Exemplo n.º 1
0
/* See libbladeRF's dc_cal_table.c for the packed table data format */
int calibrate_dc_gen_tbl(struct cli_state *s, bladerf_module module,
                         const char *filename, unsigned int f_low,
                         unsigned f_inc, unsigned int f_high)
{
    int retval, status;
    size_t off;
    struct bladerf_lms_dc_cals lms_dc_cals;
    unsigned int f;
    struct settings settings;
    bladerf_loopback loopback_backup;
    struct bladerf_image *image = NULL;

    const uint16_t magic = HOST_TO_LE16(0x1ab1);
    const uint32_t reserved = HOST_TO_LE32(0x00000000);
    const uint32_t tbl_version = HOST_TO_LE32(0x00000001);

    const size_t lms_data_size = 10; /* 10 uint8_t register values */

    const uint32_t n_frequencies = (f_high - f_low) / f_inc + 1;
    const uint32_t n_frequencies_le = HOST_TO_LE32(n_frequencies);

    const size_t entry_size = sizeof(uint32_t) +   /* Frequency */
                              2 * sizeof(int16_t); /* DC I and Q valus */

    const size_t table_size = n_frequencies * entry_size;

    const size_t data_size = sizeof(magic) + sizeof(reserved) +
                             sizeof(tbl_version) + sizeof(n_frequencies_le) +
                             lms_data_size + table_size;

    assert(data_size <= UINT_MAX);

    status = backup_and_update_settings(s->dev, module, &settings);
    if (status != 0) {
        return status;
    }

    status = bladerf_get_loopback(s->dev, &loopback_backup);
    if (status != 0) {
        return status;
    }

    status = bladerf_lms_get_dc_cals(s->dev, &lms_dc_cals);
    if (status != 0) {
        goto out;
    }

    if (module == BLADERF_MODULE_RX) {
        image = bladerf_alloc_image(BLADERF_IMAGE_TYPE_RX_DC_CAL,
                                    0xffffffff, (unsigned int) data_size);
    } else {
        image = bladerf_alloc_image(BLADERF_IMAGE_TYPE_TX_DC_CAL,
                                    0xffffffff, (unsigned int) data_size);
    }

    if (image == NULL) {
        status = BLADERF_ERR_MEM;
        goto out;
    }

    status = bladerf_get_serial(s->dev, image->serial);
    if (status != 0) {
        goto out;
    }

    if (module == BLADERF_MODULE_RX) {
        status = bladerf_set_loopback(s->dev, BLADERF_LB_NONE);
        if (status != 0) {
            goto out;
        }
    }

    off = 0;

    memcpy(&image->data[off], &magic, sizeof(magic));
    off += sizeof(magic);

    memcpy(&image->data[off], &reserved, sizeof(reserved));
    off += sizeof(reserved);

    memcpy(&image->data[off], &tbl_version, sizeof(tbl_version));
    off += sizeof(tbl_version);

    memcpy(&image->data[off], &n_frequencies_le, sizeof(n_frequencies_le));
    off += sizeof(n_frequencies_le);

    image->data[off++] = (uint8_t)lms_dc_cals.lpf_tuning;
    image->data[off++] = (uint8_t)lms_dc_cals.tx_lpf_i;
    image->data[off++] = (uint8_t)lms_dc_cals.tx_lpf_q;
    image->data[off++] = (uint8_t)lms_dc_cals.rx_lpf_i;
    image->data[off++] = (uint8_t)lms_dc_cals.rx_lpf_q;
    image->data[off++] = (uint8_t)lms_dc_cals.dc_ref;
    image->data[off++] = (uint8_t)lms_dc_cals.rxvga2a_i;
    image->data[off++] = (uint8_t)lms_dc_cals.rxvga2a_q;
    image->data[off++] = (uint8_t)lms_dc_cals.rxvga2b_i;
    image->data[off++] = (uint8_t)lms_dc_cals.rxvga2b_q;

