Exemplo n.º 1
0
static char* test_ram2()
{
    // --------------
    // Setup
    // --------------
    CircularBuffer* pc_input    = cbuffer_new();
    CircularBuffer* pc_output   = cbuffer_new();
    CircularBuffer* orsc_input  = cbuffer_new();
    CircularBuffer* orsc_output = cbuffer_new();

    VMEStream *pc_stream = vmestream_initialize_heap(pc_input, pc_output, 2);

    VMEStream *orsc_stream = malloc(sizeof(VMEStream));
    orsc_stream->input              = orsc_input;
    orsc_stream->output             = orsc_output;
    orsc_stream->local_send_size    = pc_stream->remote_send_size;
    orsc_stream->local_recv_size    = pc_stream->remote_recv_size;
    orsc_stream->remote_send_size   = pc_stream->local_send_size;
    orsc_stream->remote_recv_size   = pc_stream->local_recv_size;
    orsc_stream->recv_data          = pc_stream->send_data;
    orsc_stream->send_data          = pc_stream->recv_data;
    orsc_stream->MAXRAM             = pc_stream->MAXRAM;


    cbuffer_push_back(pc_input, 0xDEADBEEF);
    cbuffer_push_back(orsc_input, 0xBEEFCAFE);

    vmestream_transfer_data(pc_stream);

    vmestream_transfer_data(orsc_stream);
    vmestream_transfer_data(pc_stream);

    mu_assert("Error: pc_input not empty", cbuffer_size(pc_input) == 0);
    mu_assert("Error: orsc_input not empty", cbuffer_size(orsc_input) == 0);

    mu_assert("Error: orsc_output.pop != DEADBEEF", cbuffer_pop_front(orsc_output));
    mu_assert("Error: pc_output.pop != BEEFCAFE", cbuffer_pop_front(pc_output));

    mu_assert("Error: pc_output not empty", cbuffer_size(pc_output) == 0);
    mu_assert("Error: orsc_output not empty", cbuffer_size(orsc_output) == 0);

    // --------------
    // Tear-Down
    // --------------
    vmestream_destroy_heap(pc_stream);
    free(orsc_stream);
    cbuffer_free(pc_input);
    cbuffer_free(orsc_input);
    cbuffer_free(pc_output);
    cbuffer_free(orsc_output);

    return 0;
}
Exemplo n.º 2
0
/**
 * Push less data to the buffers than we have RAM available
 */
static char *test_ram2()
{
    // local application buffers
    CircularBuffer *tx1 = cbuffer_new();
    CircularBuffer *rx1 = cbuffer_new();
    CircularBuffer *tx2 = cbuffer_new();
    CircularBuffer *rx2 = cbuffer_new();

    VMEStream *test1 = vmestream_initialize(tx1, rx1, 2);
    VMEStream *test2 = malloc(sizeof(VMEStream));
    test2->input = tx2;
    test2->output = rx2;

    test2->rx_size = test1->tx_size;
    test2->tx_size = test1->rx_size;
    test2->rx_data = test1->tx_data;
    test2->tx_data = test1->rx_data;
    test2->MAXRAM  = test1->MAXRAM;

    // place only one word on the buffers
    cbuffer_push_back(tx1, 0xDEADBEEF);
    // put some output data on host #2
    cbuffer_push_back(tx2, 0xBEEFCAFE);

    vmestream_transfer_data(test1);
    vmestream_transfer_data(test2);
    vmestream_transfer_data(test1);

    mu_assert("Error: tx1 not empty", 0 == cbuffer_size(tx1));
    mu_assert("Error: tx2 not empty", 0 == cbuffer_size(tx2));

    mu_assert("Error: 0xDEADBEEF != rx2.pop", 0xDEADBEEF == cbuffer_pop_front(rx2));
    mu_assert("Error: 0xBEEFCAFE != rx1.pop", 0xBEEFCAFE == cbuffer_pop_front(rx1));

    mu_assert("Error: rx2 not empty", 0 == cbuffer_size(rx2));
    mu_assert("Error: rx1 not empty", 0 == cbuffer_size(rx1));


