ccv_nnc_symbolic_graph_t* ccv_nnc_symbolic_graph_from_while_symbol(const ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_graph_exec_symbol_t while_symbol)
{
	assert(graph->sub_graphs);
	assert(while_symbol.graph == graph);
	assert(while_symbol.d < graph->exec_symbol_info->rnum);
	ccv_nnc_graph_exec_symbol_info_t* symbol_info = (ccv_nnc_graph_exec_symbol_info_t*)ccv_array_get(graph->exec_symbol_info, while_symbol.d);
	assert(symbol_info->graph_ref <= graph->sub_graphs->rnum);
	return *(ccv_nnc_symbolic_graph_t**)ccv_array_get(graph->sub_graphs, symbol_info->graph_ref - 1);
}
Exemplo n.º 2
0
int main(int argc, char** argv)
{
	assert(argc >= 3);
	int i;
	ccv_enable_default_cache();
	ccv_dense_matrix_t* image = 0;
	ccv_icf_classifier_cascade_t* cascade = ccv_icf_read_classifier_cascade(argv[2]);
	ccv_read(argv[1], &image, CCV_IO_ANY_FILE | CCV_IO_RGB_COLOR);
	if (image != 0)
	{
		unsigned int elapsed_time = get_current_time();
		ccv_array_t* seq = ccv_icf_detect_objects(image, &cascade, 1, ccv_icf_default_params);
		elapsed_time = get_current_time() - elapsed_time;
		for (i = 0; i < seq->rnum; i++)
		{
			ccv_comp_t* comp = (ccv_comp_t*)ccv_array_get(seq, i);
			printf("%d %d %d %d %f\n", comp->rect.x, comp->rect.y, comp->rect.width, comp->rect.height, comp->confidence);
		}
		printf("total : %d in time %dms\n", seq->rnum, elapsed_time);
		ccv_array_free(seq);
		ccv_matrix_free(image);
	} else {
		FILE* r = fopen(argv[1], "rt");
		if (argc == 4)
			chdir(argv[3]);
		if(r)
		{
			size_t len = 1024;
			char* file = (char*)malloc(len);
			ssize_t read;
			while((read = getline(&file, &len, r)) != -1)
			{
				while(read > 1 && isspace(file[read - 1]))
					read--;
				file[read] = 0;
				image = 0;
				ccv_read(file, &image, CCV_IO_ANY_FILE | CCV_IO_RGB_COLOR);
				assert(image != 0);
				ccv_array_t* seq = ccv_icf_detect_objects(image, &cascade, 1, ccv_icf_default_params);
				for (i = 0; i < seq->rnum; i++)
				{
					ccv_comp_t* comp = (ccv_comp_t*)ccv_array_get(seq, i);
					printf("%s %d %d %d %d %f\n", file, comp->rect.x, comp->rect.y, comp->rect.width, comp->rect.height, comp->confidence);
				}
				ccv_array_free(seq);
				ccv_matrix_free(image);
			}
			free(file);
			fclose(r);
		}
	}
	ccv_icf_classifier_cascade_free(cascade);
	ccv_disable_cache();
	return 0;
}
Exemplo n.º 3
0
void TDetector::pdetect(ccv_dense_matrix_t* image,
		std::vector<Text2D>& text2d) {
	text2d.clear();
	//text2d.erase(text2d.begin(), text2d.end());

	if (image != 0) {
		for (int i = 0; i < params.size(); i++) {
			ccv_array_t* words = ccv_swt_detect_words(image, params.at(i));

			if (words) {
				text2d.reserve(words->rnum);
				ccv_rect_t* rect;
				for (int j = 0; j < words->rnum; j++) {
					rect = (ccv_rect_t*) ccv_array_get(words, j);
					//printf("%d %d %d %d\n", rect->x, rect->y, rect->width, rect->height);
					text2d.push_back(
							Text2D(rect->x, rect->y, rect->x + rect->width,
									rect->y + rect->height, ""));
				}
				ccv_array_free(words);
			}
		}
		ccv_matrix_free(image);
	}
}
Exemplo n.º 4
0
int main(int argc, char** argv)
{
  int counter = 0;
  ccv_dense_matrix_t* image = 0;

