/*----------------------------------------------------------------------------*/ zrtp_status_t zrtp_prepare_pkt(zrtp_global_t* zrtp) { bnInit(); bnBegin(&zrtp->one); bnSetQ(&zrtp->one, 1); bnBegin(&zrtp->G); bnSetQ(&zrtp->G, 2); return zrtp_status_ok; }
/* * Generate a random bignum of a specified length, with the given * high and low 8 bits. "High" is merged into the high 8 bits of the * number. For example, set it to 0x80 to ensure that the number is * exactly "bits" bits long (i.e. 2^(bits-1) <= bn < 2^bits). * "Low" is merged into the low 8 bits. For example, set it to * 1 to ensure that you generate an odd number. */ static int genRandBn(struct BigNum *bn, unsigned bits, byte high, byte low) { unsigned char buf[64]; unsigned bytes; unsigned l; int err; bnSetQ(bn, 0); bytes = (bits+7) / 8; l = bytes < sizeof(buf) ? bytes : sizeof(buf); randBytes(buf, l); /* Mask off excess high bits */ buf[0] &= 255 >> (-bits & 7); /* Merge in specified high bits */ buf[0] |= high >> (-bits & 7); if (bits & 7) buf[1] |= high << (bits & 7); for (;;) { bytes -= l; if (!bytes) /* Last word - merge in low bits */ buf[l-1] |= low; err = bnInsertBigBytes(bn, buf, bytes, l); if (!bytes || err < 0) break; l = bytes < sizeof(buf) ? bytes : sizeof(buf); randBytes(buf, l); } memset(buf, 0, sizeof(buf)); return err; }
/* * Generate a bignum of a specified length, with the given * high and low 8 bits. "High" is merged into the high 8 bits of the * number. For example, set it to 0x80 to ensure that the number is * exactly "bits" bits long (i.e. 2^(bits-1) <= bn < 2^bits). * "Low" is merged into the low 8 bits. For example, set it to * 1 to ensure that you generate an odd number. * * The bignum is generated using the given seed string. The * technique is from David Kravitz (of the NSA)'s "kosherizer". * The string is hashed, and that (with the low bit forced to 1) * is used for the low 160 bits of the number. Then the string, * considered as a big-endian array of bytes, is incremented * and the incremented value is hashed to produce the next most * significant 160 bits, and so on. The increment is performed * modulo the size of the seed string. * * The most significant *two* bits are forced to 1, the first to * ensure that the number is long enough, and the second just to * place the prime in the high half of the range to make breaking * it slightly more difficult, since it makes essentially no * difference to the use of the number. */ static int genRandBn(struct BigNum *bn, unsigned bits, unsigned char high, unsigned char low, unsigned char *seed, unsigned len) { unsigned char buf[SHA_DIGESTSIZE]; unsigned bytes; unsigned l = 0; /* Current position */ unsigned i; struct SHAContext sha; bnSetQ(bn, 0); bytes = (bits+7) / 8; /* Number of bytes to use */ shaInit(&sha); shaUpdate(&sha, seed, len); shaFinal(&sha, buf); buf[SHA_DIGESTSIZE-1] |= low; while (bytes > SHA_DIGESTSIZE) { bytes -= SHA_DIGESTSIZE; /* Merge in low half of high bits, if necessary */ if (bytes == 1 && (bits & 7)) buf[0] |= high << (bits & 7); if (bnInsertBigBytes(bn, buf, l, SHA_DIGESTSIZE) < 0) return -1; l += SHA_DIGESTSIZE; /* Increment the seed, ignoring carry out. */ i = len; while (i--) { if (++seed[i] & 255) break; /* Didn't wrap; done */ } shaInit(&sha); shaUpdate(&sha, seed, len); shaFinal(&sha, buf); } /* Do the final "bytes"-long section, using the tail bytes in buf */ /* Mask off excess high bits */ buf[SHA_DIGESTSIZE-bytes] &= 255 >> (-bits & 7); /* Merge in specified high bits */ buf[SHA_DIGESTSIZE-bytes] |= high >> (-bits & 7); if (bytes > 1 && (bits & 7)) buf[SHA_DIGESTSIZE-bytes+1] |= high << (bits & 7); /* Merge in the appropriate bytes of the buffer */ if (bnInsertBigBytes(bn, buf+SHA_DIGESTSIZE-bytes, l, bytes) < 0) return -1; return 0; }
/* dest = src, where 0 <= src < 2^16. */ PGPError PGPBigNumSetQ( PGPBigNumRef dest, PGPUInt16 sm) { PGPError err = kPGPError_NoErr; pgpValidateBigNum( dest ); if ( IsBNError( bnSetQ( &dest->bn, sm ) ) ) { err = kPGPError_OutOfMemory; } return( err ); }
int rsa_INIT(RSA_CTX *ctx,unsigned long int bitlen){ /* e is <i> always </i> 3 ;) */ int t; bnBegin(&ctx->n); bnBegin(&ctx->e); bnBegin(&ctx->d); t=bnSetQ(&ctx->e,(unsigned long int)3); if(t<0){ bnEnd(&ctx->n); bnEnd(&ctx->e); bnEnd(&ctx->d); return BADTHINGS; } ctx->bits=bitlen; ctx->ebits=sizeof(unsigned long int); return OK; }