    // free memory
    vmestream_destroy(test1);
    free(test2);
    cbuffer_free(tx1);
    cbuffer_free(rx1);
    cbuffer_free(tx2);
    cbuffer_free(rx2);

    return 0;
}
Exemplo n.º 3
0
static char* test_cbuffer_transfer_data(void) {
  CircularBuffer* src = cbuffer_new();
  CircularBuffer* dst = cbuffer_new();

  for (int i = 0; i < 200; ++i) {
    cbuffer_push_back(src, i);
  }
  mu_assert_eq("Src buffer size", cbuffer_size(src), 200);
  mu_assert_eq("Dst buffer size", cbuffer_size(dst), 0);

  // transfer data from src -> dst
  cbuffer_transfer_data(src, dst);

  mu_assert_eq("Src buffer size post transfer",
      cbuffer_size(src), 0);
  mu_assert_eq("Dst buffer size post transfer",
      cbuffer_size(dst), 200);

  // check content
  for (int i = 0; i < 200; ++i) {
    mu_assert_eq("Dst content",
        cbuffer_pop_front(dst), i);
  }

  cbuffer_free(src);
  cbuffer_free(dst);

  return 0;
}
Exemplo n.º 4
0
int main() {
  xil_printf("Master SPI oRSC echo test\n");
  // initialize stdout.
  init_platform();

  tx_buffer = cbuffer_new();
  rx_buffer = cbuffer_new();

  vme_stream = vmestream_initialize_mem(
          rx_buffer, tx_buffer, 
          (uint32_t*)ORSC_2_PC_SIZE,
          (uint32_t*)PC_2_ORSC_SIZE,
          (uint32_t*)ORSC_2_PC_DATA,
          (uint32_t*)PC_2_ORSC_DATA,
          VMERAMSIZE);

  //printf("Master SPI oRSC echo test\n");

  while (1) {
      // transfer data
      vmestream_transfer_data(vme_stream);
      // now echo the data
      while (cbuffer_size(rx_buffer) && cbuffer_freespace(tx_buffer)) {
          cbuffer_push_back(tx_buffer, cbuffer_pop_front(rx_buffer));
      }
  }

  return 0;
}
Exemplo n.º 5
0
void RecvHandler(void *CallBackRef, unsigned int EventData) {
  LOG_DEBUG("RecvHandler %x data %x\n", EventData, rx_tmp_buffer);
  if (EventData != sizeof(uint32_t)) {
    LOG_DEBUG("ERROR: did not receive a whole word!\n");
  }
  cbuffer_push_back(rx_buffer, rx_tmp_buffer);
  XUartLite_Recv(&UartLite, (u8*)&rx_tmp_buffer, sizeof(uint32_t));
}
Exemplo n.º 6
0
static char* test_cbuffer_push_back(void) {
  CircularBuffer* mybuf = cbuffer_new();
  // put us at the end of the buffer
  mybuf->pos = IO_BUFFER_SIZE - 2;
  mybuf->tail = IO_BUFFER_SIZE - 2;
  cbuffer_push_back(mybuf, 0xDEADBEEF);
  cbuffer_push_back(mybuf, 0xBEEFFACE);
  cbuffer_push_back(mybuf, 0xDEADFACE);

  mu_assert_eq("size", cbuffer_size(mybuf), 3);
  mu_assert_eq("pos", mybuf->pos, IO_BUFFER_SIZE-2);

  mu_assert_eq("item0", mybuf->data[mybuf->pos], 0xDEADBEEF);
  mu_assert_eq("item1", mybuf->data[mybuf->pos + 1], 0xBEEFFACE);
  mu_assert_eq("item2", mybuf->data[0], 0xDEADFACE);

  cbuffer_free(mybuf);

  return 0;
}
Exemplo n.º 7
0
static char* test_cbuffer_freespace(void) {
  CircularBuffer* mybuf = cbuffer_new();
  mybuf->tail = IO_BUFFER_SIZE - 5;
  mu_assert_eq("freespace", cbuffer_freespace(mybuf), 4);
  mu_assert_eq("size", cbuffer_size(mybuf), IO_BUFFER_SIZE - 5);
  for (int i = 1; i < 5; ++i) {
    cbuffer_push_back(mybuf, i);
    mu_assert_eq("freespace", cbuffer_freespace(mybuf), 4 - i);
  }

