Exemplo n.º 1
0
/*----------------------------------------------------------------------------*/
static zrtp_status_t zrtp_dh_init(void *s)
{
	struct BigNum* p = NULL;
	struct BigNum* p_1 = NULL;
	uint8_t* p_data = NULL;
	unsigned int p_data_length = 0;
	zrtp_pk_scheme_t *self = (zrtp_pk_scheme_t *) s;
	
	switch (self->base.id) {
		case ZRTP_PKTYPE_DH2048:
			p = &self->base.zrtp->P_2048;
			p_1 = &self->base.zrtp->P_2048_1;
			p_data = self->base.zrtp->P_2048_data;
			p_data_length = sizeof(self->base.zrtp->P_2048_data);
			break;
		case ZRTP_PKTYPE_DH3072:
			p = &self->base.zrtp->P_3072;
			p_1 = &self->base.zrtp->P_3072_1;
			p_data = self->base.zrtp->P_3072_data;
			p_data_length = sizeof(self->base.zrtp->P_3072_data);
			break;
		default:
			return zrtp_status_bad_param;
	}
	
    bnBegin(p);
    bnInsertBigBytes(p, (const unsigned char *)p_data, 0, p_data_length);
		
    bnBegin(p_1);
    bnCopy(p_1, p);
    bnSub(p_1, &self->base.zrtp->one);
    
    return zrtp_status_ok;
}
Exemplo n.º 2
0
/*
 * This performs a modular exponentiation using the Chinese Remainder
 * Algorithm when the modulus is known to have two relatively prime
 * factors n = p * q, and u = p^-1 (mod q) has been precomputed.
 *
 * The chinese remainder algorithm lets a computation mod n be performed
 * mod p and mod q, and the results combined.  Since it takes
 * (considerably) more than twice as long to perform modular exponentiation
 * mod n as it does to perform it mod p and mod q, time is saved.
 *
 * If x is the desired result, let xp and xq be the values of x mod p
 * and mod q, respectively.  Obviously, x = xp + p * k for some k.
 * Taking this mod q, xq == xp + p*k (mod q), so p*k == xq-xp (mod q)
 * and k == p^-1 * (xq-xp) (mod q), so k = u * (xq-xp mod q) mod q.
 * After that, x = xp + p * k.
 *
 * Another savings comes from reducing the exponent d modulo phi(p)
 * and phi(q).  Here, we assume that p and q are prime, so phi(p) = p-1
 * and phi(q) = q-1.
 */
static int
bnExpModCRA(BigNum *x, BigNum const *d,
	BigNum const *p, BigNum const *q, BigNum const *u)
{
	BigNum xp, xq, k;
	int i;
	PGPMemoryMgrRef	mgr	= x->mgr;

bndPrintf("Performing Chinese Remainder Algorithm\n");
bndPut("x = ", x);
bndPut("p = ", p);
bndPut("q = ", q);
bndPut("d = ", d);
bndPut("u = ", u);

	bnBegin(&xp, mgr, TRUE);
	bnBegin(&xq, mgr, TRUE);
	bnBegin(&k, mgr, TRUE);

	/* Compute xp = (x mod p) ^ (d mod p-1) mod p */
	if (bnCopy(&xp, p) < 0)		/* First, use xp to hold p-1 */
		goto fail;
	(void)bnSubQ(&xp, 1);		/* p > 1, so subtracting is safe. */
	if (bnMod(&k, d, &xp) < 0)	/* k = d mod (p-1) */
		goto fail;
bndPut("d mod p-1 = ", &k);
	if (bnMod(&xp, x, p) < 0)	/* Now xp = (x mod p) */
		goto fail;
bndPut("x mod p = ", &xp);
	if (bnExpMod(&xp, &xp, &k, p) < 0)	/* xp = (x mod p)^k mod p */
		goto fail;
bndPut("xp = x^d mod p = ", &xp);

	/* Compute xq = (x mod q) ^ (d mod q-1) mod q */
	if (bnCopy(&xq, q) < 0)		/* First, use xq to hold q-1 */
		goto fail;
	(void)bnSubQ(&xq, 1);		/* q > 1, so subtracting is safe. */
	if (bnMod(&k, d, &xq) < 0)	/* k = d mod (q-1) */
		goto fail;
bndPut("d mod q-1 = ", &k);
	if (bnMod(&xq, x, q) < 0)	/* Now xq = (x mod q) */
		goto fail;
bndPut("x mod q = ", &xq);
	if (bnExpMod(&xq, &xq, &k, q) < 0)	/* xq = (x mod q)^k mod q */
		goto fail;
bndPut("xq = x^d mod q = ", &xq);

