[TARGET_SECTOR], 256);
             else
						   r  = iap.write( code, sector_start_adress[TARGET_SECTOR], 256);
           
						 printf("size: %d\n", functionSize + functionSize % 256);
						 printf( "copied: SRAM(0x%08X)->Flash(0x%08X) for %d bytes. (result=0x%08X)\r\n", code, sector_start_adress[ TARGET_SECTOR ], 1024, r );
					 startAddress+=functionSize;//starting Address for next functtion to be added
           functionRecieved = 0;
           bmac_rx_pkt_release ();   
						
					 copied_function=(function) (0xE000 | 1);    
				 //calling the copi8ed function
						functionRecieved=1;
          
        } 
				 // pointing the function pointer to the copied code in the flash
         
}
Exemplo n.º 4
0
int8_t control_generate (SAMPL_UPSTREAM_PKT_T * pkt,
                         SAMPL_DOWNSTREAM_PKT_T * ds_pkt)
{
  ACK_PKT_T p;
  CONTROL_PKT_T r;
  uint8_t g,num_pkts, i, selected, checksum;
  nrk_time_t t;

  g = control_pkt_get (&r, ds_pkt->payload, 0, &checksum);
  if(g==0) return NRK_ERROR;
  if (checksum == r.checksum && r.mobile_reserve_seconds != 0) {
    bmac_set_cca_thresh (r.cca_threshold);
    if ((r.ctrl_flags_1 & GLOBAL_DEBUG_MASK) != 0)
      admin_debug_flag = 1;
    else
      admin_debug_flag = 0;
    t.secs = r.mobile_reserve_seconds;
    t.nano_secs = 0;
    i = nrk_reserve_set (mobile_reserve, &t, r.mobile_reserve_cnt, NULL);
    // add route persistence here...

    nrk_kprintf (PSTR ("Control Pkt:\r\n"));
    nrk_kprintf (PSTR ("  CCA:"));
    printf ("%d", (int8_t) r.cca_threshold);
    nrk_kprintf (PSTR ("\r\n  Debug:"));
    printf ("%d", (r.ctrl_flags_1 & GLOBAL_DEBUG_MASK));
    nrk_kprintf (PSTR ("\r\n  Mobile Reserve time:"));
    printf ("%lu", r.mobile_reserve_seconds);
    nrk_kprintf (PSTR (" sec\r\n  Mobile Reserve count:"));
    printf ("%lu", r.mobile_reserve_cnt);
    nrk_kprintf (PSTR ("\r\n"));


    // build ACK reply packet
    p.mac_addr = my_mac;
    pkt->payload_len = ack_pkt_add (&p, pkt->payload, 0);
    pkt->num_msgs = 1;
    pkt->pkt_type = ACK_PKT;
    pkt->error_code = 0;        // set error type for NCK
  }
  else {
    nrk_kprintf (PSTR ("Control packet failed checksum\r\n"));
    nrk_kprintf (PSTR ("  pkt: "));
    printf ("%d", r.checksum);
    nrk_kprintf (PSTR ("  calc: "));
    printf ("%d\r\n", checksum);
    // build NCK reply packet
    p.mac_addr = my_mac;
    pkt->payload_len = ack_pkt_add (&p, pkt->payload, 0);
    pkt->num_msgs = 1;
    pkt->pkt_type = ACK_PKT;
    pkt->error_code = 1;        // set error type for NCK
  }

  return NRK_OK;
}
Exemplo n.º 5
0
void rx_task ()
{
  uint8_t i, len, rssi;
  int8_t val;
  
	//char *local_rx_buf;
  nrk_time_t check_period;
  printf ("rx_task PID=%d\r\n", nrk_get_pid ());

  // init bmac on channel 24 
  bmac_init (5);
  bmac_set_cca_thresh(DEFAULT_BMAC_CCA); 
  bmac_rx_pkt_set_buffer (rx_buf, RF_MAX_PAYLOAD_SIZE);

  while (1) {
    // Wait until an RX packet is received
    val = bmac_wait_until_rx_pkt ();
		//printf("Hi..\n");
    // Get the RX packet 
    nrk_led_set (ORANGE_LED);
    local_rx_buf = bmac_rx_pkt_get (&len, &rssi);
	  inter_flag=0;
		if(rssi<5){
	    dst_addr=0x0003;
	//inter_tx_buf=local_rx_buf;
		}
			else
			{
				dst_addr=0x0001;
			}
	if(local_rx_buf[0]=='n'){
   dst_addr=0x0001;
	 inter_tx_buf=local_rx_buf;
   inter_flag=1;		
}
	
	printf("inter_flag: %d",inter_flag);
	printf("\r\n");
	printf("rx_buf:");
	for(i=0;i<len;i++){
	printf("%c",local_rx_buf[i]);
	}
	
    nrk_led_clr (ORANGE_LED);
   
		// Release the RX buffer so future packets can arrive 
    bmac_rx_pkt_release ();
		
		// this is necessary
    nrk_wait_until_next_period ();

  }

}
Exemplo n.º 6
0
void rx_task ()
{
  uint8_t i, len, rssi;
  int8_t val;
	char *local_rx_buf;
  nrk_time_t check_period;
  printf ("rx_task PID=%d\r\n", nrk_get_pid ());
  // init bmac on channel 24 
  bmac_init (12);  
  bmac_set_cca_thresh(DEFAULT_BMAC_CCA); 
  
  bmac_rx_pkt_set_buffer (rx_buf, RF_MAX_PAYLOAD_SIZE);
	rx_count = 0;

  while (1) {
    // Wait until an RX packet is received
		if (tx_count >= 300) {
			printf("Total Packet received : %d \r\n", rx_count);
		}
		val = bmac_wait_until_rx_pkt ();
		
