Exemplo n.º 1
0
 void visit(BinExp *e)
 {
     switch(e->op)
     {
     case TOKadd:
     case TOKmin:
     case TOKmul:
     case TOKdiv:
     case TOKmod:
     case TOKxor:
     case TOKand:
     case TOKor:
     case TOKpow:
     {
         /* Evaluate assign expressions left to right
          */
         BinExp *be = (BinExp *)e->copy();
         be->e1 = buildArrayLoop(be->e1);
         be->e2 = buildArrayLoop(be->e2);
         be->type = NULL;
         result = be;
         return;
     }
     default:
         visit((Expression *)e);
         return;
     }
 }
Exemplo n.º 2
0
 void visit(AssignExp *e)
 {
     /* Evaluate assign expressions right to left
      */
     Expression *ex2 = buildArrayLoop(e->e2);
     /* Need the cast because:
      *   b = c + p[i];
      * where b is a byte fails because (c + p[i]) is an int
      * which cannot be implicitly cast to byte.
      */
     ex2 = new CastExp(Loc(), ex2, e->e1->type->nextOf());
     Expression *ex1 = buildArrayLoop(e->e1);
     Parameter *param = (*fparams)[0];
     param->storageClass = 0;
     result = new AssignExp(Loc(), ex1, ex2);
 }
Exemplo n.º 3
0
FuncDeclaration *buildArrayOp(Identifier *ident, BinExp *exp, Scope *sc)
{
    Parameters *fparams = new Parameters();
    Expression *loopbody = buildArrayLoop(exp, fparams);

    /* Construct the function body:
     *  foreach (i; 0 .. p.length)    for (size_t i = 0; i < p.length; i++)
     *      loopbody;
     *  return p;
     */

    Parameter *p = (*fparams)[0];
    // foreach (i; 0 .. p.length)
    Statement *s1 = new ForeachRangeStatement(Loc(), TOKforeach,
        new Parameter(0, NULL, Id::p, NULL),
        new IntegerExp(Loc(), 0, Type::tsize_t),
        new ArrayLengthExp(Loc(), new IdentifierExp(Loc(), p->ident)),
        new ExpStatement(Loc(), loopbody),
        Loc());
    //printf("%s\n", s1->toChars());
    Statement *s2 = new ReturnStatement(Loc(), new IdentifierExp(Loc(), p->ident));
    //printf("s2: %s\n", s2->toChars());
    Statement *fbody = new CompoundStatement(Loc(), s1, s2);

    // Built-in array ops should be @trusted, pure, nothrow and nogc
    StorageClass stc = STCtrusted | STCpure | STCnothrow | STCnogc;

    /* Construct the function
     */
    TypeFunction *ftype = new TypeFunction(fparams, exp->e1->type, 0, LINKc, stc);
    //printf("fd: %s %s\n", ident->toChars(), ftype->toChars());
    FuncDeclaration *fd = new FuncDeclaration(Loc(), Loc(), ident, STCundefined, ftype);
    fd->fbody = fbody;
    fd->protection = Prot(PROTpublic);
    fd->linkage = LINKc;
    fd->isArrayOp = 1;

    sc->_module->importedFrom->members->push(fd);

    sc = sc->push();
    sc->parent = sc->_module->importedFrom;
    sc->stc = 0;
    sc->linkage = LINKc;
    fd->semantic(sc);
    fd->semantic2(sc);
    unsigned errors = global.startGagging();
    fd->semantic3(sc);
    if (global.endGagging(errors))
    {
        fd->type = Type::terror;
        fd->errors = true;
        fd->fbody = NULL;
    }
    sc->pop();

    return fd;
}
Exemplo n.º 4
0
 void visit(BinExp *e)
 {
     if (isBinArrayOp(e->op))
     {
         /* Evaluate assign expressions left to right
          */
         BinExp *be = (BinExp *)e->copy();
         be->e1 = buildArrayLoop(be->e1);
         be->e2 = buildArrayLoop(be->e2);
         be->type = NULL;
         result = be;
         return;
     }
     else
     {
         visit((Expression *)e);
         return;
     }
 }
Exemplo n.º 5
0
 void visit(BinAssignExp *e)
 {
     /* Evaluate assign expressions right to left
      */
     Expression *ex2 = buildArrayLoop(e->e2);
     Expression *ex1 = buildArrayLoop(e->e1);
     Parameter *param = (*fparams)[0];
     param->storageClass = 0;
     switch(e->op)
     {
     case TOKaddass: result = new AddAssignExp(e->loc, ex1, ex2); return;
     case TOKminass: result = new MinAssignExp(e->loc, ex1, ex2); return;
     case TOKmulass: result = new MulAssignExp(e->loc, ex1, ex2); return;
     case TOKdivass: result = new DivAssignExp(e->loc, ex1, ex2); return;
     case TOKmodass: result = new ModAssignExp(e->loc, ex1, ex2); return;
     case TOKxorass: result = new XorAssignExp(e->loc, ex1, ex2); return;
     case TOKandass: result = new AndAssignExp(e->loc, ex1, ex2); return;
     case TOKorass:  result = new OrAssignExp(e->loc, ex1, ex2); return;
     case TOKpowass: result = new PowAssignExp(e->loc, ex1, ex2); return;
     default:
         assert(0);
     }
 }
Exemplo n.º 6
0
Expression *BinExp::arrayOp(Scope *sc)
{
    //printf("BinExp::arrayOp() %s\n", toChars());