/* * This performs a modular exponentiation using the Chinese Remainder * Algorithm when the modulus is known to have two relatively prime * factors n = p * q, and u = p^-1 (mod q) has been precomputed. * * The chinese remainder algorithm lets a computation mod n be performed * mod p and mod q, and the results combined. Since it takes * (considerably) more than twice as long to perform modular exponentiation * mod n as it does to perform it mod p and mod q, time is saved. * * If x is the desired result, let xp and xq be the values of x mod p * and mod q, respectively. Obviously, x = xp + p * k for some k. * Taking this mod q, xq == xp + p*k (mod q), so p*k == xq-xp (mod q) * and k == p^-1 * (xq-xp) (mod q), so k = u * (xq-xp mod q) mod q. * After that, x = xp + p * k. * * Another savings comes from reducing the exponent d modulo phi(p) * and phi(q). Here, we assume that p and q are prime, so phi(p) = p-1 * and phi(q) = q-1. */ static int bnExpModCRA(BigNum *x, BigNum const *d, BigNum const *p, BigNum const *q, BigNum const *u) { BigNum xp, xq, k; int i; PGPMemoryMgrRef mgr = x->mgr; bndPrintf("Performing Chinese Remainder Algorithm\n"); bndPut("x = ", x); bndPut("p = ", p); bndPut("q = ", q); bndPut("d = ", d); bndPut("u = ", u); bnBegin(&xp, mgr, TRUE); bnBegin(&xq, mgr, TRUE); bnBegin(&k, mgr, TRUE); /* Compute xp = (x mod p) ^ (d mod p-1) mod p */ if (bnCopy(&xp, p) < 0) /* First, use xp to hold p-1 */ goto fail; (void)bnSubQ(&xp, 1); /* p > 1, so subtracting is safe. */ if (bnMod(&k, d, &xp) < 0) /* k = d mod (p-1) */ goto fail; bndPut("d mod p-1 = ", &k); if (bnMod(&xp, x, p) < 0) /* Now xp = (x mod p) */ goto fail; bndPut("x mod p = ", &xp); if (bnExpMod(&xp, &xp, &k, p) < 0) /* xp = (x mod p)^k mod p */ goto fail; bndPut("xp = x^d mod p = ", &xp); /* Compute xq = (x mod q) ^ (d mod q-1) mod q */ if (bnCopy(&xq, q) < 0) /* First, use xq to hold q-1 */ goto fail; (void)bnSubQ(&xq, 1); /* q > 1, so subtracting is safe. */ if (bnMod(&k, d, &xq) < 0) /* k = d mod (q-1) */ goto fail; bndPut("d mod q-1 = ", &k); if (bnMod(&xq, x, q) < 0) /* Now xq = (x mod q) */ goto fail; bndPut("x mod q = ", &xq); if (bnExpMod(&xq, &xq, &k, q) < 0) /* xq = (x mod q)^k mod q */ goto fail; bndPut("xq = x^d mod q = ", &xq); /* xp < p and PGP has p < q, so this is a no-op, but just in case */ if (bnMod(&k, &xp, q) < 0) goto fail; bndPut("xp mod q = ", &k); i = bnSub(&xq, &k); bndPut("xq - xp = ", &xq); bndPrintf("With sign %d\n", i); if (i < 0) goto fail; if (i) { /* * Borrow out - xq-xp is negative, so bnSub returned * xp-xq instead, the negative of the true answer. * Add q back (which is subtracting from the negative) * so the sign flips again. */ i = bnSub(&xq, q); if (i < 0) goto fail; bndPut("xq - xp mod q = ", &xq); bndPrintf("With sign %d\n", i); /* Must be 1 */ } /* Compute k = xq * u mod q */ if (bnMul(&k, u, &xq) < 0) goto fail; bndPut("(xq-xp) * u = ", &k); if (bnMod(&k, &k, q) < 0) goto fail; bndPut("k = (xq-xp)*u % q = ", &k); /* Now x = k * p + xp is the final answer */ if (bnMul(x, &k, p) < 0) goto fail; bndPut("k * p = ", x); if (bnAdd(x, &xp) < 0) goto fail; bndPut("k*p + xp = ", x); #if BNDEBUG /* @@@ DEBUG - do it the slow way for comparison */ if (bnMul(&xq, p, q) < 0) goto fail; bndPut("n = p*q = ", &xq); if (bnExpMod(&xp, x, d, &xq) < 0) goto fail; bndPut("x^d mod n = ", &xp); if (bnCmp(x, &xp) != 0) { bndPrintf("Nasty!!!\n"); goto fail; } bnSetQ(&k, 17); bnExpMod(&xp, &xp, &k, &xq); bndPut("x^17 mod n = ", &xp); #endif bnEnd(&xp); bnEnd(&xq); bnEnd(&k); return 0; fail: bnEnd(&xp); bnEnd(&xq); bnEnd(&k); return kPGPError_OutOfMemory; }
/* * Modifies the bignum to return a nearby (slightly larger) number which * is a probable prime. Returns >=0 on success or -1 on failure (out of * memory). The return value is the number of unsuccessful modular * exponentiations performed. This never gives up searching. * * All other arguments are optional. They may be NULL. They are: * * unsigned (*randfunc)(unsigned limit) * For better distributed numbers, supply a non-null pointer to a * function which returns a random x, 0 <= x < limit. (It may make it * simpler to know that 0 < limit <= SHUFFLE, so you need at most a byte.) * The program generates a large window of sieve data and then does * pseudoprimality tests on the data. If a randfunc function is supplied, * the candidates which survive sieving are shuffled with a window of * size SHUFFLE before testing to increase the uniformity of the prime * selection. This isn't perfect, but it reduces the correlation between * the size of the prime-free gap before a prime and the probability * that that prime will be found by a sequential search. * * If randfunc is NULL, sequential search is used. If you want sequential * search, note that the search begins with the given number; if you're * trying to generate consecutive primes, you must increment the previous * one by two before calling this again. * * int (*f)(void *arg, int c), void *arg * The function f argument, if non-NULL, is called with progress indicator * characters for printing. A dot (.) is written every time a primality test * is failed, a star (*) every time one is passed, and a slash (/) in the * (very rare) case that the sieve was emptied without finding a prime * and is being refilled. f is also passed the void *arg argument for * private context storage. If f returns < 0, the test aborts and returns * that value immediately. (bn is set to the last value tested, so you * can increment bn and continue.) * * The "exponent" argument, and following unsigned numbers, are exponents * for which an inverse is desired, modulo p. For a d to exist such that * (x^e)^d == x (mod p), then d*e == 1 (mod p-1), so gcd(e,p-1) must be 1. * The prime returned is constrained to not be congruent to 1 modulo * any of the zero-terminated list of 16-bit numbers. Note that this list * should contain all the small prime factors of e. (You'll have to test * for large prime factors of e elsewhere, but the chances of needing to * generate another prime are low.) * * The list is terminated by a 0, and may be empty. */ int bnPrimeGen(BigNum *bn, unsigned (*randfunc)(unsigned), int (*f)(void *arg, int c), void *arg, unsigned exponent, ...) { int retval; int modexps = 0; unsigned short offsets[SHUFFLE]; unsigned i, j; unsigned p, q, prev; BigNum a, e; #ifdef MSDOS unsigned char *sieve; #else unsigned char sieve[SIEVE]; #endif #ifdef MSDOS sieve = bniMemAlloc(SIEVE); if (!sieve) return -1; #endif PGPBoolean isSecure = TRUE; PGPMemoryMgrRef mgr = bn->mgr; bnBegin(&a, mgr, isSecure); bnBegin(&e, mgr, isSecure); #if 0 /* Self-test (not used for production) */ { BigNum t; static unsigned char const prime1[] = {5}; static unsigned char const prime2[] = {7}; static unsigned char const prime3[] = {11}; static unsigned char const prime4[] = {1, 1}; /* 257 */ static unsigned char const prime5[] = {0xFF, 0xF1}; /* 65521 */ static unsigned char const prime6[] = {1, 0, 1}; /* 65537 */ static unsigned char const prime7[] = {1, 0, 3}; /* 65539 */ /* A small prime: 1234567891 */ static unsigned char const prime8[] = {0x49, 0x96, 0x02, 0xD3}; /* A slightly larger prime: 12345678901234567891 */ static unsigned char const prime9[] = { 0xAB, 0x54, 0xA9, 0x8C, 0xEB, 0x1F, 0x0A, 0xD3 }; /* * No, 123456789012345678901234567891 isn't prime; it's just a * lucky, easy-to-remember conicidence. (You have to go to * ...4567907 for a prime.) */ static struct { unsigned char const *prime; unsigned size; } const primelist[] = { { prime1, sizeof(prime1) }, { prime2, sizeof(prime2) }, { prime3, sizeof(prime3) }, { prime4, sizeof(prime4) }, { prime5, sizeof(prime5) }, { prime6, sizeof(prime6) }, { prime7, sizeof(prime7) }, { prime8, sizeof(prime8) }, { prime9, sizeof(prime9) } }; bnBegin(&t); for (i = 0; i < sizeof(primelist)/sizeof(primelist[0]); i++) { bnInsertBytes(&t, primelist[i].prime, 0, primelist[i].size); bnCopy(&e, &t); (void)bnSubQ(&e, 1); bnTwoExpMod(&a, &e, &t); p = bnBits(&a); if (p != 1) { printf( "Bug: Fermat(2) %u-bit output (1 expected)\n", p); fputs("Prime = 0x", stdout); for (j = 0; j < primelist[i].size; j++) printf("%02X", primelist[i].prime[j]); putchar('\n'); } bnSetQ(&a, 3); bnExpMod(&a, &a, &e, &t); p = bnBits(&a); if (p != 1) { printf( "Bug: Fermat(3) %u-bit output (1 expected)\n", p); fputs("Prime = 0x", stdout); for (j = 0; j < primelist[i].size; j++) printf("%02X", primelist[i].prime[j]); putchar('\n'); } } bnEnd(&t); } #endif /* First, make sure that bn is odd. */ if ((bnLSWord(bn) & 1) == 0) (void)bnAddQ(bn, 1); retry: /* Then build a sieve starting at bn. */ sieveBuild(sieve, SIEVE, bn, 2, 0); /* Do the extra exponent sieving */ if (exponent) { va_list ap; unsigned t = exponent; va_start(ap, exponent); do { /* The exponent had better be odd! */ pgpAssert(t & 1); i = bnModQ(bn, t); /* Find 1-i */ if (i == 0) i = 1; else if (--i) i = t - i; /* Divide by 2, modulo the exponent */ i = (i & 1) ? i/2 + t/2 + 1 : i/2; /* Remove all following multiples from the sieve. */ sieveSingle(sieve, SIEVE, i, t); /* Get the next exponent value */ t = va_arg(ap, unsigned); } while (t); va_end(ap); } /* Fill up the offsets array with the first SHUFFLE candidates */ i = p = 0; /* Get first prime */ if (sieve[0] & 1 || (p = sieveSearch(sieve, SIEVE, p)) != 0) { offsets[i++] = p; p = sieveSearch(sieve, SIEVE, p); } /* * Okay, from this point onwards, p is always the next entry * from the sieve, that has not been added to the shuffle table, * and is 0 iff the sieve has been exhausted. * * If we want to shuffle, then fill the shuffle table until the * sieve is exhausted or the table is full. */ if (randfunc && p) { do { offsets[i++] = p; p = sieveSearch(sieve, SIEVE, p); } while (p && i < SHUFFLE); } /* Choose a random candidate for experimentation */ prev = 0; while (i) { /* Pick a random entry from the shuffle table */ j = randfunc ? randfunc(i) : 0; q = offsets[j]; /* The entry to use */ /* Replace the entry with some more data, if possible */ if (p) { offsets[j] = p; p = sieveSearch(sieve, SIEVE, p); } else { offsets[j] = offsets[--i]; offsets[i] = 