Exemplo n.º 1
0
static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush)
{
	unsigned long new_mm_cr3;

	if (need_flush) {
		invalidate_user_asid(new_asid);
		new_mm_cr3 = build_cr3(pgdir, new_asid);
	} else {
		new_mm_cr3 = build_cr3_noflush(pgdir, new_asid);
	}

	/*
	 * Caution: many callers of this function expect
	 * that load_cr3() is serializing and orders TLB
	 * fills with respect to the mm_cpumask writes.
	 */
	write_cr3(new_mm_cr3);
}
Exemplo n.º 2
0
void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
			struct task_struct *tsk)
{
	struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
	u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
	unsigned cpu = smp_processor_id();
	u64 next_tlb_gen;

	/*
	 * NB: The scheduler will call us with prev == next when switching
	 * from lazy TLB mode to normal mode if active_mm isn't changing.
	 * When this happens, we don't assume that CR3 (and hence
	 * cpu_tlbstate.loaded_mm) matches next.
	 *
	 * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
	 */

	/* We don't want flush_tlb_func_* to run concurrently with us. */
	if (IS_ENABLED(CONFIG_PROVE_LOCKING))
		WARN_ON_ONCE(!irqs_disabled());

	/*
	 * Verify that CR3 is what we think it is.  This will catch
	 * hypothetical buggy code that directly switches to swapper_pg_dir
	 * without going through leave_mm() / switch_mm_irqs_off() or that
	 * does something like write_cr3(read_cr3_pa()).
	 *
	 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
	 * isn't free.
	 */
#ifdef CONFIG_DEBUG_VM
	if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev, prev_asid))) {
		/*
		 * If we were to BUG here, we'd be very likely to kill
		 * the system so hard that we don't see the call trace.
		 * Try to recover instead by ignoring the error and doing
		 * a global flush to minimize the chance of corruption.
		 *
		 * (This is far from being a fully correct recovery.
		 *  Architecturally, the CPU could prefetch something
		 *  back into an incorrect ASID slot and leave it there
		 *  to cause trouble down the road.  It's better than
		 *  nothing, though.)
		 */
		__flush_tlb_all();
	}
#endif
	this_cpu_write(cpu_tlbstate.is_lazy, false);

	if (real_prev == next) {
		VM_BUG_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
			  next->context.ctx_id);

		/*
		 * We don't currently support having a real mm loaded without
		 * our cpu set in mm_cpumask().  We have all the bookkeeping
		 * in place to figure out whether we would need to flush
		 * if our cpu were cleared in mm_cpumask(), but we don't
		 * currently use it.
		 */
		if (WARN_ON_ONCE(real_prev != &init_mm &&
				 !cpumask_test_cpu(cpu, mm_cpumask(next))))
			cpumask_set_cpu(cpu, mm_cpumask(next));

		return;
	} else {
		u16 new_asid;
		bool need_flush;

		if (IS_ENABLED(CONFIG_VMAP_STACK)) {
			/*
			 * If our current stack is in vmalloc space and isn't
			 * mapped in the new pgd, we'll double-fault.  Forcibly
			 * map it.
			 */
			unsigned int index = pgd_index(current_stack_pointer);
			pgd_t *pgd = next->pgd + index;

			if (unlikely(pgd_none(*pgd)))
				set_pgd(pgd, init_mm.pgd[index]);
		}

		/* Stop remote flushes for the previous mm */
		VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu, mm_cpumask(real_prev)) &&
				real_prev != &init_mm);
		cpumask_clear_cpu(cpu, mm_cpumask(real_prev));

		/*
		 * Start remote flushes and then read tlb_gen.
		 */
		cpumask_set_cpu(cpu, mm_cpumask(next));
		next_tlb_gen = atomic64_read(&next->context.tlb_gen);

		choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);

		if (need_flush) {
			this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
			this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
			write_cr3(build_cr3(next, new_asid));
			trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH,
					TLB_FLUSH_ALL);
		} else {
			/* The new ASID is already up to date. */
			write_cr3(build_cr3_noflush(next, new_asid));
			trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0);
		}

		this_cpu_write(cpu_tlbstate.loaded_mm, next);
		this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
	}

	load_mm_cr4(next);
	switch_ldt(real_prev, next);
}