Exemplo n.º 1
0
RTDECL(int) RTMpOnAll(PFNRTMPWORKER pfnWorker, void *pvUser1, void *pvUser2)
{
    RTMPARGS Args;
    Args.pfnWorker = pfnWorker;
    Args.pvUser1 = pvUser1;
    Args.pvUser2 = pvUser2;
    Args.idCpu = NIL_RTCPUID;
    Args.cHits = 0;
    // XXX: is _sync needed ?
    call_all_cpus_sync(rtmpOnAllHaikuWrapper, &Args);
    return VINF_SUCCESS;
}
Exemplo n.º 2
0
RTDECL(int) RTMpOnOthers(PFNRTMPWORKER pfnWorker, void *pvUser1, void *pvUser2)
{
    /* Will panic if no rendezvousing cpus, so check up front. */
    if (RTMpGetOnlineCount() > 1)
    {
        RTMPARGS    Args;

        Args.pfnWorker = pfnWorker;
        Args.pvUser1 = pvUser1;
        Args.pvUser2 = pvUser2;
        Args.idCpu = RTMpCpuId();
        Args.cHits = 0;
        // XXX: is _sync needed ?
        call_all_cpus_sync(rtmpOnOthersHaikuWrapper, &Args);
    }
    return VINF_SUCCESS;
}
Exemplo n.º 3
0
RTDECL(int) RTMpOnSpecific(RTCPUID idCpu, PFNRTMPWORKER pfnWorker, void *pvUser1, void *pvUser2)
{
    RTMPARGS    Args;

    /* Will panic if no rendezvousing cpus, so make sure the cpu is online. */
    if (!RTMpIsCpuOnline(idCpu))
        return VERR_CPU_NOT_FOUND;

    Args.pfnWorker = pfnWorker;
    Args.pvUser1 = pvUser1;
    Args.pvUser2 = pvUser2;
    Args.idCpu = idCpu;
    Args.cHits = 0;
   // XXX: is _sync needed ?
    call_all_cpus_sync(rtmpOnSpecificHaikuWrapper, &Args);
    return Args.cHits == 1
         ? VINF_SUCCESS
         : VERR_CPU_NOT_FOUND;
}
Exemplo n.º 4
0
status_t
x86_initialize_commpage_syscall(void)
{
	void* syscallCode = (void *)&_user_syscall_int;
	void* syscallCodeEnd = &_user_syscall_int_end;

	// check syscall
	if (all_cpus_have_feature(FEATURE_COMMON, IA32_FEATURE_SEP)
		&& !(gCPU[0].arch.family == 6 && gCPU[0].arch.model < 3
			&& gCPU[0].arch.stepping < 3)) {
		// Intel sysenter/sysexit
		dprintf("initialize_commpage_syscall(): sysenter/sysexit supported\n");

		// the code to be used in userland
		syscallCode = (void *)&_user_syscall_sysenter;
		syscallCodeEnd = &_user_syscall_sysenter_end;

		// tell all CPUs to init their sysenter/sysexit related registers
		call_all_cpus_sync(&init_intel_syscall_registers, NULL);
	} else if (all_cpus_have_feature(FEATURE_EXT_AMD,
			IA32_FEATURE_AMD_EXT_SYSCALL)) {
		// AMD syscall/sysret
		dprintf("initialize_commpage_syscall(): syscall/sysret supported "
			"-- not yet by Antares, though");
	} else {
		// no special syscall support
		dprintf("initialize_commpage_syscall(): no special syscall support\n");
	}

	// fill in the table entry
	size_t len = (size_t)((addr_t)syscallCodeEnd - (addr_t)syscallCode);
	fill_commpage_entry(COMMPAGE_ENTRY_X86_SYSCALL, syscallCode, len);

	// add syscall to the commpage image
	image_id image = get_commpage_image();
	elf_add_memory_image_symbol(image, "commpage_syscall",
		((addr_t*)USER_COMMPAGE_ADDR)[COMMPAGE_ENTRY_X86_SYSCALL], len,
		B_SYMBOL_TYPE_TEXT);

	return B_OK;
}
Exemplo n.º 5
0
extern "C" int
_start(kernel_args *bootKernelArgs, int currentCPU)
{
	if (bootKernelArgs->kernel_args_size != sizeof(kernel_args)
		|| bootKernelArgs->version != CURRENT_KERNEL_ARGS_VERSION) {
		// This is something we cannot handle right now - release kernels
		// should always be able to handle the kernel_args of earlier
		// released kernels.
		debug_early_boot_message("Version mismatch between boot loader and "
			"kernel!\n");
		return -1;
	}

	smp_set_num_cpus(bootKernelArgs->num_cpus);

	// wait for all the cpus to get here
	smp_cpu_rendezvous(&sCpuRendezvous);

	// the passed in kernel args are in a non-allocated range of memory
	if (currentCPU == 0)
		memcpy(&sKernelArgs, bootKernelArgs, sizeof(kernel_args));

	smp_cpu_rendezvous(&sCpuRendezvous2);

	// do any pre-booting cpu config
	cpu_preboot_init_percpu(&sKernelArgs, currentCPU);
	thread_preboot_init_percpu(&sKernelArgs, currentCPU);

	// if we're not a boot cpu, spin here until someone wakes us up
	if (smp_trap_non_boot_cpus(currentCPU, &sCpuRendezvous3)) {
		// init platform
		arch_platform_init(&sKernelArgs);