  cbuffer_free(mybuf);

  return 0;
}
Exemplo n.º 8
0
static char* test_cbuffer_size(void) {
  CircularBuffer* mybuf = cbuffer_new();
  mybuf->pos = IO_BUFFER_SIZE - 5;
  mybuf->tail = IO_BUFFER_SIZE - 5;
  mu_assert_eq("size0", cbuffer_size(mybuf), 0);
  for (int i = 0; i < 15; ++i) {
    cbuffer_push_back(mybuf, i);
    mu_assert_eq("size", cbuffer_size(mybuf), i + 1);
  }

  cbuffer_free(mybuf);

  return 0;
}
Exemplo n.º 9
0
static char* test_cbuffer_copy(void) {
  CircularBuffer* mybuf = cbuffer_new();
  mu_assert_eq("size", cbuffer_size(mybuf), 0);
  mu_assert_eq("pos", mybuf->pos, 0);
  mu_assert_eq("tail", mybuf->tail, 0);
  for (uint32_t i = 0; i < IO_BUFFER_SIZE - 2; ++i) {
    cbuffer_push_back(mybuf, i);
  }
  mu_assert_eq("tail", mybuf->tail, IO_BUFFER_SIZE - 2);
  CircularBuffer* copy = cbuffer_copy(mybuf);
  mu_assert_eq("content", memcmp(mybuf->data, copy->data, 
        IO_BUFFER_SIZE * sizeof(uint32_t)), 0);
  mu_assert_eq("pos copy", mybuf->pos, copy->pos);
  mu_assert_eq("tail copy", mybuf->tail, copy->tail);

  cbuffer_free(mybuf);
  cbuffer_free(copy);

  return 0;
}
Exemplo n.º 10
0
/*
 * Make sure cbuffer_fd_read handles the edge case where cbuffer->tail returns
 * to the front of buffer->data
 */
static char* test_cbuffer_fd_read_edge(void) {
  int pipefd[2];
  pipe(pipefd);

  fcntl(pipefd[0], F_SETFL, fcntl(pipefd[0], F_GETFL) | O_NONBLOCK);

  int in = pipefd[1];
  int out = pipefd[0];

  CircularBuffer* mybuf = cbuffer_new();

  // completely fill buffer
  while (cbuffer_freespace(mybuf) > 0) {
    mu_assert_eq("mybuf overflow", cbuffer_push_back(mybuf, 0xDEADBEEF), 0);
  }
  mu_assert_eq("mybuf still has free space", cbuffer_freespace(mybuf), 0);

  // clear a single space in the cbuffer
  // free space should be at the front of cbuffer->data
  cbuffer_deletefront(mybuf, 1);

  uint32_t inbuf[] = {0xCAFEBABE};
  write(in, inbuf, sizeof(uint32_t));

  // read a single word into the free slot in the buffer
  mu_assert_eq("Could not read data", cbuffer_read_fd(mybuf, out, 1), 1);

  // check the content of the cbuffer
  while (cbuffer_size(mybuf) > 1) {
    mu_assert_eq("Content should be 0xDEADBEEF",
        cbuffer_pop_front(mybuf), 0xDEADBEEF);
  }
  mu_assert_eq("Content should be 0xCAFEBABE",
      cbuffer_pop_front(mybuf), 0xCAFEBABE);

  cbuffer_free(mybuf);
  return 0;
}
Exemplo n.º 11
0
static char* test_cbuffer_fd_full(void) {
  // make sure we can stop reading if our read buffer is full
  // make pipes 
  int pipefd[2];
  pipe(pipefd);

  // make txpipe nonblocking, so we can check if it's empty.
  fcntl(pipefd[0], F_SETFL, fcntl(pipefd[0], F_GETFL) | O_NONBLOCK);

  int in = pipefd[1];
  int out = pipefd[0];