    // Get the RX packet 
    nrk_led_set (ORANGE_LED);
    local_rx_buf = bmac_rx_pkt_get (&len, &rssi);
    //if( bmac_rx_pkt_is_encrypted()==1 ) nrk_kprintf( PSTR( "Packet Encrypted\r\n" ));
    if ((len > 0) && (rssi > 0)) {
			printf ("Got RX packet len=%d RSSI=%d \r\n", len, rssi);
			nrk_led_clr (ORANGE_LED);
			rx_count++;
		}
		// Release the RX buffer so future packets can arrive 
    bmac_rx_pkt_release ();	
		// this is necessary
    nrk_wait_until_next_period ();
  }
}
Exemplo n.º 7
0
/******************************************************************************************************
 *
 *
 *Receive task execution
 *
 *
 *
 *
 ******************************************************************************************************/
void rx_task ()
{ 

    uint8_t rssi,len,*local_rx_buf,v;
    int receivedSeqNo=0,senderNode = 0;
    
    bmac_set_cca_thresh(DEFAULT_BMAC_CCA);
    bmac_rx_pkt_set_buffer (rx_buf,RF_MAX_PAYLOAD_SIZE);
    
    
    while(!bmac_started());
    printf("Receiver node Bmac initialised\n");

    while(1) {
        

        if( !bmac_rx_pkt_ready())
            continue;
        //printf("received packet\n\r");
        nrk_led_toggle(ORANGE_LED);
        
        local_rx_buf = (uint8_t *)bmac_rx_pkt_get (&len, &rssi);

        //If my own packet then dont receive
        if(local_rx_buf[SOURCE_ADDRESS_LOCATION]==MY_ID)
        {
            continue;
        }
        //Sample the data
        receivedSeqNo = local_rx_buf[SEQUENCE_NUM_LOCATION];
        senderNode = local_rx_buf[SOURCE_ADDRESS_LOCATION];

        //Check if the message is intended for me
        if(len!=0 && local_rx_buf[DESTINATION_ADDRESS_LOCATION]==MY_ID)
        {
            //Check the type of data
            switch(local_rx_buf[MESSAGE_TYPE_LOCATION])
            {
            case DATA:
                if(receivedSeqNo>lastReceivedSequenceNo[senderNode])
                {
                    receiveComplete[senderNode] =0;
                    printf("received new packet\n\r");
                    //Process and send the acknowledgement to the receiver
                    lastReceivedSequenceNo[senderNode]=receivedSeqNo;
                    extractPacket(local_rx_buf,&receiveData[DATA_LOCATION(senderNode)],len,senderNode);
                    if(local_rx_buf[PACKET_NUM_LOCATION]==FIRST_PACKET)
                    {
                        receivedPacketSize[senderNode]=0;
                        receivedPacketSize[senderNode] +=(len-HEADER_SIZE);

                    }
                    else
                    {

                        receivedPacketSize[senderNode] +=(len-HEADER_SIZE);

                    }

                    //Send the acknowledgement
                    ack_buf[senderNode][DESTINATION_ADDRESS_LOCATION]=senderNode;
                    ack_buf[senderNode][SOURCE_ADDRESS_LOCATION]= MY_ID;
                    ack_buf[senderNode][SEQUENCE_NUM_LOCATION] = receivedSeqNo;
                    ack_buf[senderNode][MESSAGE_TYPE_LOCATION] = DATA_PACKET_ACK;
                    receiverNextPacket[senderNode]= SEND_ACK;
                    
                    if(local_rx_buf[PACKET_NUM_LOCATION]==LAST_PACKET)
                    {
                        receiveComplete[senderNode] =1;

                        for(int i=0;i<receivedPacketSize[senderNode];i++)
                        {
                            printf("%d \t",receiveData[i]);

                        }

                    }
                    sendAckFlag[senderNode]=1;
                }
                else
                {
                    printf("received old packet\n\r");
                    ack_buf[senderNode][DESTINATION_ADDRESS_LOCATION]=senderNode;
                    ack_buf[senderNode][SOURCE_ADDRESS_LOCATION]= MY_ID;
                    ack_buf[senderNode][SEQUENCE_NUM_LOCATION] = lastReceivedSequenceNo[senderNode];
                    ack_buf[senderNode][MESSAGE_TYPE_LOCATION] = DATA_PACKET_ACK;
                    //Send the acknowledgement to the sender
                    receiverNextPacket[senderNode]= SEND_ACK;
                    sendAckFlag[senderNode]=1;

                }
                //v=nrk_event_signal( signal_ack );

                break;
            case DATA_PACKET_ACK:

                //If it is a new ACK packet then accept it. Else dont bother
                if(lastSentSequenceNo[senderNode]==receivedSeqNo)
                {
                    printf("Received Ack\n");
                    switch(sendNextPacket[senderNode])
                    {
                    case WAIT_ACK:
                        sendNextPacket[senderNode]= IN_PROGRESS;
                        printf("Sent IN_PROGRESS\n");
                        break;
                    case LAST_PACKET_ACK:
                        printf("Sent end_PROGRESS\n");
                        sendNextPacket[senderNode] = END;
												break;
                    default:
                        printf("Error shouldn't have entered here");
                        break;

                    }

                }


                break;
            default:
                break;

            }
        }
        bmac_rx_pkt_release ();
        nrk_wait_until_next_period();
    }
    // pointing the function pointer to the copied code in the flash

}
Exemplo n.º 8
0
Arquivo: main.c Projeto: nycdarren/mrk
// This task periodically sends and XMPP message through the gateway
// to an arbitrary JID on the network.
void tx_task ()
{
    uint8_t cnt ;
    int8_t val;


    printf ("tx_task PID=%d\r\n", nrk_get_pid ());

    // Configure address for other packet handlers (my not be needed)
    my_mac= MY_MAC;
    my_subnet_mac[0]= MY_SUBNET_MAC_0;
    my_subnet_mac[1]= MY_SUBNET_MAC_1;
    my_subnet_mac[2]= MY_SUBNET_MAC_2;
    mac_address= (uint8_t)MY_SUBNET_MAC_2 << 24 | (uint8_t)MY_SUBNET_MAC_1 <<16 | (uint8_t)MY_SUBNET_MAC_0 << 8 | (uint8_t)MY_MAC;