    Type *tb = type->toBasetype();
    assert(tb->ty == Tarray || tb->ty == Tsarray);
    if (tb->nextOf()->toBasetype()->ty == Tvoid)
    {
        error("Cannot perform array operations on void[] arrays");
        return new ErrorExp();
    }

    if (!isArrayOpValid(e2))
    {
        e2->error("invalid array operation %s (did you forget a [] ?)", toChars());
        return new ErrorExp();
    }

    Expressions *arguments = new Expressions();

    /* The expression to generate an array operation for is mangled
     * into a name to use as the array operation function name.
     * Mangle in the operands and operators in RPN order, and type.
     */
    OutBuffer buf;
    buf.writestring("_array");
    buildArrayIdent(&buf, arguments);
    buf.writeByte('_');

    /* Append deco of array element type
     */
#if DMDV2
    buf.writestring(type->toBasetype()->nextOf()->toBasetype()->mutableOf()->deco);
#else
    buf.writestring(type->toBasetype()->nextOf()->toBasetype()->deco);
#endif

    size_t namelen = buf.offset;
    buf.writeByte(0);
    char *name = buf.toChars();
    Identifier *ident = Lexer::idPool(name);

    /* Look up name in hash table
     */
    FuncDeclaration **pfd = (FuncDeclaration **)_aaGet(&arrayfuncs, ident);
    FuncDeclaration *fd = (FuncDeclaration *)*pfd;
    if (!fd)
    {
        /* Some of the array op functions are written as library functions,
         * presumably to optimize them with special CPU vector instructions.
         * List those library functions here, in alpha order.
         */
        static const char *libArrayopFuncs[] =
        {
            "_arrayExpSliceAddass_a",
            "_arrayExpSliceAddass_d",           // T[]+=T
            "_arrayExpSliceAddass_f",           // T[]+=T
            "_arrayExpSliceAddass_g",
            "_arrayExpSliceAddass_h",
            "_arrayExpSliceAddass_i",
            "_arrayExpSliceAddass_k",
            "_arrayExpSliceAddass_s",
            "_arrayExpSliceAddass_t",
            "_arrayExpSliceAddass_u",
            "_arrayExpSliceAddass_w",

            "_arrayExpSliceDivass_d",           // T[]/=T
            "_arrayExpSliceDivass_f",           // T[]/=T

            "_arrayExpSliceMinSliceAssign_a",
            "_arrayExpSliceMinSliceAssign_d",   // T[]=T-T[]
            "_arrayExpSliceMinSliceAssign_f",   // T[]=T-T[]
            "_arrayExpSliceMinSliceAssign_g",
            "_arrayExpSliceMinSliceAssign_h",
            "_arrayExpSliceMinSliceAssign_i",
            "_arrayExpSliceMinSliceAssign_k",
            "_arrayExpSliceMinSliceAssign_s",
            "_arrayExpSliceMinSliceAssign_t",
            "_arrayExpSliceMinSliceAssign_u",
            "_arrayExpSliceMinSliceAssign_w",

            "_arrayExpSliceMinass_a",
            "_arrayExpSliceMinass_d",           // T[]-=T
            "_arrayExpSliceMinass_f",           // T[]-=T
            "_arrayExpSliceMinass_g",
            "_arrayExpSliceMinass_h",
            "_arrayExpSliceMinass_i",
            "_arrayExpSliceMinass_k",
            "_arrayExpSliceMinass_s",
            "_arrayExpSliceMinass_t",
            "_arrayExpSliceMinass_u",
            "_arrayExpSliceMinass_w",

            "_arrayExpSliceMulass_d",           // T[]*=T
            "_arrayExpSliceMulass_f",           // T[]*=T
            "_arrayExpSliceMulass_i",
            "_arrayExpSliceMulass_k",
            "_arrayExpSliceMulass_s",
            "_arrayExpSliceMulass_t",
            "_arrayExpSliceMulass_u",
            "_arrayExpSliceMulass_w",