    putchar('\n');

    for (f = f_low; f <= f_high; f += f_inc) {
        const uint32_t frequency = HOST_TO_LE32((uint32_t)f);
        int16_t dc_i, dc_q;

        printf("  Calibrating @ %u Hz...", f);

        status = bladerf_set_frequency(s->dev, module, f);
        if (status != 0) {
            goto out;
        }

        if (module == BLADERF_MODULE_RX) {
            int16_t error_i, error_q;
            status = calibrate_dc_rx(s, &dc_i, &dc_q, &error_i, &error_q);
            printf("    I=%-4d (avg: %-4d), Q=%-4d (avg: %-4d)\r",
                    dc_i, error_i, dc_q, error_q);
        } else {
            float error_i, error_q;
            status = calibrate_dc_tx(s, &dc_i, &dc_q, &error_i, &error_q);
            printf("    I=%-4d (avg: %3.3f), Q=%-4d (avg: %3.3f)\r",
                    dc_i, error_i, dc_q, error_q);
        }

        if (status != 0) {
            goto out;
        }

        fflush(stdout);

        dc_i = HOST_TO_LE16(dc_i);
        dc_q = HOST_TO_LE16(dc_q);

        memcpy(&image->data[off], &frequency, sizeof(frequency));
        off += sizeof(frequency);

        memcpy(&image->data[off], &dc_i, sizeof(dc_i));
        off += sizeof(dc_i);

        memcpy(&image->data[off], &dc_q, sizeof(dc_q));
        off += sizeof(dc_q);
    }

    status = bladerf_image_write(image, filename);

    printf("\n  Done.\n\n");

out:
    retval = status;

    if (module == BLADERF_MODULE_RX) {
        status = bladerf_set_loopback(s->dev, loopback_backup);
        retval = first_error(retval, status);
    }

    status = bladerf_enable_module(s->dev, BLADERF_MODULE_RX, false);
    retval = first_error(retval, status);

    status = restore_settings(s->dev, module, &settings);
    retval = first_error(retval, status);

    bladerf_free_image(image);
    return retval;
}
Exemplo n.º 2
0
int calibrate_dc(struct cli_state *s, unsigned int ops)
{
    int retval = 0;
    int status = BLADERF_ERR_UNEXPECTED;
    struct settings rx_settings, tx_settings;
    bladerf_loopback loopback;
    int16_t dc_i, dc_q;

    if (IS_RX_CAL(ops)) {
        status = backup_and_update_settings(s->dev, BLADERF_MODULE_RX,
                                            &rx_settings);
        if (status != 0) {
            s->last_lib_error = status;
            return CLI_RET_LIBBLADERF;
        }
    }

    if (IS_TX_CAL(ops)) {
        status = backup_and_update_settings(s->dev, BLADERF_MODULE_TX,
                                            &tx_settings);
        if (status != 0) {
            s->last_lib_error = status;
            return CLI_RET_LIBBLADERF;
        }
    }

    status = bladerf_get_loopback(s->dev, &loopback);
    if (status != 0) {
        s->last_lib_error = status;
        return CLI_RET_LIBBLADERF;
    }

    if (IS_RX_CAL(ops)) {
        status = set_rx_dc(s->dev, 0, 0);
        if (status != 0) {
            goto error;
        }

        status = bladerf_enable_module(s->dev, BLADERF_MODULE_RX, true);
        if (status != 0) {
            goto error;
        }
    }

    if (IS_TX_CAL(ops)) {
        status = bladerf_enable_module(s->dev, BLADERF_MODULE_RX, true);
        if (status != 0) {
            goto error;
        }

        status = bladerf_set_loopback(s->dev, BLADERF_LB_BB_TXVGA1_RXVGA2);
        if (status != 0) {
            goto error;
        }

        status = bladerf_enable_module(s->dev, BLADERF_MODULE_TX, true);
        if (status != 0) {
            goto error;
        }