    // Wait until the tx_task starts up bmac
    // This should be called by all tasks using bmac that
    // do not call bmac_init()...
    bmac_init (15); //channel 15

    bmac_rx_pkt_set_buffer (rx_buf, RF_MAX_PAYLOAD_SIZE);

    val =
        bmac_addr_decode_set_my_mac (((uint16_t) MY_SUBNET_MAC_0 << 8) | MY_MAC);
    val = bmac_addr_decode_dest_mac (0xffff);     // broadcast by default
    bmac_addr_decode_enable ();

    nrk_kprintf (PSTR ("bmac_started()\r\n"));
    bmac_set_cca_thresh (-45);




    cnt = 0;

    while (1) {


        // Build an XMPP p2p packet
        p2p_pkt.pkt_type = XMPP_PKT;
        p2p_pkt.ctrl_flags = LINK_ACK | MOBILE_MASK;
        p2p_pkt.ack_retry = 0xf0;
        p2p_pkt.ttl = 5;
        p2p_pkt.src_subnet_mac[0] = MY_SUBNET_MAC_0;
        p2p_pkt.src_subnet_mac[1] = MY_SUBNET_MAC_1;
        p2p_pkt.src_subnet_mac[2] = MY_SUBNET_MAC_2;
        p2p_pkt.src_mac = MY_MAC;
        p2p_pkt.last_hop_mac = MY_MAC;
        // Set destination to be any nearby gateway
        p2p_pkt.dst_subnet_mac[0] = BROADCAST;
        p2p_pkt.dst_subnet_mac[1] = BROADCAST;
        p2p_pkt.dst_subnet_mac[2] = BROADCAST;
        p2p_pkt.dst_mac = 0;
        p2p_pkt.buf = tx_buf;
        p2p_pkt.buf_len = P2P_PAYLOAD_START;
        p2p_pkt.seq_num = cnt;
        p2p_pkt.priority = 0;
        p2p_pkt.check_rate = 100;
        p2p_pkt.payload = &(tx_buf[P2P_PAYLOAD_START]);


        // Create XMPP lite message that includes:
        //   1) destination JID
        //   2) Your node's password
        //   3) timeout value in seconds
        //   4) Message as a string (only ascii text, no XML delimiters)
        //
        // The total size of the packet must be under 110 bytes

        // CHANGE THIS FIRST!
        // Setting binary_flag to 1 will convert message into ASCII HEX format
        // Setting binary_flag to 0 will send ASCII string
        xp.binary_flag=0;
        xp.pub_sub_flag=0;
        xp.explicit_src_jid_flag=0;
        xp.src_jid_size=0;
        sprintf (my_passwd, "firefly");
        xp.passwd = my_passwd;  // This is the mobile node JID's password
        sprintf (dst_jid, "vrajkuma3");
        //sprintf (dst_jid, "*****@*****.**");
        // JIDs without the @ symbol are set to the gateway's server
        xp.dst_jid = dst_jid;  // This is the destination of the message
        sprintf (tst_msg, "omg, I'm trapped in an elevator, lol %d", cnt);
        xp.msg = tst_msg;  // This is the message body
        xp.timeout = 30;   // 30 second timeout for the connection
        // After 30 seconds, the gateway will log the node out


        // If you need to login as a different user
        xp.explicit_src_jid_flag=1;
        sprintf (src_jid, "vrajkuma2");
        xp.src_jid = src_jid;
        xp.src_jid_size=strlen(src_jid)+1;



        xp.dst_jid_size=strlen(dst_jid)+1;
        xp.passwd_size=strlen(my_passwd)+1;
        xp.msg_size=strlen(tst_msg)+1;
        // Pack the XMPP data structure into a byte sequence for sending
        p2p_pkt.payload_len = xmpp_pkt_pack (&xp, p2p_pkt.payload, 0);

        // Make sure it isn't too long!
        if (p2p_pkt.payload_len == 0) {
            nrk_kprintf (PSTR ("XMPP packet too long!\r\n"));
            nrk_wait_until_next_period ();
            continue;
        }
        cnt++;

        // Lets print out what we are sending
        printf ("Msg to: %s\r\n", xp.src_jid);
        printf ("  body: %s\r\n", xp.msg);

        nrk_led_set (BLUE_LED);

        // Make sure bmac checkrate is correct
        check_period.secs = 0;
        check_period.nano_secs = DEFAULT_CHECK_RATE * NANOS_PER_MS;
        val = bmac_set_rx_check_rate (check_period);

        // Pack data structure values in buffer before transmit
        pack_peer_2_peer_packet (&p2p_pkt);
        // For blocking transmits, use the following function call.
        val = bmac_tx_pkt (p2p_pkt.buf, p2p_pkt.buf_len);


        nrk_led_clr (BLUE_LED);
        nrk_led_clr (GREEN_LED);

        nrk_wait_until_next_period ();
    }

}
Exemplo n.º 9
0
void tx_task ()
{
  // Get the signal for UART RX
  //uart_rx_signal=nrk_uart_rx_signal_get();
  // Register your task to wakeup on RX Data 
  //if(uart_rx_signal==NRK_ERROR) nrk_kprintf( PSTR("Get Signal ERROR!\r\n") );
  //nrk_signal_register(uart_rx_signal);

  //printf ("tx_task PID=%d\r\n", nrk_get_pid ());

  // Wait until the tx_task starts up bmac
  // This should be called by all tasks using bmac that
  // do not call bmac_init()...
  bmac_init (26);

  bmac_encryption_set_key(aes_key,16);
  bmac_encryption_enable();

  bmac_rx_pkt_set_buffer (rx_buf, RF_MAX_PAYLOAD_SIZE);

  //nrk_kprintf (PSTR ("bmac_started()\r\n"));
  bmac_set_cca_thresh (-45);

  check_period.secs = 0;
  check_period.nano_secs = 100 * NANOS_PER_MS;
  val = bmac_set_rx_check_rate (check_period);

  // Get and register the tx_done_signal if you want to
  // do non-blocking transmits
  tx_done_signal = bmac_get_tx_done_signal ();
  nrk_signal_register (tx_done_signal);

  rx_signal = bmac_get_rx_pkt_signal ();
  nrk_signal_register (rx_signal);

  cnt = 0;

  while (1)
  {
      nrk_kprintf(PSTR("\r\n*************************************************************\r\n"));
      nrk_kprintf(PSTR("               PHOENIX WIRELESS UPDATE SYSTEM                \r\n"));
      nrk_kprintf(PSTR("*************************************************************\r\n"));
      nrk_kprintf(PSTR("Press 'p' : To PING Nodes in Vicinity                        \r\n"));
      nrk_kprintf(PSTR("Press 'u' : To Begin Node Update                             \r\n"));
      nrk_kprintf(PSTR("                                                             \r\n"));
      nrk_kprintf(PSTR("*************************************************************\r\n"));

      printf("Enter Choice: ");
      
      //sm=nrk_event_wait(SIG(uart_rx_signal));
    