	/* xp < p and PGP has p < q, so this is a no-op, but just in case */
	if (bnMod(&k, &xp, q) < 0)
		goto fail;	
bndPut("xp mod q = ", &k);
	
	i = bnSub(&xq, &k);
bndPut("xq - xp = ", &xq);
bndPrintf("With sign %d\n", i);
	if (i < 0)
		goto fail;
	if (i) {
		/*
		 * Borrow out - xq-xp is negative, so bnSub returned
		 * xp-xq instead, the negative of the true answer.
		 * Add q back (which is subtracting from the negative)
		 * so the sign flips again.
		 */
		i = bnSub(&xq, q);
		if (i < 0)
			goto fail;
bndPut("xq - xp mod q = ", &xq);
bndPrintf("With sign %d\n", i);		/* Must be 1 */
	}

	/* Compute k = xq * u mod q */
	if (bnMul(&k, u, &xq) < 0)
		goto fail;
bndPut("(xq-xp) * u = ", &k);
	if (bnMod(&k, &k, q) < 0)
		goto fail;
bndPut("k = (xq-xp)*u % q = ", &k);

	/* Now x = k * p + xp is the final answer */
	if (bnMul(x, &k, p) < 0)
		goto fail;
bndPut("k * p = ", x);
	if (bnAdd(x, &xp) < 0)
		goto fail;
bndPut("k*p + xp = ", x);

#if BNDEBUG	/* @@@ DEBUG - do it the slow way for comparison */
	if (bnMul(&xq, p, q) < 0)
		goto fail;
bndPut("n = p*q = ", &xq);
	if (bnExpMod(&xp, x, d, &xq) < 0)
		goto fail;
bndPut("x^d mod n = ", &xp);
	if (bnCmp(x, &xp) != 0) {
bndPrintf("Nasty!!!\n");
		goto fail;
	}
	bnSetQ(&k, 17);
	bnExpMod(&xp, &xp, &k, &xq);
bndPut("x^17 mod n = ", &xp);
#endif

	bnEnd(&xp);
	bnEnd(&xq);
	bnEnd(&k);
	return 0;

fail:
	bnEnd(&xp);
	bnEnd(&xq);
	bnEnd(&k);
	return kPGPError_OutOfMemory;
}
Exemplo n.º 3
0
/*
 * Modifies the given bnq to return a prime slightly larger, and then
 * modifies the given bnp to be a prime which is == 1 (mod bnq).
 * This is done by decreasing bnp until it is == 1 (mod 2*bnq), and
 * then searching forward in steps of 2*bnq.
 * Returns >=0 on success or -1 on failure (out of memory).  On
 * success, the return value is the number of modular exponentiations
 * performed (excluding the final confirmation).
 * This never gives up searching.
 *
 * int (*f)(void *arg, int c), void *arg
 * The function f argument, if non-NULL, is called with progress indicator
 * characters for printing.  A dot (.) is written every time a primality test
 * is failed, a star (*) every time one is passed, and a slash (/) in the
 * case that the sieve was emptied without finding a prime and is being
 * refilled.  f is also passed the void *arg argument for private
 * context storage.  If f returns < 0, the test aborts and returns
 * that value immediately.
 *
 * Apologies to structured programmers for all the GOTOs.
 */
int
dsaPrimeGen(BigNum *bnq, BigNum *bnp,
	int (*f)(void *arg, int c), void *arg)
{
	int retval;
	unsigned p, prev;
	BigNum a, e;
	int modexps = 0;
#ifdef MSDOS
	unsigned char *sieve;
#else
	unsigned char sieve[SIEVE];
#endif

#ifdef MSDOS
	sieve = bniMemAlloc(SIEVE);
	if (!sieve)
		return -1;
#endif

	bnBegin(&a);
	bnBegin(&e);

	/* Phase 1: Search forwards from bnq for a suitable prime. */

	/* First, make sure that bnq is odd. */
	(void)bnAddQ(bnq, ~bnLSWord(bnq) & 1);

	for (;;) {
		if (sieveBuild(sieve, SIEVE, bnq, 2, 1) < 0)
			goto failed;

		p = prev = 0;
		if (sieve[0] & 1 || (p = sieveSearch(sieve, SIEVE, p)) != 0) {
			do {
				/*
				 * Adjust bn to have the right value,
				 * incrementing in steps of < 65536.
				 * 32767 = 65535/2.
				 */
				pgpAssert(p >= prev);
				prev = p-prev;	/* Delta - add 2*prev to bn */
#if SIEVE*8*2 >= 65536
				while (prev > 32767) {
					if (bnAddQ(bnq, 2*32767) < 0)
						goto failed;
					prev -= 32767;
				}
#endif
				if (bnAddQ(bnq, 2*prev) < 0)
					goto failed;
				prev = p;

				retval = primeTest(bnq, &e, &a, f, arg);
				if (retval <= 0)
					goto phase2;	/* Success! */
				modexps += retval;
				if (f && (retval = f(arg, '.')) < 0)
					goto done;