  CircularBuffer* frombuf = cbuffer_new();
  for (int i = 0; i < 200; ++i) {
    cbuffer_push_back(frombuf, i);
  }
  mu_assert_eq("from size", cbuffer_size(frombuf), 200);

  CircularBuffer* tobuf = cbuffer_new();
  tobuf->pos = IO_BUFFER_SIZE - 100;
  tobuf->tail = IO_BUFFER_SIZE - 100;

  ssize_t written = cbuffer_write_fd(frombuf, in, 200);
  mu_assert_eq("wrote to pipe", written, 200);
  mu_assert_eq("from size after", cbuffer_size(frombuf), 0);
  tobuf->tail += IO_BUFFER_SIZE - 100;
  mu_assert_eq("to freespace", cbuffer_freespace(tobuf), 99);
  ssize_t read = cbuffer_read_fd(tobuf, out, 200);
  ssize_t exp = 99;
  mu_assert_eq("read from pipe", (int)read, (int)exp);

  cbuffer_free(frombuf);
  cbuffer_free(tobuf);

  return 0;
}
Exemplo n.º 12
0
static char* test_cbuffer_fd_features(void) {
  // make pipes 
  int pipefd[2];
  pipe(pipefd);

  // make txpipe nonblocking, so we can check if it's empty.
  fcntl(pipefd[0], F_SETFL, fcntl(pipefd[0], F_GETFL) | O_NONBLOCK);

  int in = pipefd[1];
  int out = pipefd[0];

  CircularBuffer* frombuf = cbuffer_new();
  for (int i = 0; i < 200; ++i) {
    cbuffer_push_back(frombuf, i);
  }
  mu_assert_eq("from size", cbuffer_size(frombuf), 200);

  CircularBuffer* tobuf = cbuffer_new();
  tobuf->pos = IO_BUFFER_SIZE - 100;
  tobuf->tail = IO_BUFFER_SIZE - 100;

  ssize_t written = cbuffer_write_fd(frombuf, in, 200);
  mu_assert_eq("wrote to pipe", written, 200);
  mu_assert_eq("from size after", cbuffer_size(frombuf), 0);
  ssize_t read = cbuffer_read_fd(tobuf, out, 200);
  mu_assert_eq("read from pipe", read, 200);

  for (int i = 0; i < 200; ++i) {
    mu_assert_eq("fd closure value", cbuffer_value_at(tobuf, i), i);
  }

  cbuffer_free(frombuf);
  cbuffer_free(tobuf);

  return 0;
}
Exemplo n.º 13
0
int main() {

  xil_printf("Master SPI oRSC echo test\n");

  // initialize stdout.
  init_platform();

  tx_buffer = cbuffer_new();
  rx_buffer = cbuffer_new();

  spi_stream = spi_stream_init(
      tx_buffer, rx_buffer, 
      DoSpiTransfer, // callback which triggers a SPI transfer
      0);

  int Status;
  XSpi_Config *ConfigPtr;	/* Pointer to Configuration data */

  /*
   * Initialize the SPI driver so that it is  ready to use.
   */
  ConfigPtr = XSpi_LookupConfig(SPI_DEVICE_ID);
  if (ConfigPtr == NULL) {
    xil_printf ("Error: could not lookup SPI configuration\n");
    return XST_DEVICE_NOT_FOUND;
  }

  Status = XSpi_CfgInitialize(&SpiInstance, ConfigPtr,
      ConfigPtr->BaseAddress);
  if (Status != XST_SUCCESS) {
    xil_printf("Error: could not initialize the SPI device\n");
    return XST_FAILURE;
  }

  Status = XSpi_SelfTest(&SpiInstance);
  if (Status != XST_SUCCESS) {
    xil_printf("Error: The SPI self test failed.\n");
    return XST_FAILURE;
  }

  /*
   * Connect the Spi device to the interrupt subsystem such that
   * interrupts can occur. This function is application specific.
   */
  Status = SpiSetupIntrSystem(&IntcInstance, &SpiInstance, SPI_IRPT_INTR);
  if (Status != XST_SUCCESS) {
    xil_printf("Error: Could not setup interrupt system.\n");
    return XST_FAILURE;
  }