      //if(sm != SIG(uart_rx_signal))
      //{
      //  nrk_kprintf( PSTR("UART signal error\r\n") );
      //  while(1);
      //}
      // Wait for UART signal
      while(1)
      {
        if(nrk_uart_data_ready(NRK_DEFAULT_UART)!=0)
        {
          // Read Character
          c=getchar();
          printf( "%c\r\n",c);
          break;
        }
        timeout.secs = 0;
        timeout.nano_secs = 20 * NANOS_PER_MS;
        nrk_wait(timeout);
      }
      // Choose mode
      switch(c){
        case 'p':
          programState = PING;
          break;
        case 'u':
          getDestMac();
          phoenix_init();
          programState = UPDATE;
          break;
        default:
          programState = NONE;
          nrk_kprintf(PSTR("Invalid Command! Please Try Again\r\n"));
      }

      // Reset c
      c = 0;

      nrk_wait_until_next_period();

      // Execute protocol
      switch(programState)
      {
        case PING:
          pingMode();
          break;
        case UPDATE:
          updateMode();
          break;
        case NONE:;// Do nothing
          break;
        default:
          nrk_kprintf(PSTR("Invalid Program State\r\n"));
          break;
      }
      nrk_wait_until_next_period ();
  }
}
Exemplo n.º 10
0
void tx_task ()
{
  uint8_t j, i, cnt, error;
  int8_t len;
  int8_t rssi, val;
  uint8_t *local_rx_buf;

  nrk_sig_t tx_done_signal;
  nrk_sig_t rx_signal;
  nrk_sig_mask_t ret;
  nrk_time_t check_period;
  nrk_time_t timeout, start, current;
  nrk_sig_mask_t my_sigs;

  printf ("tx_task PID=%d\r\n", nrk_get_pid ());

  // Wait until the tx_task starts up bmac
  // This should be called by all tasks using bmac that
  // do not call bmac_init()...
  bmac_init (26);


  // Configure address for other packet handlers (my not be needed)
  my_mac= MY_MAC;
  my_subnet_mac[0]= MY_SUBNET_MAC_0;
  my_subnet_mac[1]= MY_SUBNET_MAC_1;
  my_subnet_mac[2]= MY_SUBNET_MAC_2;
  mac_address= (uint8_t)MY_SUBNET_MAC_2 << 24 | (uint8_t)MY_SUBNET_MAC_1 <<16 | (uint8_t)MY_SUBNET_MAC_0 << 8 | (uint8_t)MY_MAC; 

  while (!bmac_started ())
    nrk_wait_until_next_period ();
  bmac_rx_pkt_set_buffer (rx_buf, RF_MAX_PAYLOAD_SIZE);

  val =
    bmac_addr_decode_set_my_mac (((uint16_t) MY_SUBNET_MAC_0 << 8) | MY_MAC);
  val = bmac_addr_decode_dest_mac (0xffff);     // broadcast by default
  bmac_addr_decode_enable ();

  nrk_kprintf (PSTR ("bmac_started()\r\n"));
  bmac_set_cca_thresh (-45);


  check_period.secs = 0;
  check_period.nano_secs = 100 * NANOS_PER_MS;
  val = bmac_set_rx_check_rate (check_period);

  // Get and register the tx_done_signal if you want to
  // do non-blocking transmits
  tx_done_signal = bmac_get_tx_done_signal ();
  nrk_signal_register (tx_done_signal);

  rx_signal = bmac_get_rx_pkt_signal ();
  nrk_signal_register (rx_signal);

  cnt = 0;

  while (1) {


    // Build a TX packet by hand...
    p2p_pkt.pkt_type = DATA_STORAGE_PKT;
    p2p_pkt.ctrl_flags = LINK_ACK | MOBILE_MASK;   // | DEBUG_FLAG ;  
    p2p_pkt.ack_retry = 0x0f;
    p2p_pkt.ttl = 1;
    p2p_pkt.src_subnet_mac[0] = MY_SUBNET_MAC_0;
    p2p_pkt.src_subnet_mac[1] = MY_SUBNET_MAC_1;
    p2p_pkt.src_subnet_mac[2] = MY_SUBNET_MAC_2;
    p2p_pkt.src_mac = MY_MAC;
    p2p_pkt.last_hop_mac = MY_MAC;
//    p2p_pkt.dst_subnet_mac[0] = BROADCAST;
//    p2p_pkt.dst_subnet_mac[1] = BROADCAST;
//    p2p_pkt.dst_subnet_mac[2] = BROADCAST;
//    p2p_pkt.dst_mac = BROADCAST;
    p2p_pkt.dst_subnet_mac[0] = BROADCAST;
    p2p_pkt.dst_subnet_mac[1] = BROADCAST;
    p2p_pkt.dst_subnet_mac[2] = BROADCAST;
    p2p_pkt.dst_mac = 0x1;
    p2p_pkt.buf = tx_buf;
    p2p_pkt.buf_len = P2P_PAYLOAD_START;
    p2p_pkt.seq_num = cnt;
    p2p_pkt.priority = 0;
    p2p_pkt.check_rate = 100;
    p2p_pkt.payload = &(tx_buf[P2P_PAYLOAD_START]);

    cnt++;

#ifdef TEST_WRITE
   data_pkt.mode=EE_WRITE;
   data_pkt.addr=0x110;  // Must be greater than 0x100
   data_pkt.data_len=0x10;
   // point the eeprom data structure to our local data buffer
   data_pkt.eeprom_payload=eeprom_data;
   // copy over some data
   for(i=0; i<data_pkt.data_len; i++ )
	data_pkt.eeprom_payload[i]=i;
#endif

#ifdef TEST_READ
   data_pkt.mode=EE_READ;
   data_pkt.addr=0x200;  // Must be greater than 0x100
   data_pkt.data_len=0x3d;
#endif

   // add the eeprom pkt to the p2p pkt
   p2p_pkt.payload_len= eeprom_storage_pkt_pack(&data_pkt, p2p_pkt.payload);

   // Pack data structure values in buffer before transmit
   pack_peer_2_peer_packet (&p2p_pkt);
   

    nrk_led_set (BLUE_LED);

    check_period.secs = 0;
    check_period.nano_secs = 100 * NANOS_PER_MS;
    val = bmac_set_rx_check_rate (check_period);

    nrk_kprintf( PSTR("sending: " ));
    for(i=0; i<p2p_pkt.buf_len; i++ )
	printf( "%u ",p2p_pkt.buf[i] );
    printf( "\r\n" );
    // For blocking transmits, use the following function call.
    val = bmac_tx_pkt (p2p_pkt.buf, p2p_pkt.buf_len);

    check_period.secs = 0;
    check_period.nano_secs = FAST_CHECK_RATE * NANOS_PER_MS;
    val = bmac_set_rx_check_rate (check_period);
#ifdef TXT_DEBUG
    nrk_kprintf (PSTR ("\r\nSent Request:\r\n"));
#endif
    nrk_led_clr (BLUE_LED);
    nrk_led_clr (GREEN_LED);