				/* And try again */
				p = sieveSearch(sieve, SIEVE, p);
			} while (p);
		}

		/* Ran out of sieve space - increase bn and keep trying. */
#if SIEVE*8*2 >= 65536
		p = ((SIEVE-1)*8+7) - prev;	/* Number of steps (of 2) */
		while (p >= 32737) {
			if (bnAddQ(bnq, 2*32767) < 0)
				goto failed;
			p -= 32767;
		}
		if (bnAddQ(bnq, 2*(p+1)) < 0)
			goto failed;
#else
		if (bnAddQ(bnq, SIEVE*8*2 - prev) < 0)
			goto failed;
#endif
		if (f && (retval = f(arg, '/')) < 0)
			goto done;
	} /* for (;;) */

	/*
	 * Phase 2: find a suitable prime bnp == 1 (mod bnq).
	 */

	/*
	 * Since bnp will be, and bnq is, odd, bnp-1 must be a multiple
	 * of 2*bnq.  So start by subtracting the excess.
	 */

phase2:
	/* Double bnq until end of bnp search. */
	if (bnAdd(bnq, bnq) < 0)
		goto failed;

	bnMod(&a, bnp, bnq);
	if (bnBits(&a)) {	/* Will always be true, but... */
		(void)bnSubQ(&a, 1);
		if (bnSub(bnp, &a)) 	/* Also error on underflow */
			goto failed;
	}

	/* Okay, now we're ready. */

	for (;;) {
		if (sieveBuildBig(sieve, SIEVE, bnp, bnq, 0) < 0)
			goto failed;
		if (f && (retval = f(arg, '/')) < 0)
			goto done;

		p = prev = 0;
		if (sieve[0] & 1 || (p = sieveSearch(sieve, SIEVE, p)) != 0) {
			do {
				/*
				 * Adjust bn to have the right value,
				 * adding (p-prev) * 2*bnq.
				 */
				pgpAssert(p >= prev);
				/* Compute delta into a */
				if (bnMulQ(&a, bnq, p-prev) < 0)
					goto failed;
				if (bnAdd(bnp, &a) < 0)
					goto failed;
				prev = p;

				retval = primeTest(bnp, &e, &a, f, arg);
				if (retval <= 0)
					goto done;	/* Success! */
				modexps += retval;
				if (f && (retval = f(arg, '.')) < 0)
					goto done;

				/* And try again */
				p = sieveSearch(sieve, SIEVE, p);
			} while (p);
		}

		/* Ran out of sieve space - increase bn and keep trying. */
#if SIEVE*8 == 65536
		if (prev) {
			p = (unsigned)(SIEVE*8ul - prev);
		} else {
			/* Corner case that will never actually happen */
			if (bnAdd(bnp, bnq) < 0)
				goto failed;
			p = 65535;
		}
#else
		p = SIEVE*8 - prev;
#endif
		/* Add p * bnq to bnp */
		if (bnMulQ(&a, bnq, p) < 0)
			goto failed;
		if (bnAdd(bnp, &a) < 0)
			goto failed;
	} /* for (;;) */

failed:
	retval = -1;

done:
	/* Shift bnq back down by the extra bit again. */
	bnRShift(bnq, 1);	/* Harmless even if bnq is random */

	bnEnd(&e);
	bnEnd(&a);
#ifdef MSDOS
	bniMemFree(sieve, SIEVE);
#else
	bniMemWipe(sieve, sizeof(sieve));
#endif
	return retval < 0 ? retval : modexps + 2*CONFIRMTESTS;
}
Exemplo n.º 4
0
/*
 * lhs-rhs.  dest and src may be the same, but bnSetQ(dest, 0) is faster.
 * if dest < src, returns error and dest is undefined.
 */
	PGPError
PGPBigNumSubtract(
	PGPBigNumRef	lhs,
	PGPBigNumRef	rhs,
	PGPBigNumRef	dest,
	PGPBoolean *	underflowPtr )
{
	PGPError	err	= kPGPError_NoErr;
	int			bnError;
	PGPBoolean	underflow	= FALSE;
	