0; } /* Adjust bn to have the right value */ if ((q > prev ? bnAddMult(bn, q-prev, 2) : bnSubMult(bn, prev-q, 2)) < 0) goto failed; prev = q; /* Now do the Fermat tests */ retval = primeTest(bn, &e, &a, f, arg); if (retval <= 0) goto done; /* Success or error */ modexps += retval; if (f && (retval = f(arg, '.')) < 0) goto done; } /* Ran out of sieve space - increase bn and keep trying. */ if (bnAddMult(bn, SIEVE*8-prev, 2) < 0) goto failed; if (f && (retval = f(arg, '/')) < 0) goto done; goto retry; failed: retval = -1; done: bnEnd(&e); bnEnd(&a); bniMemWipe(offsets, sizeof(offsets)); #ifdef MSDOS bniMemFree(sieve, SIEVE); #else bniMemWipe(sieve, sizeof(sieve)); #endif return retval < 0 ? retval : modexps + CONFIRMTESTS; }
/* * Helper function that does the slow primality test. * bn is the input bignum; a and e are temporary buffers that are * allocated by the caller to save overhead. * * Returns 0 if prime, >0 if not prime, and -1 on error (out of memory). * If not prime, returns the number of modular exponentiations performed. * Calls the given progress function with a '*' for each primality test * that is passed. * * The testing consists of strong pseudoprimality tests, to the bases given * in the confirm[] array above. (Also called Miller-Rabin, although that's * not technically correct if we're using fixed bases.) Some people worry * that this might not be enough. Number theorists may wish to generate * primality proofs, but for random inputs, this returns non-primes with * a probability which is quite negligible, which is good enough. * * It has been proved (see Carl Pomerance, "On the Distribution of * Pseudoprimes", Math. Comp. v.37 (1981) pp. 587-593) that the number of * pseudoprimes (composite numbers that pass a Fermat test to the base 2) * less than x is bounded by: * exp(ln(x)^(5/14)) <= P_2(x) ### CHECK THIS FORMULA - it looks wrong! ### * P_2(x) <= x * exp(-1/2 * ln(x) * ln(ln(ln(x))) / ln(ln(x))). * Thus, the local density of Pseudoprimes near x is at most * exp(-1/2 * ln(x) * ln(ln(ln(x))) / ln(ln(x))), and at least * exp(ln(x)^(5/14) - ln(x)). Here are some values of this function * for various k-bit numbers x = 2^k: * Bits Density <= Bit equivalent Density >= Bit equivalent * 128 3.577869e-07 21.414396 4.202213e-37 120.840190 * 192 4.175629e-10 31.157288 4.936250e-56 183.724558 * 256 5.804314e-13 40.647940 4.977813e-75 246.829095 * 384 1.578039e-18 59.136573 3.938861e-113 373.400096 * 512 5.858255e-24 77.175803 2.563353e-151 500.253110 * 768 1.489276e-34 112.370944 7.872825e-228 754.422724 * 1024 6.633188e-45 146.757062 1.882404e-304 1008.953565 * * As you can see, there's quite a bit of slop between these estimates. * In fact, the density of pseudoprimes is conjectured to be closer to the * square of that upper bound. E.g. the density of pseudoprimes of size * 256 is around 3 * 10^-27. The density of primes is very high, from * 0.005636 at 256 bits to 0.001409 at 1024 bits, i.e. more than 10^-3. * * For those people used to cryptographic levels of security where the * 56 bits of DES key space is too small because it's exhaustible with * custom hardware searching engines, note that you are not generating * 50,000,000 primes per second on each of 56,000 custom hardware chips * for several hours. The chances that another Dinosaur Killer asteroid * will land today is about 10^-11 or 2^-36, so it would be better to * spend your time worrying about *that*. Well, okay, there should be * some derating for the chance that astronomers haven't seen it yet, * but I think you get the idea. For a good feel about the probability * of various events, I have heard that a good book is by E'mile Borel, * "Les Probabilite's et la vie". (The 's are accents, not apostrophes.) * * For more on the subject, try "Finding Four Million Large Random Primes", * by Ronald Rivest, in Advancess in Cryptology: Proceedings of Crypto * '90. He used a small-divisor test, then a Fermat test to the base 2, * and then 8 iterations of a Miller-Rabin test. About 718 million random * 256-bit integers were generated, 43,741,404 passed the small divisor * test, 4,058,000 passed the Fermat test, and all 4,058,000 passed all * 8 iterations of the Miller-Rabin test, proving their primality beyond * most reasonable doubts. * * If the probability of getting a pseudoprime is some small p, then the * probability of not getting it in t trials is (1-p)^t. Remember that, * for small p, (1-p)^(1/p) ~ 1/e, the base of natural logarithms. * (This is more commonly expressed as e = lim_{x\to\infty} (1+1/x)^x.) * Thus, (1-p)^t ~ e^(-p*t) = exp(-p*t). So the odds of being able to * do this many tests without seeing a pseudoprime if you assume that * p = 10^-6 (one in a million) is one in 57.86. If you assume that * p = 2*10^-6, it's one in 