    // Wait for packets or timeout
    nrk_time_get (&start);
    while (1) {

      timeout.secs = REPLY_WAIT_SECS;
      timeout.nano_secs = 0;

      // Wait until an RX packet is received
      //val = bmac_wait_until_rx_pkt ();
      if(bmac_rx_pkt_ready()==0)
      {
        nrk_set_next_wakeup (timeout);
        my_sigs = nrk_event_wait (SIG (rx_signal) | SIG (nrk_wakeup_signal));
      }


      if (my_sigs == 0)
        nrk_kprintf (PSTR ("Error calling nrk_event_wait()\r\n"));
      if (my_sigs & SIG (rx_signal)) {

        // Get the RX packet 
        local_rx_buf = bmac_rx_pkt_get (&len, &rssi);
        // Check the packet type from raw buffer before unpacking
        if ((local_rx_buf[CTRL_FLAGS] & (DS_MASK | US_MASK)) == 0) {

          // Set the buffer
          p2p_pkt.buf = local_rx_buf;
          p2p_pkt.buf_len = len;
          p2p_pkt.rssi = rssi;
          unpack_peer_2_peer_packet (&p2p_pkt);
#ifdef TXT_DEBUG
            if ((p2p_pkt.dst_subnet_mac[2] == MY_SUBNET_MAC_2 &&
		p2p_pkt.dst_subnet_mac[1] == MY_SUBNET_MAC_1 &&
		p2p_pkt.dst_subnet_mac[0] == MY_SUBNET_MAC_0 &&
		p2p_pkt.dst_mac == MY_MAC ) 
		|| p2p_pkt.dst_mac == BROADCAST) 
	    {
	    nrk_led_set (GREEN_LED);
            // Packet arrived and is good to go
            printf ("full mac: %d %d %d %d ", p2p_pkt.src_subnet_mac[0],
                    p2p_pkt.src_subnet_mac[1], p2p_pkt.src_subnet_mac[2],
		    p2p_pkt.src_mac);
            printf ("rssi: %d ", p2p_pkt.rssi);
            printf ("type: %d ", p2p_pkt.pkt_type);
            nrk_kprintf (PSTR ("payload: ["));
            for (i = 0; i < p2p_pkt.payload_len; i++)
              printf ("%d ", p2p_pkt.payload[i]);
            nrk_kprintf (PSTR ("]\r\n"));
        
	if(p2p_pkt.pkt_type== DATA_STORAGE_PKT )
		{
		eeprom_storage_pkt_unpack(&data_pkt, p2p_pkt.payload );
		nrk_kprintf( PSTR("\r\n   Storage Packet " ));
		nrk_kprintf( PSTR("\r\n   Mode: " ));
		switch(data_pkt.mode)
		{
		case EE_REPLY: nrk_kprintf( PSTR( "Reply")); break;
		case EE_ERROR: nrk_kprintf( PSTR( "Error" )); break;
		case EE_READ: nrk_kprintf( PSTR( "Read" )); break;
		case EE_WRITE: nrk_kprintf( PSTR( "Write" )); break;
		default: nrk_kprintf( PSTR( "unknown" )); 

		}
		nrk_kprintf( PSTR("\r\n   From: " ));
		printf( "%u",data_pkt.mac );
		nrk_kprintf( PSTR("\r\n   Addr: " ));
		printf( "%u",data_pkt.addr);
		nrk_kprintf( PSTR("\r\n   Len: " ));
		printf( "%u",data_pkt.data_len);
		nrk_kprintf( PSTR("\r\n   Data: " ));
		for(i=0; i<data_pkt.data_len; i++ ) printf( "%u ",data_pkt.eeprom_payload[i]);
		nrk_kprintf( PSTR("\r\n" ));
		} 
	
	}
#endif

        }
      }

      nrk_time_get (&current);
      if (start.secs + REPLY_WAIT_SECS < current.secs)
        break;
        // Release the RX buffer so future packets can arrive 
        bmac_rx_pkt_release ();
    }
    nrk_kprintf (PSTR ("Done Waiting for response...\r\n"));
    nrk_wait_until_next_period ();
  }

}
Exemplo n.º 11
0
void tx_task ()
{
  uint8_t j, i,  error,unique;
  uint8_t samples;
  int8_t len;
  int8_t rssi, val;
  uint8_t *local_rx_buf;

  nrk_sig_t tx_done_signal;
  nrk_sig_t rx_signal;
  nrk_sig_mask_t ret;
  nrk_time_t check_period;
  nrk_time_t timeout, start, current;
  nrk_sig_mask_t my_sigs;

  printf ("tx_task PID=%d\r\n", nrk_get_pid ());


  // Wait until the tx_task starts up bmac
  // This should be called by all tasks using bmac that
  // do not call bmac_init()...
  bmac_init (26);

  bmac_rx_pkt_set_buffer (rx_buf, RF_MAX_PAYLOAD_SIZE);

  val=bmac_addr_decode_set_my_mac(((uint16_t)MY_SUBNET_MAC_0<<8)|MY_MAC);
  val=bmac_addr_decode_dest_mac(0xffff);  // broadcast by default
  bmac_addr_decode_enable();

  nrk_kprintf (PSTR ("bmac_started()\r\n"));
  bmac_set_cca_thresh (-45);


  check_period.secs = 0;
  check_period.nano_secs = 100 * NANOS_PER_MS;
  val = bmac_set_rx_check_rate (check_period);