	if ( IsntNull( underflowPtr ) )
		*underflowPtr	= FALSE;
		
	pgpValidateBigNum( lhs );
	pgpValidateBigNum( rhs );
	pgpValidateBigNum( dest );
	
	if ( lhs == dest )
	{
		bnError	= bnSub( &dest->bn, &rhs->bn );
		underflow	= (bnError == 1);
		bnError		= 0;
	}
	else if ( rhs == dest )
	{
		BigNum	temp;
		PGPBoolean	secure;
		
		secure	= lhs->bn.isSecure || rhs->bn.isSecure ||
					dest->bn.isSecure;
		bnBegin( &temp, dest->bn.mgr, secure );
			bnError	= bnCopy( &temp, &lhs->bn );
			if ( bnError == 0 )
			{
				bnError	= bnSub( &temp, &rhs->bn );
				underflow	= (bnError == 1);
				bnError		= 0;
				
				bnError	= bnCopy( &dest->bn, &temp );
			}
		bnEnd( &temp );
	}
	else
	{
		bnError	= bnCopy( &dest->bn, &lhs->bn );
		if ( bnError == 0 )
		{
			bnError	= bnSub( &dest->bn, &rhs->bn );
			underflow	= (bnError == 1);
			bnError		= 0;
		}
	}
	
	if ( IsntNull( underflowPtr ) )
		*underflowPtr	= underflow;
		
	if ( bnError == -1 )
		err	= kPGPError_OutOfMemory;
	
	return( err );
}
Exemplo n.º 5
0
int
genRsaKey(struct PubKey *pub, struct SecKey *sec,
	  unsigned bits, unsigned exp, FILE *file)
{
	int modexps = 0;
	struct BigNum t;	/* Temporary */
	int i;
	struct Progress progress;

	progress.f = file;
	progress.column = 0;
	progress.wrap = 78;

	if (bnSetQ(&pub->e, exp))
		return -1;

	/* Find p - choose a starting place */
	if (genRandBn(&sec->p, bits/2, 0xC0, 1) < 0)
		return -1;
	/* And search for a prime */
	i = primeGen(&sec->p, randRange, file ? genProgress : 0, &progress,
	             exp, 0);
	if (i < 0)
		goto error;
	modexps = i;
	assert(bnModQ(&sec->p, exp) != 1);
bndPut("p = ", &sec->p);

	do {
		/* Visual separator between the two progress indicators */
		if (file)
			genProgress(&progress, ' ');

		if (genRandBn(&sec->q, (bits+1)/2, 0xC0, 1) < 0)
			goto error;
		if (bnCopy(&pub->n, &sec->q) < 0)
			goto error;
		if (bnSub(&pub->n, &sec->p) < 0)
			goto error;
		/* Note that bnSub(a,b) returns abs(a-b) */
	} while (bnBits(&pub->n) < bits/2-5);

	if (file)
		fflush(file);	/* Ensure the separators are visible */

	i = primeGen(&sec->q, randRange, file ? genProgress : 0, &progress,
	             exp, 0);
	if (i < 0)
		goto error;
	modexps += i;
	assert(bnModQ(&sec->p, exp) != 1);
bndPut("q = ", &sec->q);

	/* Wash the random number pool. */
	randFlush();

	/* Ensure that q is larger */
	if (bnCmp(&sec->p, &sec->q) > 0)
		bnSwap(&sec->p, &sec->q);
bndPut("p = ", &sec->p);
bndPut("q = ", &sec->q);


	/*
	 * Now we dive into a large amount of fiddling to compute d,
	 * the decryption exponent, from the encryption exponent.
	 * We require that e*d == 1 (mod p-1) and e*d == 1 (mod q-1).
	 * This can alomost be done via the Chinese Remainder Algorithm,
	 * but it doesn't quite apply, because p-1 and q-1 are not
	 * realitvely prime.  Our task is to massage these into
	 * two numbers a and b such that a*b = lcm(p-1,q-1) and
	 * gcd(a,b) = 1.  The technique is not well documented,
	 * so I'll describe it here.
	 * First, let d = gcd(p-1,q-1), then let a' = (p-1)/d and
	 * b' = (q-1)/d.  By the definition of the gcd, gcd(a',b') at
	 * this point is 1, but a'*b' is a factor of d shy of the desired
	 * value.  We have to produce a = a' * d1 and b = b' * d2 such
	 * d1*d2 = d and gcd(a,b) is 1.  This will be the case iff
	 * gcd(a,d2) = gcd(b,d1) = 1.  Since GCD is associative and
	 * (gcd(x,y,z) = gcd(x,gcd(y,z)) = gcd(gcd(x,y),z), etc.),
	 * gcd(a',b') = 1 implies that gcd(a',b',d) = 1 which implies
	 * that gcd(a',gcd(b',d)) = gcd(gcd(a',d),b') = 1.  So you can
	 * extract gcd(b',d) from d and make it part of d2, and the
	 * same for d1.  And iterate?  A pessimal example is x = 2*6^k
	 * and y = 3*6^k.  gcd(x,y) = 6^k and we have to divvy it up
	 * somehow so that all the factors of 2 go to x and all the
	 * factors of 3 go to y, ending up with a = 2*2^k and b = 3*3^k.
	 *
	 * Aah, f**k it.  It's simpler to do one big inverse for now.
	 * Later I'll figure out how to get this to work properly.
	 */