        status = dummy_tx(s->dev);
        if (status != 0) {
            goto error;
        }

        status = bladerf_enable_module(s->dev, BLADERF_MODULE_TX, false);
        if (status != 0) {
            goto error;
        }
    }

    status = bladerf_set_loopback(s->dev, BLADERF_LB_NONE);
    if (status != 0) {
        goto error;
    }

    putchar('\n');

    if (IS_CAL(CAL_DC_LMS_TUNING, ops)) {
        printf("  Calibrating LMS LPF tuning module...\n");
        status = bladerf_calibrate_dc(s->dev, BLADERF_DC_CAL_LPF_TUNING);
        if (status != 0) {
            goto error;
        } else {
            struct bladerf_lms_dc_cals dc_cals;
            status = bladerf_lms_get_dc_cals(s->dev, &dc_cals);
            if (status != 0) {
                goto error;
            }

            printf("    LPF tuning module: %d\n\n", dc_cals.lpf_tuning);
        }
    }

    if (IS_CAL(CAL_DC_LMS_TXLPF, ops)) {
        printf("  Calibrating LMS TX LPF modules...\n");
        status = bladerf_calibrate_dc(s->dev, BLADERF_DC_CAL_TX_LPF);
        if (status != 0) {
            goto error;
        } else {
            struct bladerf_lms_dc_cals dc_cals;
            status = bladerf_lms_get_dc_cals(s->dev, &dc_cals);
            if (status != 0) {
                goto error;
            }

            printf("    TX LPF I filter: %d\n", dc_cals.tx_lpf_i);
            printf("    TX LPF Q filter: %d\n\n", dc_cals.tx_lpf_q);
        }
    }

    if (IS_CAL(CAL_DC_LMS_RXLPF, ops)) {
        printf("  Calibrating LMS RX LPF modules...\n");
        status = bladerf_calibrate_dc(s->dev, BLADERF_DC_CAL_RX_LPF);
        if (status != 0) {
            goto error;
        } else {
            struct bladerf_lms_dc_cals dc_cals;
            status = bladerf_lms_get_dc_cals(s->dev, &dc_cals);
            if (status != 0) {
                goto error;
            }

            printf("    RX LPF I filter: %d\n", dc_cals.rx_lpf_i);
            printf("    RX LPF Q filter: %d\n\n", dc_cals.rx_lpf_q);
        }
    }

    if (IS_CAL(CAL_DC_LMS_RXVGA2, ops)) {
        printf("  Calibrating LMS RXVGA2 modules...\n");
        status = bladerf_calibrate_dc(s->dev, BLADERF_DC_CAL_RXVGA2);
        if (status != 0) {
            goto error;
        } else {
            struct bladerf_lms_dc_cals dc_cals;
            status = bladerf_lms_get_dc_cals(s->dev, &dc_cals);
            if (status != 0) {
                goto error;
            }

            printf("    RX VGA2 DC reference module: %d\n", dc_cals.dc_ref);
            printf("    RX VGA2 stage 1, I channel: %d\n", dc_cals.rxvga2a_i);
            printf("    RX VGA2 stage 1, Q channel: %d\n", dc_cals.rxvga2a_q);
            printf("    RX VGA2 stage 2, I channel: %d\n", dc_cals.rxvga2b_i);
            printf("    RX VGA2 stage 2, Q channel: %d\n\n", dc_cals.rxvga2b_q);
        }
    }


    if (IS_CAL(CAL_DC_AUTO_RX, ops)) {
        int16_t avg_i, avg_q;
        status = calibrate_dc_rx(s, &dc_i, &dc_q, &avg_i, &avg_q);
        if (status != 0) {
            goto error;
        } else {
            printf("  RX DC I Setting = %d, error ~= %d\n", dc_i, avg_i);
            printf("  RX DC Q Setting = %d, error ~= %d\n\n", dc_q, avg_q);
        }
    }