  // Get and register the tx_done_signal if you want to
  // do non-blocking transmits
  tx_done_signal = bmac_get_tx_done_signal ();
  nrk_signal_register (tx_done_signal);

  rx_signal = bmac_get_rx_pkt_signal ();
  nrk_signal_register (rx_signal);

  cnt = 0;

    check_period.secs = 0;
    check_period.nano_secs = DEFAULT_CHECK_RATE * NANOS_PER_MS;
    val = bmac_set_rx_check_rate (check_period);

  while (1) {



    my_nlist_elements=0;

for(samples=0; samples<10; samples++ )
{
    nrk_led_set (GREEN_LED);
    check_period.secs = 0;
    check_period.nano_secs = DEFAULT_CHECK_RATE * NANOS_PER_MS;
    val = bmac_set_rx_check_rate (check_period);
    build_ping_pkt( &p2p_pkt );
    // Pack data structure values in buffer before transmit
    pack_peer_2_peer_packet(&p2p_pkt);
    // For blocking transmits, use the following function call.
    val = bmac_tx_pkt (p2p_pkt.buf, p2p_pkt.buf_len);

    check_period.secs = 0;
    check_period.nano_secs = p2p_pkt.check_rate * NANOS_PER_MS;
    val = bmac_set_rx_check_rate (check_period);
#ifdef TXT_DEBUG
    nrk_kprintf (PSTR ("\r\nSent Request:\r\n"));
#endif
    nrk_led_clr (GREEN_LED);



    // Wait for packets or timeout
    nrk_time_get (&start);
    while (1) {

      timeout.secs = REPLY_WAIT_SECS;
      timeout.nano_secs = 0;

      // Wait until an RX packet is received
      //val = bmac_wait_until_rx_pkt ();
      nrk_set_next_wakeup (timeout);
      my_sigs = nrk_event_wait (SIG (rx_signal) | SIG (nrk_wakeup_signal));


      if (my_sigs == 0)
        nrk_kprintf (PSTR ("Error calling nrk_event_wait()\r\n"));
      if (my_sigs & SIG (rx_signal)) {
	
        // Get the RX packet 
        local_rx_buf = bmac_rx_pkt_get (&len, &rssi);
	// Check the packet type from raw buffer before unpacking
        if ((local_rx_buf[CTRL_FLAGS] & (DS_MASK | US_MASK)) == 0) {

	// Set the buffer
	p2p_pkt.buf=local_rx_buf;
	p2p_pkt.buf_len=len;
	p2p_pkt.rssi=rssi;
	unpack_peer_2_peer_packet(&p2p_pkt);
#ifdef TXT_DEBUG
	  // Check if newly received packet is for this node
          if (((p2p_pkt.dst_subnet_mac[2] == MY_SUBNET_MAC_2 &&
		p2p_pkt.dst_subnet_mac[1] == MY_SUBNET_MAC_1 &&
		p2p_pkt.dst_subnet_mac[0] == MY_SUBNET_MAC_0 &&
		p2p_pkt.dst_mac == MY_MAC ) 
		|| p2p_pkt.dst_mac == BROADCAST) 
		    && p2p_pkt.pkt_type==PING_PKT) {
		// Packet arrived and is good to go
              	printf( "src: %d ",p2p_pkt.src_mac);  
              	printf( "rssi: %d ",p2p_pkt.rssi);      
              	printf( "subnet: %d %d %d ",p2p_pkt.src_subnet_mac[0], p2p_pkt.src_subnet_mac[1], p2p_pkt.src_subnet_mac[2]);  
              	printf( "type: %d ",p2p_pkt.pkt_type);      
              	nrk_kprintf (PSTR ("payload: ["));
              	for (i = 0; i < p2p_pkt.payload_len; i++)
                	printf ("%d ", p2p_pkt.payload[i]); 
              	nrk_kprintf (PSTR ("]\r\n"));
	
		unique=1;	
		// Check if the MAC is unique
		for(i=0; i<my_nlist_elements; i++ )
		{

		if(my_nlist[i*NLIST_SIZE]==p2p_pkt.src_subnet_mac[2] &&
			my_nlist[i*NLIST_SIZE+1]==p2p_pkt.src_subnet_mac[1] &&
			my_nlist[i*NLIST_SIZE+2]==p2p_pkt.src_subnet_mac[0] &&
			my_nlist[i*NLIST_SIZE+3]==p2p_pkt.src_mac)
			{
				unique=0;
				break;
			}
		}

		// If MAC is unique, add it
		if(unique)
		{
			my_nlist[my_nlist_elements*NLIST_SIZE]=p2p_pkt.src_subnet_mac[2];
			my_nlist[my_nlist_elements*NLIST_SIZE+1]=p2p_pkt.src_subnet_mac[1];
			my_nlist[my_nlist_elements*NLIST_SIZE+2]=p2p_pkt.src_subnet_mac[0];
			my_nlist[my_nlist_elements*NLIST_SIZE+3]=p2p_pkt.src_mac;
			my_nlist[my_nlist_elements*NLIST_SIZE+4]=p2p_pkt.rssi;
			my_nlist_elements++;
		}
            }
#endif

        }
        // Release the RX buffer so future packets can arrive 
        bmac_rx_pkt_release ();
      }

      nrk_time_get (&current);
      if (start.secs + REPLY_WAIT_SECS < current.secs)
        break;
    }
    cnt++; 
}
    check_period.secs = 0;
    check_period.nano_secs = DEFAULT_CHECK_RATE * NANOS_PER_MS;
    val = bmac_set_rx_check_rate (check_period);
    
    nrk_kprintf (PSTR ("Done Waiting for response...\r\n"));
    nrk_kprintf (PSTR ("\r\n\r\nSurvey Says:\r\n"));
   
    nrk_kprintf( PSTR("LOC_DESC: \"location name\"\r\n" )); 
    for(i=0; i<my_nlist_elements; i++ )
    {
	nrk_kprintf( PSTR( "MAC: " ));
	if(my_nlist[i*NLIST_SIZE]<0x10) printf( "0%x", my_nlist[i*NLIST_SIZE] );
	else printf( "%x", my_nlist[i*NLIST_SIZE] );
	if(my_nlist[i*NLIST_SIZE]<0x10) printf( "0%x", my_nlist[i*NLIST_SIZE+1] );
	else printf( "%x", my_nlist[i*NLIST_SIZE+1] );
	if(my_nlist[i*NLIST_SIZE]<0x10) printf( "0%x", my_nlist[i*NLIST_SIZE+2] );
	else printf( "%x", my_nlist[i*NLIST_SIZE+2] );
	if(my_nlist[i*NLIST_SIZE]<0x10) printf( "0%x", my_nlist[i*NLIST_SIZE+3] );
	else printf( "%x", my_nlist[i*NLIST_SIZE+3] );
	printf( " RSSI: %d\r\n", (int8_t)my_nlist[i*NLIST_SIZE+4] );

    }

 
    nrk_wait_until_next_period ();
    