            "_arraySliceExpAddSliceAssign_a",
            "_arraySliceExpAddSliceAssign_d",   // T[]=T[]+T
            "_arraySliceExpAddSliceAssign_f",   // T[]=T[]+T
            "_arraySliceExpAddSliceAssign_g",
            "_arraySliceExpAddSliceAssign_h",
            "_arraySliceExpAddSliceAssign_i",
            "_arraySliceExpAddSliceAssign_k",
            "_arraySliceExpAddSliceAssign_s",
            "_arraySliceExpAddSliceAssign_t",
            "_arraySliceExpAddSliceAssign_u",
            "_arraySliceExpAddSliceAssign_w",

            "_arraySliceExpDivSliceAssign_d",   // T[]=T[]/T
            "_arraySliceExpDivSliceAssign_f",   // T[]=T[]/T

            "_arraySliceExpMinSliceAssign_a",
            "_arraySliceExpMinSliceAssign_d",   // T[]=T[]-T
            "_arraySliceExpMinSliceAssign_f",   // T[]=T[]-T
            "_arraySliceExpMinSliceAssign_g",
            "_arraySliceExpMinSliceAssign_h",
            "_arraySliceExpMinSliceAssign_i",
            "_arraySliceExpMinSliceAssign_k",
            "_arraySliceExpMinSliceAssign_s",
            "_arraySliceExpMinSliceAssign_t",
            "_arraySliceExpMinSliceAssign_u",
            "_arraySliceExpMinSliceAssign_w",

            "_arraySliceExpMulSliceAddass_d",   // T[] += T[]*T
            "_arraySliceExpMulSliceAddass_f",
            "_arraySliceExpMulSliceAddass_r",

            "_arraySliceExpMulSliceAssign_d",   // T[]=T[]*T
            "_arraySliceExpMulSliceAssign_f",   // T[]=T[]*T
            "_arraySliceExpMulSliceAssign_i",
            "_arraySliceExpMulSliceAssign_k",
            "_arraySliceExpMulSliceAssign_s",
            "_arraySliceExpMulSliceAssign_t",
            "_arraySliceExpMulSliceAssign_u",
            "_arraySliceExpMulSliceAssign_w",

            "_arraySliceExpMulSliceMinass_d",   // T[] -= T[]*T
            "_arraySliceExpMulSliceMinass_f",
            "_arraySliceExpMulSliceMinass_r",

            "_arraySliceSliceAddSliceAssign_a",
            "_arraySliceSliceAddSliceAssign_d", // T[]=T[]+T[]
            "_arraySliceSliceAddSliceAssign_f", // T[]=T[]+T[]
            "_arraySliceSliceAddSliceAssign_g",
            "_arraySliceSliceAddSliceAssign_h",
            "_arraySliceSliceAddSliceAssign_i",
            "_arraySliceSliceAddSliceAssign_k",
            "_arraySliceSliceAddSliceAssign_r", // T[]=T[]+T[]
            "_arraySliceSliceAddSliceAssign_s",
            "_arraySliceSliceAddSliceAssign_t",
            "_arraySliceSliceAddSliceAssign_u",
            "_arraySliceSliceAddSliceAssign_w",

            "_arraySliceSliceAddass_a",
            "_arraySliceSliceAddass_d",         // T[]+=T[]
            "_arraySliceSliceAddass_f",         // T[]+=T[]
            "_arraySliceSliceAddass_g",
            "_arraySliceSliceAddass_h",
            "_arraySliceSliceAddass_i",
            "_arraySliceSliceAddass_k",
            "_arraySliceSliceAddass_s",
            "_arraySliceSliceAddass_t",
            "_arraySliceSliceAddass_u",
            "_arraySliceSliceAddass_w",

            "_arraySliceSliceMinSliceAssign_a",
            "_arraySliceSliceMinSliceAssign_d", // T[]=T[]-T[]
            "_arraySliceSliceMinSliceAssign_f", // T[]=T[]-T[]
            "_arraySliceSliceMinSliceAssign_g",
            "_arraySliceSliceMinSliceAssign_h",
            "_arraySliceSliceMinSliceAssign_i",
            "_arraySliceSliceMinSliceAssign_k",
            "_arraySliceSliceMinSliceAssign_r", // T[]=T[]-T[]
            "_arraySliceSliceMinSliceAssign_s",
            "_arraySliceSliceMinSliceAssign_t",
            "_arraySliceSliceMinSliceAssign_u",
            "_arraySliceSliceMinSliceAssign_w",