  /*
   * Set the Spi device as a master.
   */
  Status = XSpi_SetOptions(&SpiInstance, XSP_MASTER_OPTION);
  if (Status != XST_SUCCESS) {
    xil_printf("Error: Could not set as master\n");
    return XST_FAILURE;
  }

  // Go!
  XSpi_Start(&SpiInstance);

  // Note: to disable interrupt, do: XIntc_Disconnect(&IntcInstance,
  // SPI_IRPT_INTR);

  u32 expected_rx = 0;
  u32 current_tx = 0;

  while (1) {
    // fill up the transmit buffer
    while (cbuffer_freespace(tx_buffer)) {
      cbuffer_push_back(tx_buffer, current_tx++);
    }
    // check to make sure the received buffer is what we expect
    while (cbuffer_size(rx_buffer)) {
      u32 front = cbuffer_value_at(rx_buffer, 0);
      if (front != expected_rx) {
        //xil_printf("Error: expected %lx, got %lx!\n", expected_rx, front);
        xil_printf("Error: data value\n");
      }
      expected_rx++;
      cbuffer_deletefront(rx_buffer, 1);
    }
  }

  return 0;
}
Exemplo n.º 14
0
int main(void) {

  LOG_INFO("UART CTP FE echo test\n");

  init_platform();

  tx_buffer = cbuffer_new();
  rx_buffer = cbuffer_new();

  int Status;
  u16 DeviceId = UARTLITE_DEVICE_ID;     

  /*
   * Initialize the UartLite driver so that it's ready to use.
   */
  Status = XUartLite_Initialize(&UartLite, DeviceId);
  if (Status != XST_SUCCESS) {
    LOG_ERROR ("Error: could not initialize UART\n");
      return XST_FAILURE;
  }

  XUartLite_ResetFifos(&UartLite);

  /*
   * Perform a self-test to ensure that the hardware was built correctly.
   */
  Status = XUartLite_SelfTest(&UartLite);
  if (Status != XST_SUCCESS) {
    LOG_ERROR ("Error: self test failed\n");
      return XST_FAILURE;
  }

  /*
   * Connect the UartLite to the interrupt subsystem such that interrupts can
   * occur. This function is application specific.
   */
  Status = SetupInterruptSystem(&UartLite);
  if (Status != XST_SUCCESS) {
    LOG_ERROR ("Error: could not setup interrupts\n");
      return XST_FAILURE;
  }

  /*
   * Setup the handlers for the UartLite that will be called from the
   * interrupt context when data has been sent and received, specify a
   * pointer to the UartLite driver instance as the callback reference so
   * that the handlers are able to access the instance data.
   */
  XUartLite_SetSendHandler(&UartLite, SendHandler, &UartLite);
  XUartLite_SetRecvHandler(&UartLite, RecvHandler, &UartLite);

  /*
   * Enable the interrupt of the UartLite so that interrupts will occur.
   */
  XUartLite_EnableInterrupt(&UartLite);

  // bootstrap the READ
  LOG_DEBUG("Bootstrapping READ\n");
  XUartLite_Recv(&UartLite, (u8*)&rx_tmp_buffer, sizeof(uint32_t));

  LOG_INFO("Starting loop\n");

  /*  
  LOG_DEBUG("Sending 'wtf!'\n");
  currently_sending = 1;
  char help[4] = "wtf!";
  unsigned int ret = XUartLite_Send(&UartLite, (u8*)help, 4);
  LOG_DEBUG("WTF send complete return: %x\n", ret);
  */

  /* echo received data forever */
  unsigned int heartbeat = 0;
  while (1) {
    if (heartbeat++ % (1 << 8)) {
      //LOG_DEBUG("bump %x\n", heartbeat);
    }
    while (cbuffer_size(rx_buffer) && cbuffer_freespace(tx_buffer)) {
      uint32_t data = cbuffer_pop_front(rx_buffer);
      //LOG_DEBUG("Echoing data word %x\n", data);
      cbuffer_push_back(tx_buffer, data);
    }
    if (!currently_sending && cbuffer_size(tx_buffer)) {
      LOG_DEBUG("\nREINT SEND\n");
      currently_sending = 1;