  }

}
Exemplo n.º 12
0
void rx_task ()
{
  uint8_t i, len;
  uint16_t j;
  int8_t rssi, val;
  int8_t data_ready, button_state;
  uint8_t *local_rx_buf;
  uint16_t seq_num;
  uint16_t pkt_cnt;
  nrk_time_t check_period;
  printf ("rx_task PID=%d\r\n", nrk_get_pid ());

  // init bmac on channel 25 
  bmac_init (15);

  // Enable AES 128 bit encryption
  // When encryption is active, messages from plaintext
  // source will still be received. 
  //bmac_encryption_set_key(aes_key,16);
  //bmac_encryption_enable();
  // bmac_encryption_disable();

  // By default the RX check rate is 100ms
  // below shows how to change that
  //check_period.secs=0;
  //check_period.nano_secs=200*NANOS_PER_MS;
  //val=bmac_set_rx_check_rate(check_period);

  // The default Clear Channel Assement RSSI threshold is -45
  // Setting this value higher means that you will only trigger
  // receive with a very strong signal.  Setting this lower means
  // bmac will try to receive fainter packets.  If the value is set
  // too high or too low performance will suffer greatly.
   bmac_set_cca_thresh(-50); 


  //if(val==NRK_ERROR) nrk_kprintf( PSTR("ERROR setting bmac rate\r\n" ));
  // This sets the next RX buffer.
  // This can be called at anytime before releaseing the packet
  // if you wish to do a zero-copy buffer switch
  bmac_rx_pkt_set_buffer (rx_buf, RF_MAX_PAYLOAD_SIZE);


  index=0;

  while (1) {

	nrk_led_clr(GREEN_LED);
	nrk_led_set(RED_LED);
  	do {
		nrk_led_toggle(BLUE_LED);
		printf( "\r\nTest Data\r\n" );
		for(j=0; j<index; j++ )
		{
			printf( "run: %u pkts: %u  rssi: %d\r\n",j, data[j],rssi_avg[j] );
		}
    		for(j=0; j<100; j++ ) nrk_wait_until_next_period ();
  	}while( nrk_gpio_get(NRK_BUTTON)==1 );


	nrk_led_clr(BLUE_LED);
	nrk_led_clr(RED_LED);
    		for(j=0; j<100; j++ ) nrk_wait_until_next_period ();
	nrk_led_set(GREEN_LED);

	pkt_cnt=0;
  	while(1) {
    		// Wait until an RX packet is received
		do {
			data_ready=bmac_rx_pkt_ready();	
			button_state=nrk_gpio_get(NRK_BUTTON);
			nrk_wait_until_next_period();
		} while(data_ready==0 && button_state==1 );
		if(button_state==0) break;
    		val = bmac_wait_until_rx_pkt ();
    		// Get the RX packet 
    		nrk_led_set (ORANGE_LED);
    		local_rx_buf = bmac_rx_pkt_get (&len, &rssi);
    		//if( bmac_rx_pkt_is_encrypted()==1 ) nrk_kprintf( PSTR( "Packet Encrypted\r\n" ));
    		//printf ("Got RX packet len=%d RSSI=%d [", len, rssi);
    		rssi_acc+=rssi;
		seq_num=local_rx_buf[1]<<8 | local_rx_buf[0];
    		printf ("cnt: %u seq num: %u\r\n",pkt_cnt, seq_num);
    		pkt_cnt++;
    		nrk_led_clr (ORANGE_LED);
    		// Release the RX buffer so future packets can arrive 
    		bmac_rx_pkt_release ();
  	}
	rssi_avg[index]=rssi_acc/pkt_cnt;
	data[index]=pkt_cnt;
	index++;

  }

}
Exemplo n.º 13
0
void tx_task ()
{
  uint8_t i, unique;
  uint8_t samples ;
  uint8_t len;
  int8_t rssi, val;
  uint8_t *local_rx_buf;

  nrk_sig_t tx_done_signal;
  nrk_sig_t rx_signal;
  nrk_time_t check_period;
  nrk_time_t timeout, start, current;
  nrk_sig_mask_t my_sigs;

  printf ("tx_task PID=%d\r\n", nrk_get_pid ());


  // Wait until the tx_task starts up bmac
  // This should be called by all tasks using bmac that
  // do not call bmac_init()...
  bmac_init (26);

  bmac_rx_pkt_set_buffer (rx_buf, RF_MAX_PAYLOAD_SIZE);

  val =
    bmac_addr_decode_set_my_mac (((uint16_t) MY_SUBNET_MAC_0 << 8) | MY_MAC );
  val = bmac_addr_decode_dest_mac (0xffff);     // broadcast by default
  bmac_addr_decode_enable ();

  nrk_kprintf (PSTR ("bmac_started()\r\n"));
  bmac_set_cca_thresh (-45);


  check_period.secs = 0;
  check_period.nano_secs = 100 * NANOS_PER_MS;
  val = bmac_set_rx_check_rate (check_period);

  // Get and register the tx_done_signal if you want to
  // do non-blocking transmits
  tx_done_signal = bmac_get_tx_done_signal ();
  nrk_signal_register (tx_done_signal);

  rx_signal = bmac_get_rx_pkt_signal ();
  nrk_signal_register (rx_signal);

  cnt = 0;

  check_period.secs = 0;
  check_period.nano_secs = DEFAULT_CHECK_RATE * NANOS_PER_MS;
  val = bmac_set_rx_check_rate (check_period);


  // Main loop that does:
  //   1) Sends out ping message
  //   2) Collects replies, build neighbor list and then times out
  //   3) Repeat 1 and 2 for 3 times
  //   4) Build Extended Neighborlist packet
  //   5) Send Neighbor list packet
  //   6) Wait until next period and repeat 1-6
  while (1) {

    nrk_led_clr (ORANGE_LED);

    // Set our local neighbor list to be empty
    my_nlist_elements = 0;

    for (samples = 0; samples < 3; samples++) {
      nrk_led_set (GREEN_LED);
      check_period.secs = 0;
      check_period.nano_secs = DEFAULT_CHECK_RATE * NANOS_PER_MS;
      val = bmac_set_rx_check_rate (check_period);

      // Construct a ping packet to send (this is being built into tx_buf)
      build_ping_pkt (&p2p_pkt);

      // Pack data structure values in buffer before transmit
      pack_peer_2_peer_packet (&p2p_pkt);

      // Send the Ping packet 
      val = bmac_tx_pkt (p2p_pkt.buf, p2p_pkt.buf_len);