            "_arraySliceSliceMinass_a",
            "_arraySliceSliceMinass_d",         // T[]-=T[]
            "_arraySliceSliceMinass_f",         // T[]-=T[]
            "_arraySliceSliceMinass_g",
            "_arraySliceSliceMinass_h",
            "_arraySliceSliceMinass_i",
            "_arraySliceSliceMinass_k",
            "_arraySliceSliceMinass_s",
            "_arraySliceSliceMinass_t",
            "_arraySliceSliceMinass_u",
            "_arraySliceSliceMinass_w",

            "_arraySliceSliceMulSliceAssign_d", // T[]=T[]*T[]
            "_arraySliceSliceMulSliceAssign_f", // T[]=T[]*T[]
            "_arraySliceSliceMulSliceAssign_i",
            "_arraySliceSliceMulSliceAssign_k",
            "_arraySliceSliceMulSliceAssign_s",
            "_arraySliceSliceMulSliceAssign_t",
            "_arraySliceSliceMulSliceAssign_u",
            "_arraySliceSliceMulSliceAssign_w",

            "_arraySliceSliceMulass_d",         // T[]*=T[]
            "_arraySliceSliceMulass_f",         // T[]*=T[]
            "_arraySliceSliceMulass_i",
            "_arraySliceSliceMulass_k",
            "_arraySliceSliceMulass_s",
            "_arraySliceSliceMulass_t",
            "_arraySliceSliceMulass_u",
            "_arraySliceSliceMulass_w",
        };

        int i = binary(name, libArrayopFuncs, sizeof(libArrayopFuncs) / sizeof(char *));
        if (i == -1)
        {
#ifdef DEBUG    // Make sure our array is alphabetized
            for (i = 0; i < sizeof(libArrayopFuncs) / sizeof(char *); i++)
            {
                if (strcmp(name, libArrayopFuncs[i]) == 0)
                    assert(0);
            }
#endif
            /* Not in library, so generate it.
             * Construct the function body:
             *  foreach (i; 0 .. p.length)    for (size_t i = 0; i < p.length; i++)
             *      loopbody;
             *  return p;
             */

            Parameters *fparams = new Parameters();
            Expression *loopbody = buildArrayLoop(fparams);
            Parameter *p = (*fparams)[0 /*fparams->dim - 1*/];
#if DMDV1
            // for (size_t i = 0; i < p.length; i++)
            Initializer *init = new ExpInitializer(0, new IntegerExp(0, 0, Type::tsize_t));
            Dsymbol *d = new VarDeclaration(0, Type::tsize_t, Id::p, init);
            Statement *s1 = new ForStatement(0,
                new DeclarationStatement(0, d),
                new CmpExp(TOKlt, 0, new IdentifierExp(0, Id::p), new ArrayLengthExp(0, new IdentifierExp(0, p->ident))),
                new PostExp(TOKplusplus, 0, new IdentifierExp(0, Id::p)),
                new ExpStatement(0, loopbody));
#else
            // foreach (i; 0 .. p.length)
            Statement *s1 = new ForeachRangeStatement(0, TOKforeach,
                new Parameter(0, NULL, Id::p, NULL),
                new IntegerExp(0, 0, Type::tsize_t),
                new ArrayLengthExp(0, new IdentifierExp(0, p->ident)),
                new ExpStatement(0, loopbody));
#endif
            Statement *s2 = new ReturnStatement(0, new IdentifierExp(0, p->ident));
            //printf("s2: %s\n", s2->toChars());
            Statement *fbody = new CompoundStatement(0, s1, s2);

            /* Construct the function
             */
            TypeFunction *ftype = new TypeFunction(fparams, type, 0, LINKc);
            //printf("ftype: %s\n", ftype->toChars());
            fd = new FuncDeclaration(loc, 0, ident, STCundefined, ftype);
            fd->fbody = fbody;
            fd->protection = PROTpublic;
            fd->linkage = LINKc;
            fd->isArrayOp = 1;

            sc->module->importedFrom->members->push(fd);

            sc = sc->push();
            sc->parent = sc->module->importedFrom;
            sc->stc = 0;
            sc->linkage = LINKc;
            fd->semantic(sc);
            fd->semantic2(sc);
            fd->semantic3(sc);
            sc->pop();
        }
        else
        {   /* In library, refer to it.
             */
            fd = FuncDeclaration::genCfunc(type, ident);
        }
        *pfd = fd;      // cache symbol in hash table
    }

    /* Call the function fd(arguments)
     */
    Expression *ec = new VarExp(0, fd);
    Expression *e = new CallExp(loc, ec, arguments);
    e->type = type;
    return e;
}
Exemplo n.º 7
0
 void visit(ComExp *e)
 {
     Expression *ex1 = buildArrayLoop(e->e1);
     result = new ComExp(Loc(), ex1);
 }