3347.6. So it's implausible that the density * of pseudoprimes is much more than one millionth the density of primes. * * He also gives a theoretical argument that the chance of finding a * 256-bit non-prime which satisfies one Fermat test to the base 2 is * less than 10^-22. The small divisor test improves this number, and * if the numbers are 512 bits (as needed for a 1024-bit key) the odds * of failure shrink to about 10^-44. Thus, he concludes, for practical * purposes *one* Fermat test to the base 2 is sufficient. */ static int primeTest(BigNum const *bn, BigNum *e, BigNum *a, int (*f)(void *arg, int c), void *arg) { unsigned i, j; unsigned k, l; int err; #if BNDEBUG /* Debugging */ /* * This is debugging code to test the sieving stage. * If the sieving is wrong, it will let past numbers with * small divisors. The prime test here will still work, and * weed them out, but you'll be doing a lot more slow tests, * and presumably excluding from consideration some other numbers * which might be prime. This check just verifies that none * of the candidates have any small divisors. If this * code is enabled and never triggers, you can feel quite * confident that the sieving is doing its job. */ i = bnLSWord(bn); if (!(i % 2)) printf("bn div by 2!"); i = bnModQ(bn, 51051); /* 51051 = 3 * 7 * 11 * 13 * 17 */ if (!(i % 3)) printf("bn div by 3!"); if (!(i % 7)) printf("bn div by 7!"); if (!(i % 11)) printf("bn div by 11!"); if (!(i % 13)) printf("bn div by 13!"); if (!(i % 17)) printf("bn div by 17!"); i = bnModQ(bn, 63365); /* 63365 = 5 * 19 * 23 * 29 */ if (!(i % 5)) printf("bn div by 5!"); if (!(i % 19)) printf("bn div by 19!"); if (!(i % 23)) printf("bn div by 23!"); if (!(i % 29)) printf("bn div by 29!"); i = bnModQ(bn, 47027); /* 47027 = 31 * 37 * 41 */ if (!(i % 31)) printf("bn div by 31!"); if (!(i % 37)) printf("bn div by 37!"); if (!(i % 41)) printf("bn div by 41!"); #endif /* * Now, check that bn is prime. If it passes to the base 2, * it's prime beyond all reasonable doubt, and everything else * is just gravy, but it gives people warm fuzzies to do it. * * This starts with verifying Euler's criterion for a base of 2. * This is the fastest pseudoprimality test that I know of, * saving a modular squaring over a Fermat test, as well as * being stronger. 7/8 of the time, it's as strong as a strong * pseudoprimality test, too. (The exception being when bn == * 1 mod 8 and 2 is a quartic residue, i.e. bn is of the form * a^2 + (8*b)^2.) The precise series of tricks used here is * not documented anywhere, so here's an explanation. * Euler's criterion states that if p is prime then a^((p-1)/2) * is congruent to Jacobi(a,p), modulo p. Jacobi(a,p) is * a function which is +1 if a is a square modulo p, and -1 if * it is not. For a = 2, this is particularly simple. It's * +1 if p == +/-1 (mod 8), and -1 if m == +/-3 (mod 8). * If p == 3 mod 4, then all a strong test does is compute * 2^((p-1)/2). and see if it's +1 or -1. (Euler's criterion * says *which* it should be.) If p == 5 (mod 8), then * 2^((p-1)/2) is -1, so the initial step in a strong test, * looking at 2^((p-1)/4), is wasted - you're not going to * find a +/-1 before then if it *is* prime, and it shouldn't * have either of those values if it isn't. So don't bother. * * The remaining case is p == 1 (mod 8). In this case, we * expect 2^((p-1)/2) == 1 (mod p), so we expect that the * square root of this, 2^((p-1)/4), will be +/-1 (mod p). * Evaluating this saves us a modular squaring 1/4 of the time. * If it's -1, a strong pseudoprimality test would call p * prime as well. Only if the result is +1, indicating that * 2 is not only a quadratic residue, but a quartic one as well, * does a strong pseudoprimality test verify more things than * this test does. Good enough. * * We could back that down another step, looking at 2^((p-1)/8) * if there was a cheap way to determine if 2 were expected to * be a quartic residue or not. Dirichlet proved that 2 is * a quartic residue iff p is of the form a^2 + (8*b^2). * All primes == 1 (mod 4) can be expressed as a^2 + (2*b)^2, * but I see no cheap way to evaluate this condition. */ if (bnCopy(e, bn) < 0) return -1; (void)bnSubQ(e, 1); l = bnLSWord(e); j = 1; /* Where to start in prime array for strong prime tests */ if (l & 7) { bnRShift(e, 1); if (bnTwoExpMod(a, e, bn) < 0) return -1; if ((l & 7) == 6) { /* bn == 7 mod 8, expect +1 */ if (bnBits(a) != 1) return 1; /* Not prime */ k = 1; } else { /* bn == 3 or 5 mod 8, expect -1 == bn-1 */ if (bnAddQ(a, 1) < 0) return -1; if (bnCmp(a, bn) != 0) return 1; /* Not prime */ k = 1; if (l & 4) { /* bn == 5 mod 8, make odd for strong tests */ bnRShift(e, 1); k = 2; } } } else { /* bn == 1 mod 8, expect 2^((bn-1)/4) == +/-1 mod bn */ bnRShift(e, 2); if (bnTwoExpMod(a, e, bn) < 0) return -1; if (bnBits(a) == 1) { j = 0; /* Re-do strong prime test to base 2 */ } else { if (bnAddQ(a, 1) < 0) return -1; if (bnCmp(a, bn) != 0) return 1; /* Not prime */ } k = 2 + bnMakeOdd(e); } /* It's prime! Now go on to confirmation tests */ /* * Now, e = (bn-1)/2^k is odd. k >= 1, and has a given value * with probability 2^-k, so its expected value is 2. * j = 1 in the usual case when the previous test was as good as * a strong prime test, but 1/8 of the time, j = 0 because * the strong prime test to the base 2 needs to be re-done. */ for (i = j; i < CONFIRMTESTS; i++) { if (f && (err = f(arg, '*')) < 0) return err; (void)bnSetQ(a, confirm[i]); if (bnExpMod(a, a, e, bn) < 0) return -1; if (bnBits(a) == 1) continue; /* Passed this test */ l = k; for (;;) { if (bnAddQ(a, 1) < 0) return -1; if (bnCmp(a, bn) == 0) /* Was result bn-1? */ break; /* Prime */ if (!--l) /* Reached end, not -1? luck? */ return i+2-j; /* Failed, not prime */ /* This portion is executed, on average, once. */ (void)bnSubQ(a, 1); /* Put a back where it was. */ if (bnSquare(a, a) < 0 || bnMod(a, a, bn) < 0) return -1; if (bnBits(a) == 1) return i+2-j; /* Failed, not prime */ } /* It worked (to the base confirm[i]) */ } /* Yes, we've decided that it's prime. */ if (f && (err = f(arg, '*')) < 0) return err; return 0; /* Prime! */ }
int32_t ZrtpDH::computeSecretKey(uint8_t *pubKeyBytes, uint8_t *secret) { dhCtx* tmpCtx = static_cast<dhCtx*>(ctx); int32_t length = getDhSize(); BigNum sec; if (pkType == DH2K || pkType == DH3K) { BigNum pubKeyOther; bnBegin(&pubKeyOther); bnBegin(&sec); bnInsertBigBytes(&pubKeyOther, pubKeyBytes, 0, length); if (pkType == DH2K) { bnExpMod(&sec, &pubKeyOther, &tmpCtx->privKey, &bnP2048); } else if (pkType == DH3K) { bnExpMod(&sec, &pubKeyOther, &tmpCtx->privKey, &bnP3072); } else { return 0; } bnEnd(&pubKeyOther); bnExtractBigBytes(&sec, secret, 0, length); bnEnd(&sec); return length; } if (pkType == EC25 || pkType == EC38 || pkType == E414) { int32_t len = getPubKeySize() / 2; EcPoint pub; bnBegin(&sec); INIT_EC_POINT(&pub); bnSetQ(pub.z, 1); // initialze Z to one, these are affine coords bnInsertBigBytes(pub.x, pubKeyBytes, 0, len); bnInsertBigBytes(pub.y, pubKeyBytes+len, 0, len); /* Generate agreement for responder: sec = pub * privKey */ ecdhComputeAgreement(&tmpCtx->curve, &sec, &pub, &tmpCtx->privKey); bnExtractBigBytes(&sec, secret, 0, length); bnEnd(&sec); FREE_EC_POINT(&pub); return length; } if (pkType == E255) { int32_t len = getPubKeySize(); EcPoint pub; bnBegin(&sec); INIT_EC_POINT(&pub); bnInsertLittleBytes(pub.x, pubKeyBytes, 0, len); /* Generate agreement for responder: sec = pub * privKey */ ecdhComputeAgreement(&tmpCtx->curve, &sec, &pub, &tmpCtx->privKey); bnExtractLittleBytes(&sec, secret, 0, length); bnEnd(&sec); FREE_EC_POINT(&pub); return length; } return -1; }
ZrtpDH::ZrtpDH(const char* type) { uint8_t random[64]; dhCtx* tmpCtx = new dhCtx; ctx = static_cast<void*>(tmpCtx); // Well - the algo type is only 4 char thus cast to int32 and compare if (*(int32_t*)type == *(int32_t*)dh2k) { pkType = DH2K; } else if (*(int32_t*)type == *(int32_t*)dh3k) { pkType = DH3K; } else if (*(int32_t*)type == *(int32_t*)ec25) { pkType = EC25; } else if (*(int32_t*)type == *(int32_t*)ec38) { pkType = EC38; } else if (*(int32_t*)type == *(int32_t*)e255) { pkType = E255; } else if (*(int32_t*)type == *(int32_t*)e414) { pkType = E414; } else { return; } randomZRTP(random, sizeof(random)); if (!dhinit) { bnBegin(&two); bnSetQ(&two, 2); bnBegin(&bnP2048); bnInsertBigBytes(&bnP2048, P2048, 0, sizeof(P2048)); bnBegin(&bnP3072); bnInsertBigBytes(&bnP3072, P3072, 0, sizeof(P3072)); bnBegin(&bnP2048MinusOne); bnCopy(&bnP2048MinusOne, &bnP2048); bnSubQ(&bnP2048MinusOne, 1); bnBegin(&bnP3072MinusOne); bnCopy(&bnP3072MinusOne, &bnP3072); bnSubQ(&bnP3072MinusOne, 1); dhinit = 1; } bnBegin(&tmpCtx->privKey); INIT_EC_POINT(&tmpCtx->pubPoint); switch (pkType) { case DH2K: case DH3K: bnInsertBigBytes(&tmpCtx->privKey, random, 0, 256/8); break; case EC25: ecGetCurveNistECp(NIST256P, &tmpCtx->curve); ecGenerateRandomNumber(&tmpCtx->curve, &tmpCtx->privKey); break; case EC38: ecGetCurveNistECp(NIST384P, &tmpCtx->curve); ecGenerateRandomNumber(&tmpCtx->curve, &tmpCtx->privKey); break; case E255: ecGetCurvesCurve(Curve25519, &tmpCtx->curve); ecGenerateRandomNumber(&tmpCtx->curve, &tmpCtx->privKey); break; case E414: ecGetCurvesCurve(Curve3617, &tmpCtx->curve); ecGenerateRandomNumber(&tmpCtx->curve, &tmpCtx->privKey); break; } }