      /* 
      if (XUartLite_IsSending(&UartLite)) {
        LOG_DEBUG("UART STAT: sending\n");
      } else {
        LOG_DEBUG("UART STAT: idle\n");
      }
      */

      unsigned int to_send = cbuffer_contiguous_data_size(tx_buffer) * sizeof(uint32_t);
      u8* output_ptr = (u8*)&(tx_buffer->data[tx_buffer->pos]);
      //LOG_DEBUG("REINIT %x\n", to_send);
      //LOG_DEBUG("SENDADDR %x\n", output_ptr);
      XUartLite_Send(&UartLite, output_ptr, to_send);
    }
  }

}
Exemplo n.º 15
0
/**
 * Overload buffer test
 */
static char *test_buf()
{
    // local application buffers
    CircularBuffer *tx1 = cbuffer_new();
    CircularBuffer *rx1 = cbuffer_new();
    CircularBuffer *tx2 = cbuffer_new();
    CircularBuffer *rx2 = cbuffer_new();

    VMEStream *test1 = vmestream_initialize(tx1, rx1, 32);
    VMEStream *test2 = malloc(sizeof(VMEStream));
    test2->input = tx2;
    test2->output = rx2;

    test2->rx_size = test1->tx_size;
    test2->tx_size = test1->rx_size;
    test2->rx_data = test1->tx_data;
    test2->tx_data = test1->rx_data;
    test2->MAXRAM  = test1->MAXRAM;


    cbuffer_push_back(rx2, 0xDEADBEEF);
    for (int i = 0; i < 510; i++) {
        cbuffer_push_back(rx2, 0xBEEFCAFE);
    }
    cbuffer_push_back(tx1, 0xBEEFCAFE + 1);
    cbuffer_push_back(tx1, 0xBEEFCAFE + 2);
    cbuffer_push_back(tx1, 0xBEEFCAFE + 3);
    cbuffer_push_back(tx1, 0xBEEFCAFE + 4);

    mu_assert("Error: rx2 should have no space left", 
        cbuffer_freespace(rx2) == 0);
    // sanity check
    mu_assert_eq("Error: output size != 4", cbuffer_size(tx1), 4);

    // do several transfers
    vmestream_transfer_data(test1);
    vmestream_transfer_data(test2);
    vmestream_transfer_data(test1);
    vmestream_transfer_data(test2);

    // no data should have been transferred
    mu_assert_eq("Error: tx_size != 4", *(test1->tx_size), 4);
    mu_assert("Error: rx2.pop != 0xDEADBEEF", 0xDEADBEEF == cbuffer_pop_front(rx2));
    cbuffer_pop_front(rx2);
    cbuffer_pop_front(rx2);

    // popping off rx2 should have freed 3 words, but not enough to transfer all
    // four
    vmestream_transfer_data(test1);
    vmestream_transfer_data(test2);

    mu_assert_eq("Error: tx_size != 4", *(test1->tx_size), 4);
    mu_assert("Errrr: rx2.pop not 0xBEEFCAFE", 0xBEEFCAFE == cbuffer_pop_front(rx2));

    cbuffer_pop_front(rx2);
    // now there is enough room for all the limbo data to be transferred to rx2
    vmestream_transfer_data(test1);
    vmestream_transfer_data(test2);

    mu_assert("Error: tx_size != 0", *(test1->tx_size) == 0);
    mu_assert("Error: tx1 not empty", 0 == cbuffer_size(tx1));
    for (int i = 0; i < 4; ++i) {
      mu_assert_eq("Unexpected data transferred", 
          cbuffer_value_at(rx2, cbuffer_size(rx2) - 4 + i), 0xBEEFCAFE + i + 1);
    }