    if (IS_CAL(CAL_DC_AUTO_TX, ops)) {
        float error_i, error_q;
        status = calibrate_dc_tx(s, &dc_i, &dc_q, &error_i, &error_q);
        if (status != 0) {
            goto error;
        } else {
            printf("  TX DC I Setting = %d, error ~= %f\n", dc_i, error_i);
            printf("  TX DC Q Setting = %d, error ~= %f\n\n", dc_q, error_q);
        }
    }

error:
    retval = status;

    if (IS_RX_CAL(ops)) {
        status = restore_settings(s->dev, BLADERF_MODULE_RX, &rx_settings);
        retval = first_error(retval, status);
    }


    if (IS_TX_CAL(ops)) {
        status = restore_settings(s->dev, BLADERF_MODULE_TX, &tx_settings);
        retval = first_error(retval, status);
    }

    status = bladerf_enable_module(s->dev, BLADERF_MODULE_RX, false);
    retval = first_error(retval, status);

    status = bladerf_enable_module(s->dev, BLADERF_MODULE_TX, false);
    retval = first_error(retval, status);

    status = bladerf_set_loopback(s->dev, loopback);
    retval = first_error(retval, status);

    if (retval != 0) {
        s->last_lib_error = retval;
        retval = CLI_RET_LIBBLADERF;
    }

    return retval;
}
Exemplo n.º 3
0
/* See libbladeRF's dc_cal_table.c for the packed table data format */
int calibrate_dc_gen_tbl(struct cli_state *s, bladerf_module module,
                         const char *filename, unsigned int f_low,
                         unsigned f_inc, unsigned int f_high)
{
    int retval, status;
    size_t off;
    struct bladerf_lms_dc_cals lms_dc_cals;
    unsigned int f;
    struct settings settings;
    bladerf_loopback loopback_backup;
    struct bladerf_image *image = NULL;
    FILE *write_check;

    const uint16_t magic = HOST_TO_LE16(0x1ab1);
    const uint32_t reserved = HOST_TO_LE32(0x00000000);
    const uint32_t tbl_version = HOST_TO_LE32(0x00000001);

    const size_t lms_data_size = 10; /* 10 uint8_t register values */

    const uint32_t n_frequencies = (f_high - f_low) / f_inc + 1;
    const uint32_t n_frequencies_le = HOST_TO_LE32(n_frequencies);

    const size_t entry_size = sizeof(uint32_t) +   /* Frequency */
                              2 * sizeof(int16_t); /* DC I and Q valus */

    const size_t table_size = n_frequencies * entry_size;

    const size_t data_size = sizeof(magic) + sizeof(reserved) +
                             sizeof(tbl_version) + sizeof(n_frequencies_le) +
                             lms_data_size + table_size;

    assert(data_size <= UINT_MAX);

    /* This operation may take a bit of time, so let's make sure we
     * actually have write access before kicking things off.  Note that
     * access is checked later when the file is actually written.
     */
    write_check = fopen(filename, "wb");
    if (write_check == NULL) {
        if (errno == EACCES) {
            return BLADERF_ERR_PERMISSION;
        } else {
            return BLADERF_ERR_IO;
        }
    } else {
        fclose(write_check);

        /* Not much we care to do if this fails. Throw away the return value
         * to make this explicit to our static analysis tools */
        (void) remove(filename);
    }

    status = backup_and_update_settings(s->dev, module, &settings);
    if (status != 0) {
        return status;
    }

    status = bladerf_get_loopback(s->dev, &loopback_backup);
    if (status != 0) {
        return status;
    }

    status = bladerf_lms_get_dc_cals(s->dev, &lms_dc_cals);
    if (status != 0) {
        goto out;
    }

    if (module == BLADERF_MODULE_RX) {
        image = bladerf_alloc_image(BLADERF_IMAGE_TYPE_RX_DC_CAL,
                                    0xffffffff, (unsigned int) data_size);
    } else {
        image = bladerf_alloc_image(BLADERF_IMAGE_TYPE_TX_DC_CAL,
                                    0xffffffff, (unsigned int) data_size);
    }