int genRsaKey(struct PubKey *pub, struct SecKey *sec, unsigned bits, unsigned exp, FILE *file) { int modexps = 0; struct BigNum t; /* Temporary */ int i; struct Progress progress; progress.f = file; progress.column = 0; progress.wrap = 78; if (bnSetQ(&pub->e, exp)) return -1; /* Find p - choose a starting place */ if (genRandBn(&sec->p, bits/2, 0xC0, 1) < 0) return -1; /* And search for a prime */ i = primeGen(&sec->p, randRange, file ? genProgress : 0, &progress, exp, 0); if (i < 0) goto error; modexps = i; assert(bnModQ(&sec->p, exp) != 1); bndPut("p = ", &sec->p); do { /* Visual separator between the two progress indicators */ if (file) genProgress(&progress, ' '); if (genRandBn(&sec->q, (bits+1)/2, 0xC0, 1) < 0) goto error; if (bnCopy(&pub->n, &sec->q) < 0) goto error; if (bnSub(&pub->n, &sec->p) < 0) goto error; /* Note that bnSub(a,b) returns abs(a-b) */ } while (bnBits(&pub->n) < bits/2-5); if (file) fflush(file); /* Ensure the separators are visible */ i = primeGen(&sec->q, randRange, file ? genProgress : 0, &progress, exp, 0); if (i < 0) goto error; modexps += i; assert(bnModQ(&sec->p, exp) != 1); bndPut("q = ", &sec->q); /* Wash the random number pool. */ randFlush(); /* Ensure that q is larger */ if (bnCmp(&sec->p, &sec->q) > 0) bnSwap(&sec->p, &sec->q); bndPut("p = ", &sec->p); bndPut("q = ", &sec->q); /* * Now we dive into a large amount of fiddling to compute d, * the decryption exponent, from the encryption exponent. * We require that e*d == 1 (mod p-1) and e*d == 1 (mod q-1). * This can alomost be done via the Chinese Remainder Algorithm, * but it doesn't quite apply, because p-1 and q-1 are not * realitvely prime. Our task is to massage these into * two numbers a and b such that a*b = lcm(p-1,q-1) and * gcd(a,b) = 1. The technique is not well documented, * so I'll describe it here. * First, let d = gcd(p-1,q-1), then let a' = (p-1)/d and * b' = (q-1)/d. By the definition of the gcd, gcd(a',b') at * this point is 1, but a'*b' is a factor of d shy of the desired * value. We have to produce a = a' * d1 and b = b' * d2 such * d1*d2 = d and gcd(a,b) is 1. This will be the case iff * gcd(a,d2) = gcd(b,d1) = 1. Since GCD is associative and * (gcd(x,y,z) = gcd(x,gcd(y,z)) = gcd(gcd(x,y),z), etc.), * gcd(a',b') = 1 implies that gcd(a',b',d) = 1 which implies * that gcd(a',gcd(b',d)) = gcd(gcd(a',d),b') = 1. So you can * extract gcd(b',d) from d and make it part of d2, and the * same for d1. And iterate? A pessimal example is x = 2*6^k * and y = 3*6^k. gcd(x,y) = 6^k and we have to divvy it up * somehow so that all the factors of 2 go to x and all the * factors of 3 go to y, ending up with a = 2*2^k and b = 3*3^k. * * Aah, f**k it. It's simpler to do one big inverse for now. * Later I'll figure out how to get this to work properly. */ /* Decrement q temporarily */ (void)bnSubQ(&sec->q, 1); /* And u = p-1, to be divided by gcd(p-1,q-1) */ if (bnCopy(&sec->u, &sec->p) < 0) goto error; (void)bnSubQ(&sec->u, 1); bndPut("p-1 = ", &sec->u); bndPut("q-1 = ", &sec->q); /* Use t to store gcd(p-1,q-1) */ bnBegin(&t); if (bnGcd(&t, &sec->q, &sec->u) < 0) { bnEnd(&t); goto error; } bndPut("t = gcd(p-1,q-1) = ", &t); /* Let d = (p-1) / gcd(p-1,q-1) (n is scratch for the remainder) */ i = bnDivMod(&sec->d, &pub->n, &sec->u, &t); bndPut("(p-1)/t = ", &sec->d); bndPut("(p-1)%t = ", &pub->n); bnEnd(&t); if (i < 0) goto error; assert(bnBits(&pub->n) == 0); /* Now we have q-1 and d = (p-1) / gcd(p-1,q-1) */ /* Find the product, n = lcm(p-1,q-1) = c * d */ if (bnMul(&pub->n, &sec->q, &sec->d) < 0) goto error; bndPut("(p-1)*(q-1)/t = ", &pub->n); /* Find the inverse of the exponent mod n */ i = bnInv(&sec->d, &pub->e, &pub->n); bndPut("e = ", &pub->e); bndPut("d = ", &sec->d); if (i < 0) goto error; assert(!i); /* We should NOT get an error here */ /* * Now we have the comparatively simple task of computing * u = p^-1 mod q. */ #if BNDEBUG bnMul(&sec->u, &sec->d, &pub->e); bndPut("d * e = ", &sec->u); bnMod(&pub->n, &sec->u, &sec->q); bndPut("d * e = ", &sec->u); bndPut("q-1 = ", &sec->q); bndPut("d * e % (q-1)= ", &pub->n); bnNorm(&pub->n); bnSubQ(&sec->p, 1); bndPut("d * e = ", &sec->u); bnMod(&sec->u, &sec->u, &sec->p); bndPut("p-1 = ", &sec->p); bndPut("d * e % (p-1)= ", &sec->u); bnNorm(&sec->u); bnAddQ(&sec->p, 1); #endif /* But it *would* be nice to have q back first. */ (void)bnAddQ(&sec->q, 1); bndPut("p = ", &sec->p); bndPut("q = ", &sec->q); /* Now compute u = p^-1 mod q */ i = bnInv(&sec->u, &sec->p, &sec->q); if (i < 0) goto error; bndPut("u = p^-1 % q = ", &sec->u); assert(!i); /* p and q had better be relatively prime! */ #if BNDEBUG bnMul(&pub->n, &sec->u, &sec->p); bndPut("u * p = ", &pub->n); bnMod(&pub->n, &pub->n, &sec->q); bndPut("u * p % q = ", &pub->n); bnNorm(&pub->n); #endif /* And finally, n = p * q */ if (bnMul(&pub->n, &sec->p, &sec->q) < 0) goto error; bndPut("n = p * q = ", &pub->n); /* And that's it... success! */ if (file) putc('\n', file); /* Signal done */ return modexps; error: if (file) fputs("?\n", file); /* Signal error */ return -1; }