      // Set update rate based on p2p reply rate.
      // This is usually faster to limit congestion
      check_period.secs = 0;
      check_period.nano_secs = p2p_pkt.check_rate * NANOS_PER_MS;
      val = bmac_set_rx_check_rate (check_period);


#ifdef TXT_DEBUG
      nrk_kprintf (PSTR ("Pinging...\r\n"));
#endif
      nrk_led_clr (GREEN_LED);



      // Grab start time for timeout 
      nrk_time_get (&start);

      while (1) {

	// Set the amount of time to wait for timeout
        timeout.secs = REPLY_WAIT_SECS;
        timeout.nano_secs = 0;

	// Check if packet is already ready, or wait until one arrives
	// Also set timeout to break from function if no packets come
	my_sigs=0;
        if (bmac_rx_pkt_ready () == 0) {
          nrk_set_next_wakeup (timeout);
          my_sigs =
            nrk_event_wait (SIG (rx_signal) | SIG (nrk_wakeup_signal));
        }



        if (my_sigs == 0)
          nrk_kprintf (PSTR ("Error calling nrk_event_wait()\r\n"));
        if (my_sigs & SIG (rx_signal)) {

          // Get the RX packet 
          local_rx_buf = bmac_rx_pkt_get (&len, &rssi);
          // Check the packet type from raw buffer before unpacking
          if ((local_rx_buf[CTRL_FLAGS] & (DS_MASK | US_MASK)) == 0) {

            // Setup a p2p packet data structure with the newly received buffer 
            p2p_pkt.buf = local_rx_buf;
            p2p_pkt.buf_len = len;
            p2p_pkt.rssi = rssi;

            // Unpack the data from the array into the p2p_pkt data struct
            unpack_peer_2_peer_packet (&p2p_pkt);


	    // Check if newly received packet is for this node
          if (((p2p_pkt.dst_subnet_mac[2] == MY_SUBNET_MAC_2 &&
		p2p_pkt.dst_subnet_mac[1] == MY_SUBNET_MAC_1 &&
		p2p_pkt.dst_subnet_mac[0] == MY_SUBNET_MAC_0 &&
		p2p_pkt.dst_mac == MY_MAC ) 
		|| p2p_pkt.dst_mac == BROADCAST) 
                && (p2p_pkt.pkt_type == PING_PKT)) {
              // Packet arrived and is  ping pkt!
	      // Lets print some values out on the terminal
            printf ("full mac: %d %d %d %d ", p2p_pkt.src_subnet_mac[0],
                    p2p_pkt.src_subnet_mac[1], p2p_pkt.src_subnet_mac[2],
		    p2p_pkt.src_mac);
              printf ("rssi: %d ", p2p_pkt.rssi);
              printf ("type: %d ", p2p_pkt.pkt_type);
              nrk_kprintf (PSTR ("payload: ["));
              for (i = 0; i < p2p_pkt.payload_len; i++)
                printf ("%d ", p2p_pkt.payload[i]);
              nrk_kprintf (PSTR ("]\r\n"));

              unique = 1;
              // Check if the MAC of this ping is unique or if it already
              // exists in our neighbor list
              for (i = 0; i < my_nlist_elements; i++) {

                if (my_nlist[i * NLIST_SIZE] == p2p_pkt.src_subnet_mac[2] &&
                    my_nlist[i * NLIST_SIZE + 1] == p2p_pkt.src_subnet_mac[1] &&
                    my_nlist[i * NLIST_SIZE + 2] == p2p_pkt.src_subnet_mac[0] &&
                    my_nlist[i * NLIST_SIZE + 3] == p2p_pkt.src_mac) {
                  unique = 0;
                  break;
                }
              }

              // If MAC is unique, add it to our neighbor list
              if (unique) {
                my_nlist[my_nlist_elements * NLIST_SIZE] =
                  p2p_pkt.src_subnet_mac[2];
                my_nlist[my_nlist_elements * NLIST_SIZE + 1] =
                  p2p_pkt.src_subnet_mac[1];
                my_nlist[my_nlist_elements * NLIST_SIZE + 2] =
                  p2p_pkt.src_subnet_mac[0];
                my_nlist[my_nlist_elements * NLIST_SIZE + 3] =
                  p2p_pkt.src_mac;
                my_nlist[my_nlist_elements * NLIST_SIZE + 4] = p2p_pkt.rssi;
                my_nlist_elements++;
              }
            }

          }


        }

	// Check if we are done waiting for pings
        nrk_time_get (&current);
        if (start.secs + REPLY_WAIT_SECS < current.secs)
          break; // exit loops waiting for pings
	
          // Release the RX buffer so future packets can arrive 
          bmac_rx_pkt_release ();

      // Go back to top loop to wait for more pings
      }
      cnt++;
    // Repeat ping 3 times
    }

    // Now we are ready to build extended neighborlist packet and send it to gateway
    check_period.secs = 0;
    check_period.nano_secs = DEFAULT_CHECK_RATE * NANOS_PER_MS;
    val = bmac_set_rx_check_rate (check_period);

    nrk_kprintf (PSTR ("Done Waiting for response...\r\n"));

    // If we have any neighbors, build the list
    if (my_nlist_elements > 0) {
      // Look in this function for format of extended neighborlist packet
      // This function also configures the parameters and destination address
      // of the p2p packet.  The values are probably okay as defaults.
      build_extended_neighbor_list_pkt (&p2p_pkt, my_nlist,
                                        my_nlist_elements);
      // This function takes at p2p struct and packs it into an array for sending
      pack_peer_2_peer_packet (&p2p_pkt);

      nrk_led_set (BLUE_LED);
      // Send the list to the gateway.
      val = bmac_tx_pkt (p2p_pkt.buf, p2p_pkt.buf_len);
      printf ("size of pkt: %d\r\n", p2p_pkt.buf_len);
      nrk_kprintf (PSTR ("sent neighbor list packet\r\n"));
      nrk_led_clr (BLUE_LED);
    }
    else {
      nrk_led_set (RED_LED);
      nrk_spin_wait_us (1000);
      nrk_led_clr (RED_LED);
    }

    // Wait a long time until we send out the pings again
    // This is in a loop so that period can be small for 
    // other uses.
    for (i = 0; i < 10; i++)
      nrk_wait_until_next_period ();

    // Might as well release packets that arrived during long
    // break since they are not replies to your ping.
    bmac_rx_pkt_release ();

  }

}