  ccv_enable_default_cache();

  ccv_read(argv[1], &image, CCV_IO_GRAY | CCV_IO_ANY_FILE);
  if (image != 0)
  {
    ccv_array_t* words = ccv_swt_detect_words(image, ccv_swt_default_params);
    if (words)
    {
      int i;
      for (i = 0; i < words->rnum; i++)
      {
        char filename[256];
        ccv_matrix_t* box = 0;
        ccv_rect_t* rect = (ccv_rect_t*)ccv_array_get(words, i);
        ccv_slice(image, &box, 0, rect->y, rect->x, rect->height, rect->width);
        printf("%d %d %d %d\n", rect->x, rect->y, rect->width, rect->height);
        snprintf(filename, 256, "out-%d.png", ++counter);
        ccv_write(box, filename, NULL, CCV_IO_PNG_FILE, NULL);
      }
    }
    ccv_array_free(words);
  }

  ccv_drain_cache();
  return 0;
}
Exemplo n.º 5
0
int main(int argc, char** argv)
{
        ccv_dense_matrix_t* image = 0;
        ccv_read(argv[1], &image, CCV_IO_RGB_COLOR | CCV_IO_ANY_FILE);
        ccv_scd_classifier_cascade_t* cascade = ccv_scd_classifier_cascade_read(argv[2]);
        ccv_array_t* faces = ccv_scd_detect_objects(image, &cascade, 1, ccv_scd_default_params);
        int i;
        for (i = 0; i < faces->rnum; i++)
        {
                ccv_comp_t* face = (ccv_comp_t*)ccv_array_get(faces, i);
                printf("%d %d %d %d\n", face->rect.x, face->rect.y, face->rect.width, face->rect.height);
        }
        ccv_array_free(faces);
        ccv_scd_classifier_cascade_free(cascade);
        ccv_matrix_free(image);
        return 0;
}
ccv_nnc_graph_exec_symbol_t ccv_nnc_symbolic_graph_while(ccv_nnc_symbolic_graph_t* const graph, ccv_nnc_symbolic_graph_t* const while_graph, const char* const name)
{
	assert(while_graph->p == 0);
	assert(while_graph->p_idx == 0);
	ccv_nnc_cmd_t cmd = ccv_nnc_cmd(CCV_NNC_GRAPH_FORWARD, 0, CMD_GENERIC(), 0);
	// Added one more symbol.
	ccv_nnc_graph_exec_symbol_t symbol = ccv_nnc_graph_exec_symbol_new(graph, cmd, 0, 0, 0, 0, name);
	// Assigning graph_ref to it.
	if (!graph->sub_graphs)
		graph->sub_graphs = ccv_array_new(sizeof(ccv_nnc_symbolic_graph_t*), 1, 0);
	ccv_array_push(graph->sub_graphs, &while_graph);
	ccv_nnc_graph_exec_symbol_info_t* symbol_info = (ccv_nnc_graph_exec_symbol_info_t*)ccv_array_get(graph->exec_symbol_info, symbol.d);
	// Note the extra allocation (the ccv_array_t only holds a pointer to ccv_nnc_symbolic_graph_t*).
	// In this way, we can get the while graph and don't have to worry about it will be an invalid pointer once
	// the array expands (another while graph allocated).
	symbol_info->graph_ref = graph->sub_graphs->rnum;
	while_graph->p_idx = graph->sub_graphs->rnum;
	while_graph->exec_idx = symbol.d + 1;
	while_graph->p = graph;
	return symbol;
}
Exemplo n.º 7
0
int main(int argc, char** argv)
{
	ccv_nnc_init();
	ccv_convnet_t* convnet = ccv_convnet_read(0, argv[2]);
	ccv_dense_matrix_t* image = 0;
	ccv_read(argv[1], &image, CCV_IO_ANY_FILE | CCV_IO_RGB_COLOR);
	if (image != 0)
	{
		ccv_dense_matrix_t* input = 0;
		ccv_convnet_input_formation(convnet->input, image, &input);
		ccv_matrix_free(image);
		ccv_dense_matrix_t* sliced = 0;