/* * Performs an RSA decryption. Returns a prefix of the unwrapped * data in the given buf. Returns the length of the untruncated * data, which may exceed "len". Returns <0 on error. */ int rsaPrivateDecrypt(PGPByte *outbuf, unsigned len, BigNum *bn, RSAsec const *sec) { unsigned bytes = bnBytes(&sec->n); PGPByte *buf = NULL; B_ALGORITHM_OBJ bobj = NULL; B_KEY_OBJ rprivk = NULL; unsigned int bufoutlen; PGPMemoryMgrRef mgr = bn->mgr; int err; buf = PGPNewSecureData (mgr, bytes, 0); if (buf == NULL) { err = kPGPError_OutOfMemory; goto error; } bnExtractBigBytes (bn, buf, 0, bytes); /* Initialize BSafe private key structure */ err = B_CreateAlgorithmObject (&bobj); CHKERR(err); err = B_SetAlgorithmInfo (bobj, AI_RSAPrivate, NULL); CHKERR(err); err = B_CreateKeyObject (&rprivk); CHKERR(err); err = rprivk_init(rprivk, sec, mgr); CHKERR(err); err = B_DecryptInit (bobj, rprivk, RSA_CHOOSER, (A_SURRENDER_CTX *)0); CHKERR(err); /* Do an RSA decryption to recover PKCS-1 padded key */ err = B_DecryptUpdate (bobj, buf, &bufoutlen, bytes, buf, bytes, (B_ALGORITHM_OBJ)NULL, (A_SURRENDER_CTX *)NULL); CHKERR(err); err = B_DecryptFinal (bobj, buf+bufoutlen, &bufoutlen, bytes-bufoutlen, (B_ALGORITHM_OBJ)NULL, (A_SURRENDER_CTX *)NULL); CHKERR(err); B_DestroyKeyObject (&rprivk); rprivk = NULL; B_DestroyAlgorithmObject (&bobj); bobj = NULL; /* Return to bn format */ bnSetQ (bn, 0); bnInsertBigBytes (bn, buf, 0, bytes); pgpClearMemory (buf, bytes); PGPFreeData (buf); buf = NULL; err = pgpPKCSUnpack(outbuf, len, bn, PKCS_PAD_ENCRYPTED, bytes); error: if (buf) { pgpClearMemory (buf, bytes); PGPFreeData (buf); } if (rprivk) B_DestroyKeyObject (&rprivk); if (bobj) B_DestroyAlgorithmObject (&bobj); return err; }
/* * Encrypt a buffer holding a session key with an RSA public key */ int rsaPublicEncrypt(BigNum *bn, PGPByte const *in, unsigned len, RSApub const *pub, PGPRandomContext const *rc) { unsigned bytes = bnBytes(&pub->n); PGPByte *buf = NULL; B_ALGORITHM_OBJ bobj = NULL; B_KEY_OBJ rpubk = NULL; unsigned int bufoutlen; PGPMemoryMgrRef mgr = bn->mgr; int err = 0; pgpPKCSPack(bn, in, len, PKCS_PAD_ENCRYPTED, bytes, rc); buf = PGPNewSecureData (mgr, bytes, 0); if (buf == NULL) { err = kPGPError_OutOfMemory; goto error; } bnExtractBigBytes (bn, buf, 0, bytes); bnSetQ (bn, 0); /* Initialize BSafe public key structure */ err = B_CreateAlgorithmObject (&bobj); CHKERR(err); err = B_SetAlgorithmInfo (bobj, AI_RSAPublic, NULL); CHKERR(err); err = B_CreateKeyObject (&rpubk); CHKERR(err); err = rpubk_init(rpubk, pub, mgr); CHKERR(err); err = B_EncryptInit (bobj, rpubk, RSA_CHOOSER, (A_SURRENDER_CTX *)0); CHKERR(err); /* Encrypt data */ err = B_EncryptUpdate (bobj, buf, &bufoutlen, bytes, buf, bytes, (B_ALGORITHM_OBJ)NULL, (A_SURRENDER_CTX *)NULL); CHKERR(err); err = B_EncryptFinal (bobj, buf+bufoutlen, &bufoutlen, bytes-bufoutlen, (B_ALGORITHM_OBJ)NULL, (A_SURRENDER_CTX *)NULL); CHKERR(err); B_DestroyKeyObject (&rpubk); rpubk = NULL; B_DestroyAlgorithmObject (&bobj); bobj = NULL; /* Return to bn format */ bnInsertBigBytes (bn, buf, 0, bytes); pgpClearMemory (buf, bytes); PGPFreeData (buf); buf = NULL; error: if (buf) { pgpClearMemory (buf, bytes); PGPFreeData (buf); } if (rpubk) B_DestroyKeyObject (&rpubk); if (bobj) B_DestroyAlgorithmObject (&bobj); return err; }
static int genDH(struct BigNum *bn, unsigned bits, unsigned char *seed, unsigned len, FILE *f) { #if CLOCK_AVAIL timetype start, stop; unsigned long s; #endif int i; unsigned char s1[1024], s2[1024]; unsigned p1, p2; struct BigNum step; struct Progress progress; if (f) fprintf(f, "Generating a %u-bit D-H prime with \"%.*s\"\n", bits, (int)len, (char *)seed); progress.f = f; progress.column = 0; progress.wrap = 78; /* Find p - choose a starting place */ if (genRandBn(bn, bits, 0xC0, 3, seed, len) < 0) return -1; #if BNDEBUG /* DEBUG - check that sieve works properly */ bnBegin(&step); bnSetQ(&step, 2); sieveBuild(s1, 1024, bn, 2, 0); sieveBuildBig(s2, 1024, bn, &step, 0); p1 = p2 = 0; if (s1[0] != s2[0]) printf("Difference: s1[0] = %x s2[0] = %x\n", s1[0], s2[0]); do { p1 = sieveSearch(s1, 1024, p1); p2 = sieveSearch(s2, 1024, p2); if (p1 != p2) printf("Difference: p1 = %u p2 = %u\n", p1, p2); } while (p1 && p2); bnEnd(&step); #endif /* And search for a prime */ #if CLOCK_AVAIL gettime(&start); #endif i = germainPrimeGen(bn, 1, f ? genProgress : 0, (void *)&progress); if (i < 0) return -1; #if CLOCK_AVAIL gettime(&stop); #endif if (f) { putc('\n', f); fprintf(f, "%d modular exponentiations performed.\n", i); } #if CLOCK_AVAIL subtime(stop, start); s = sec(stop); bndPrintf("%u-bit time = %lu.%03u sec.", bits, s, msec(stop)); if (s > 60) { putchar(' '); putchar('('); if (s > 3600) printf("%u:%02u", (unsigned)(s/3600), (unsigned)(s/60%60)); else printf("%u", (unsigned)(s/60)); printf(":%02u)", (unsigned)(s%60)); } putchar('\n'); #endif bndPut("p = ", bn); return 0; }