    // free memory
    vmestream_destroy(test1);
    free(test2);
    cbuffer_free(tx1);
    cbuffer_free(rx1);
    cbuffer_free(tx2);
    cbuffer_free(rx2);

    return 0;
}
Exemplo n.º 16
0
static char *test_ram1()
{
    // local application buffers
    CircularBuffer *tx1 = cbuffer_new();
    CircularBuffer *rx1 = cbuffer_new();
    CircularBuffer *tx2 = cbuffer_new();
    CircularBuffer *rx2 = cbuffer_new();

    VMEStream *test1 = vmestream_initialize(tx1, rx1, 1);
    VMEStream *test2 = malloc(sizeof(VMEStream));
    test2->input = tx2;
    test2->output = rx2;

    test2->rx_size = test1->tx_size;
    test2->tx_size = test1->rx_size;
    test2->rx_data = test1->tx_data;
    test2->tx_data = test1->rx_data;
    test2->MAXRAM  = test1->MAXRAM;

    for (unsigned int i = 0; i < 20; ++i) {
        // put some output data on host #1
        cbuffer_push_back(tx1, 0xDEADBEEF + i);
        // put some output data on host #2
        cbuffer_push_back(tx2, 0xBEEFCAFE + i);
    }

    // do a transfer
    vmestream_transfer_data(test1); // step 1 
    vmestream_transfer_data(test2); // step 2

    // host #2 has received data, since host #1 filled it's TX buffer in step 1
    // and host #2 can read it out in step 2
    mu_assert("Error: 0xDEADBEEF != rx2.pop", 0xDEADBEEF == cbuffer_pop_front(rx2));

    vmestream_transfer_data(test1); // step 3
    // now host #1 can read the data loaded by host #2 in step 2
    mu_assert("Error: 0xBEEFCAFE != rx1.pop", 0xBEEFCAFE == cbuffer_pop_front(rx1));

    // do another transfer
    vmestream_transfer_data(test2);
    vmestream_transfer_data(test1);

    mu_assert("Error: 0xBEEFCAFE+1 != rx1.pop", 0xBEEFCAFE + 1 == cbuffer_pop_front(rx1));
    mu_assert("Error: 0xDEADBEEF+1 != rx2.pop", 0xDEADBEEF + 1 == cbuffer_pop_front(rx2));

    // We have consumed all received data (via pop).  There is a word of 
    // data in limbo for host #1
    mu_assert("Error: 0 != rx1.size", 0 == cbuffer_size(rx1));
    mu_assert("Error: 0 != rx2.size", 0 == cbuffer_size(rx2));
    mu_assert("Error: 17 != tx1.size", 17 == cbuffer_size(tx1));
    mu_assert("Error: 18 != tx2.size", 18 == cbuffer_size(tx2));

    // call transfer on #1 twice in a row.  Since it's still waiting for
    // #2 to read the data, nothing happens.
    vmestream_transfer_data(test1);
    mu_assert("Error: 0 != rx1.size", 0 == cbuffer_size(rx1));
    mu_assert("Error: 0 != rx2.size", 0 == cbuffer_size(rx2));
    mu_assert("Error: 17 != tx1.size", 17 == cbuffer_size(tx1));
    mu_assert("Error: 18 != tx2.size", 18 == cbuffer_size(tx2));

    // #2 receives limbo data, puts one of it's words in limbo.
    vmestream_transfer_data(test2);
    mu_assert("Error: 0 != rx1.size", 0 == cbuffer_size(rx1));
    mu_assert("Error: 1 != rx2.size", 1 == cbuffer_size(rx2));
    mu_assert("Error: 17 != tx1.size", 17 == cbuffer_size(tx1));
    mu_assert("Error: 17 != tx2.size", 17 == cbuffer_size(tx2));


    // free memory
    vmestream_destroy(test1);
    free(test2);
    cbuffer_free(tx1);
    cbuffer_free(rx1);
    cbuffer_free(tx2);
    cbuffer_free(rx2);

    return 0;
}
Exemplo n.º 17
0
static char* test_ram1()
{
    CircularBuffer* pc_input    = cbuffer_new();
    CircularBuffer* pc_output   = cbuffer_new();
    CircularBuffer* orsc_input  = cbuffer_new();
    CircularBuffer* orsc_output = cbuffer_new();