		// setup debug output
		debug_init(&sKernelArgs);
		set_dprintf_enabled(true);
		dprintf("Welcome to kernel debugger output!\n");
		dprintf("Haiku revision: %s\n", get_haiku_revision());

		// init modules
		TRACE("init CPU\n");
		cpu_init(&sKernelArgs);
		cpu_init_percpu(&sKernelArgs, currentCPU);
		TRACE("init interrupts\n");
		int_init(&sKernelArgs);

		TRACE("init VM\n");
		vm_init(&sKernelArgs);
			// Before vm_init_post_sem() is called, we have to make sure that
			// the boot loader allocated region is not used anymore
		boot_item_init();
		debug_init_post_vm(&sKernelArgs);
		low_resource_manager_init();

		// now we can use the heap and create areas
		arch_platform_init_post_vm(&sKernelArgs);
		lock_debug_init();
		TRACE("init driver_settings\n");
		driver_settings_init(&sKernelArgs);
		debug_init_post_settings(&sKernelArgs);
		TRACE("init notification services\n");
		notifications_init();
		TRACE("init teams\n");
		team_init(&sKernelArgs);
		TRACE("init ELF loader\n");
		elf_init(&sKernelArgs);
		TRACE("init modules\n");
		module_init(&sKernelArgs);
		TRACE("init semaphores\n");
		haiku_sem_init(&sKernelArgs);
		TRACE("init interrupts post vm\n");
		int_init_post_vm(&sKernelArgs);
		cpu_init_post_vm(&sKernelArgs);
		commpage_init();
		call_all_cpus_sync(non_boot_cpu_init, &sKernelArgs);

		TRACE("init system info\n");
		system_info_init(&sKernelArgs);

		TRACE("init SMP\n");
		smp_init(&sKernelArgs);
		cpu_build_topology_tree();
		TRACE("init timer\n");
		timer_init(&sKernelArgs);
		TRACE("init real time clock\n");
		rtc_init(&sKernelArgs);
		timer_init_post_rtc();

		TRACE("init condition variables\n");
		condition_variable_init();

		// now we can create and use semaphores
		TRACE("init VM semaphores\n");
		vm_init_post_sem(&sKernelArgs);
		TRACE("init generic syscall\n");
		generic_syscall_init();
		smp_init_post_generic_syscalls();
		TRACE("init scheduler\n");
		scheduler_init();
		TRACE("init threads\n");
		thread_init(&sKernelArgs);
		TRACE("init kernel daemons\n");
		kernel_daemon_init();
		arch_platform_init_post_thread(&sKernelArgs);

		TRACE("init I/O interrupts\n");
		int_init_io(&sKernelArgs);
		TRACE("init VM threads\n");
		vm_init_post_thread(&sKernelArgs);
		low_resource_manager_init_post_thread();
		TRACE("init DPC\n");
		dpc_init();
		TRACE("init VFS\n");
		vfs_init(&sKernelArgs);
#if ENABLE_SWAP_SUPPORT
		TRACE("init swap support\n");
		swap_init();
#endif
		TRACE("init POSIX semaphores\n");
		realtime_sem_init();
		xsi_sem_init();
		xsi_msg_init();

		// Start a thread to finish initializing the rest of the system. Note,
		// it won't be scheduled before calling scheduler_start() (on any CPU).
		TRACE("spawning main2 thread\n");
		thread_id thread = spawn_kernel_thread(&main2, "main2",
			B_NORMAL_PRIORITY, NULL);
		resume_thread(thread);

		// We're ready to start the scheduler and enable interrupts on all CPUs.
		scheduler_enable_scheduling();

		// bring up the AP cpus in a lock step fashion
		TRACE("waking up AP cpus\n");
		sCpuRendezvous = sCpuRendezvous2 = 0;
		smp_wake_up_non_boot_cpus();
		smp_cpu_rendezvous(&sCpuRendezvous); // wait until they're booted

		// exit the kernel startup phase (mutexes, etc work from now on out)
		TRACE("exiting kernel startup\n");
		gKernelStartup = false;

		smp_cpu_rendezvous(&sCpuRendezvous2);
			// release the AP cpus to go enter the scheduler

		TRACE("starting scheduler on cpu 0 and enabling interrupts\n");
		scheduler_start();
		enable_interrupts();
	} else {
		// lets make sure we're in sync with the main cpu
		// the boot processor has probably been sending us
		// tlb sync messages all along the way, but we've
		// been ignoring them
		arch_cpu_global_TLB_invalidate();

		// this is run for each non boot processor after they've been set loose
		smp_per_cpu_init(&sKernelArgs, currentCPU);

		// wait for all other AP cpus to get to this point
		smp_cpu_rendezvous(&sCpuRendezvous);
		smp_cpu_rendezvous(&sCpuRendezvous2);

		// welcome to the machine
		scheduler_start();
		enable_interrupts();
	}

#ifdef TRACE_BOOT
	// We disable interrupts for this dprintf(), since otherwise dprintf()
	// would acquires a mutex, which is something we must not do in an idle
	// thread, or otherwise the scheduler would be seriously unhappy.
	disable_interrupts();
	TRACE("main: done... begin idle loop on cpu %d\n", currentCPU);
	enable_interrupts();
#endif

	for (;;)
		cpu_idle();

	return 0;
}