    if (image == NULL) {
        status = BLADERF_ERR_MEM;
        goto out;
    }

    status = bladerf_get_serial(s->dev, image->serial);
    if (status != 0) {
        goto out;
    }

    if (module == BLADERF_MODULE_RX) {
        status = bladerf_set_loopback(s->dev, BLADERF_LB_NONE);
        if (status != 0) {
            goto out;
        }
    }

    off = 0;

    memcpy(&image->data[off], &magic, sizeof(magic));
    off += sizeof(magic);

    memcpy(&image->data[off], &reserved, sizeof(reserved));
    off += sizeof(reserved);

    memcpy(&image->data[off], &tbl_version, sizeof(tbl_version));
    off += sizeof(tbl_version);

    memcpy(&image->data[off], &n_frequencies_le, sizeof(n_frequencies_le));
    off += sizeof(n_frequencies_le);

    image->data[off++] = (uint8_t)lms_dc_cals.lpf_tuning;
    image->data[off++] = (uint8_t)lms_dc_cals.tx_lpf_i;
    image->data[off++] = (uint8_t)lms_dc_cals.tx_lpf_q;
    image->data[off++] = (uint8_t)lms_dc_cals.rx_lpf_i;
    image->data[off++] = (uint8_t)lms_dc_cals.rx_lpf_q;
    image->data[off++] = (uint8_t)lms_dc_cals.dc_ref;
    image->data[off++] = (uint8_t)lms_dc_cals.rxvga2a_i;
    image->data[off++] = (uint8_t)lms_dc_cals.rxvga2a_q;
    image->data[off++] = (uint8_t)lms_dc_cals.rxvga2b_i;
    image->data[off++] = (uint8_t)lms_dc_cals.rxvga2b_q;

    putchar('\n');

    for (f = f_low; f <= f_high; f += f_inc) {
        const uint32_t frequency = HOST_TO_LE32((uint32_t)f);
        int16_t dc_i, dc_q;

        printf("  Calibrating @ %u Hz...", f);

        status = bladerf_set_frequency(s->dev, module, f);
        if (status != 0) {
            goto out;
        }

        if (module == BLADERF_MODULE_RX) {
            int16_t error_i, error_q;
            status = calibrate_dc_rx(s, &dc_i, &dc_q, &error_i, &error_q);
            printf("    I=%-4d (avg: %-4d), Q=%-4d (avg: %-4d)\r",
                    dc_i, error_i, dc_q, error_q);
        } else {
            float error_i, error_q;
            status = calibrate_dc_tx(s, &dc_i, &dc_q, &error_i, &error_q);
            printf("    I=%-4d (avg: %3.3f), Q=%-4d (avg: %3.3f)\r",
                    dc_i, error_i, dc_q, error_q);
        }

        if (status != 0) {
            goto out;
        }

        fflush(stdout);

        dc_i = HOST_TO_LE16(dc_i);
        dc_q = HOST_TO_LE16(dc_q);

        memcpy(&image->data[off], &frequency, sizeof(frequency));
        off += sizeof(frequency);

        memcpy(&image->data[off], &dc_i, sizeof(dc_i));
        off += sizeof(dc_i);

        memcpy(&image->data[off], &dc_q, sizeof(dc_q));
        off += sizeof(dc_q);
    }

    status = bladerf_image_write(image, filename);

    printf("\n  Done.\n\n");

out:
    retval = status;

    if (module == BLADERF_MODULE_RX) {
        status = bladerf_set_loopback(s->dev, loopback_backup);
        retval = first_error(retval, status);
    }

    status = bladerf_enable_module(s->dev, BLADERF_MODULE_RX, false);
    retval = first_error(retval, status);

    status = restore_settings(s->dev, module, &settings);
    retval = first_error(retval, status);

    bladerf_free_image(image);
    return retval;
}