    VMEStream *pc_stream = vmestream_initialize_heap(pc_input, pc_output, 1);

    VMEStream *orsc_stream = malloc(sizeof(VMEStream));
    orsc_stream->input              = orsc_input;
    orsc_stream->output             = orsc_output;
    orsc_stream->local_send_size    = pc_stream->remote_send_size;
    orsc_stream->local_recv_size    = pc_stream->remote_recv_size;
    orsc_stream->remote_send_size   = pc_stream->local_send_size;
    orsc_stream->remote_recv_size   = pc_stream->local_recv_size;
    orsc_stream->recv_data          = pc_stream->send_data;
    orsc_stream->send_data          = pc_stream->recv_data;
    orsc_stream->MAXRAM             = pc_stream->MAXRAM;

    for (uint32_t i = 0; i < 20; ++i) {
        cbuffer_push_back(pc_input, 0xDEADBEEF + i);
        cbuffer_push_back(orsc_input, 0xBEEFCAFE + i);
    }

    // initial transfer
    vmestream_transfer_data(pc_stream);

    // transfer data
    vmestream_transfer_data(orsc_stream);
    vmestream_transfer_data(pc_stream);

    mu_assert("Error: orsc_output.pop != DEADBEEF", cbuffer_pop_front(orsc_output) == 0xDEADBEEF);
    mu_assert("Error: pc_output.pop != BEEFCAFE", cbuffer_pop_front(pc_output) == 0xBEEFCAFE);

    // extra transfer is needed to reset the size registers
    // to zero to prepare for another transfer
    vmestream_transfer_data(orsc_stream);
    vmestream_transfer_data(pc_stream);

    // transfer data
    vmestream_transfer_data(orsc_stream);
    vmestream_transfer_data(pc_stream);

    mu_assert("Error: orsc_output.pop != DEADBEEF + 1", cbuffer_pop_front(orsc_output) == 0xDEADBEEF + 1);
    mu_assert("Error: pc_output.pop != BEEFCAFE + 1", cbuffer_pop_front(pc_output) == 0xBEEFCAFE + 1);

    /*
    printf("pc_output.size: %d\n", cbuffer_size(pc_output));
    printf("orsc_output.size: %d\n", cbuffer_size(orsc_output));
    printf("pc_input.size: %d\n", cbuffer_size(pc_input));
    printf("orsc_input.size: %d\n", cbuffer_size(orsc_input));
    */

    mu_assert("Error: pc_output.size != 0", cbuffer_size(pc_output) == 0);
    mu_assert("Error: orsc_output.size != 0", cbuffer_size(orsc_output) == 0);
    mu_assert("Error: pc_input.size != 18", cbuffer_size(pc_input) == 18);
    mu_assert("Error: orsc_input.size != 18", cbuffer_size(orsc_input) == 18);

    // transfer on pc_stream 2x in a row. Nothing should happen.
    vmestream_transfer_data(pc_stream);
    mu_assert("Error: pc_output.size != 0", cbuffer_size(pc_output) == 0);
    mu_assert("Error: orsc_output.size != 0", cbuffer_size(orsc_output) == 0);
    mu_assert("Error: pc_input.size != 18", cbuffer_size(pc_input) == 18);
    mu_assert("Error: orsc_input.size != 18", cbuffer_size(orsc_input) == 18);

    // reset
    vmestream_transfer_data(orsc_stream);
    vmestream_transfer_data(pc_stream);

    vmestream_transfer_data(orsc_stream);
    mu_assert("Error: pc_output.size != 0", cbuffer_size(pc_output) == 0);
    mu_assert("Error: orsc_output.size != 1", cbuffer_size(orsc_output) == 1);
    mu_assert("Error: pc_input.size != 17", cbuffer_size(pc_input) == 17);
    mu_assert("Error: orsc_input.size != 17", cbuffer_size(orsc_input) == 17);

    vmestream_destroy_heap(pc_stream);
    free(orsc_stream);
    cbuffer_free(pc_input);
    cbuffer_free(orsc_input);
    cbuffer_free(pc_output);
    cbuffer_free(orsc_output);

    return 0;
}