	/* Decrement q temporarily */
	(void)bnSubQ(&sec->q, 1);
	/* And u = p-1, to be divided by gcd(p-1,q-1) */
	if (bnCopy(&sec->u, &sec->p) < 0)
		goto error;
	(void)bnSubQ(&sec->u, 1);
bndPut("p-1 = ", &sec->u);
bndPut("q-1 = ", &sec->q);
	/* Use t to store gcd(p-1,q-1) */
	bnBegin(&t);
	if (bnGcd(&t, &sec->q, &sec->u) < 0) {
		bnEnd(&t);
		goto error;
	}
bndPut("t = gcd(p-1,q-1) = ", &t);

	/* Let d = (p-1) / gcd(p-1,q-1) (n is scratch for the remainder) */
	i = bnDivMod(&sec->d, &pub->n, &sec->u, &t);
bndPut("(p-1)/t = ", &sec->d);
bndPut("(p-1)%t = ", &pub->n);
	bnEnd(&t);
	if (i < 0)
		goto error;
	assert(bnBits(&pub->n) == 0);
	/* Now we have q-1 and d = (p-1) / gcd(p-1,q-1) */
	/* Find the product, n = lcm(p-1,q-1) = c * d */
	if (bnMul(&pub->n, &sec->q, &sec->d) < 0)
		goto error;
bndPut("(p-1)*(q-1)/t = ", &pub->n);
	/* Find the inverse of the exponent mod n */
	i = bnInv(&sec->d, &pub->e, &pub->n);
bndPut("e = ", &pub->e);
bndPut("d = ", &sec->d);
	if (i < 0)
		goto error;
	assert(!i);	/* We should NOT get an error here */
	/*
	 * Now we have the comparatively simple task of computing
	 * u = p^-1 mod q.
	 */
#if BNDEBUG
	bnMul(&sec->u, &sec->d, &pub->e);
bndPut("d * e = ", &sec->u);
	bnMod(&pub->n, &sec->u, &sec->q);
bndPut("d * e = ", &sec->u);
bndPut("q-1 = ", &sec->q);
bndPut("d * e % (q-1)= ", &pub->n);
	bnNorm(&pub->n);
	bnSubQ(&sec->p, 1);
bndPut("d * e = ", &sec->u);
	bnMod(&sec->u, &sec->u, &sec->p);
bndPut("p-1 = ", &sec->p);
bndPut("d * e % (p-1)= ", &sec->u);
	bnNorm(&sec->u);
	bnAddQ(&sec->p, 1);
#endif

	/* But it *would* be nice to have q back first. */
	(void)bnAddQ(&sec->q, 1);

bndPut("p = ", &sec->p);
bndPut("q = ", &sec->q);

	/* Now compute u = p^-1 mod q */
	i = bnInv(&sec->u, &sec->p, &sec->q);
	if (i < 0)
		goto error;
bndPut("u = p^-1 % q = ", &sec->u);
	assert(!i);	/* p and q had better be relatively prime! */

#if BNDEBUG
	bnMul(&pub->n, &sec->u, &sec->p);
bndPut("u * p = ", &pub->n);
	bnMod(&pub->n, &pub->n, &sec->q);
bndPut("u * p % q = ", &pub->n);
	bnNorm(&pub->n);
#endif
	/* And finally,  n = p * q */
	if (bnMul(&pub->n, &sec->p, &sec->q) < 0)
		goto error;
bndPut("n = p * q = ", &pub->n);
	/* And that's it... success! */
	if (file)
		putc('\n', file);	/* Signal done */
	return modexps;

error:
	if (file)
		fputs("?\n", file);	/* Signal error */

	return -1;
}