		ccv_slice(input, (ccv_matrix_t**)&sliced, 0, (input->rows - 225) / 2, (input->cols - 225) / 2, 225, 225);
		ccv_matrix_free(input);
		ccv_dense_matrix_t* b = 0;
		unsigned int elapsed_time = get_current_time();
		ccv_convnet_encode(convnet, &sliced, &b, 1);
		printf("ccv_convnet_encode %u ms\n", get_current_time() - elapsed_time);
		ccv_nnc_tensor_t* c = ccv_nnc_tensor_new(0, ONE_CPU_TENSOR(1000), 0);
		ccv_nnc_graph_exec_t source, dest;
		ccv_array_t* tensors = ccv_array_new(sizeof(ccv_nnc_tensor_t*), 1, 0);
		ccv_nnc_graph_t* graph = ccv_nnc_simple_graph(convnet, (ccv_nnc_tensor_t*)sliced, c, &source, &dest, tensors);
		elapsed_time = get_current_time();
		ccv_nnc_graph_run(graph, 0, &source, 1, &dest, 1);
		printf("ccv_nnc_graph_run %u ms\n", get_current_time() - elapsed_time);
		int i;
		for (i = 0; i < 1000; i++)
			if (fabsf(b->data.f32[i] - c->data.f32[i]) > 1e-4)
				printf("mis-match at %d: %f %f\n", i, b->data.f32[i], c->data.f32[i]);
		ccv_nnc_tensor_free(c);
		ccv_matrix_free(sliced);
		ccv_matrix_free(b);
		ccv_nnc_graph_free(graph);
		for (i = 0; i < tensors->rnum; i++)
			ccv_nnc_tensor_free(*(ccv_nnc_tensor_t**)ccv_array_get(tensors, i));
		ccv_array_free(tensors);
	}
	ccv_convnet_free(convnet);
	return 0;
}
void ccv_nnc_symbolic_graph_set_while_params(ccv_nnc_symbolic_graph_t* const while_graph, const ccv_nnc_tensor_symbol_map_t* const symbol_map, const int symbol_map_size)
{
	int i;
	for (i = 0; i < symbol_map_size; i++)
	{
		const ccv_nnc_tensor_symbol_t source = ccv_nnc_find_tensor_symbol_from_graph(while_graph, symbol_map[i].source);
		const ccv_nnc_tensor_symbol_t destination = ccv_nnc_find_tensor_symbol_from_graph(while_graph, symbol_map[i].destination);
		assert(source.graph == while_graph);
		assert(destination.graph == while_graph);
		assert(source.d < while_graph->tensor_symbol_info->rnum);
		assert(destination.d < while_graph->tensor_symbol_info->rnum);
		ccv_nnc_tensor_symbol_info_t* destination_tensor_symbol_info = (ccv_nnc_tensor_symbol_info_t*)ccv_array_get(while_graph->tensor_symbol_info, destination.d);
		// Don't support parameterize with alias. The reason is that to support parameterized loop (for SSA), I choose
		// to simply reuse the piece of memory (allocating the same memory region to both, therefore to enable parameter
		// passing). For alias, it is not possible because alias can pointing to the tensors with different sizes, thus,
		// these pointed tensors cannot share the same memory region. The best way for alias to be parameterized is to
		// create a new tensor of the same size, transfer value over, and parameterized on that tensor instead.
		assert(!destination_tensor_symbol_info->alias_ref);
		assert(!((ccv_nnc_tensor_symbol_info_t*)ccv_array_get(while_graph->tensor_symbol_info, source.d))->alias_ref);
		destination_tensor_symbol_info->assign_ref = source.d + 1;
	}
}
Exemplo n.º 9
0
int main(int argc, char** argv)
{
	// process arguments
	char* image_file = "";
	int scale_invariant = 0;
	int min_height = 0;
	int min_area = 0;
	char ch;
	while ((ch = getopt(argc, argv, "a:h:i")) != EOF)
		switch(ch) {
			case 'i':
				scale_invariant = 1;
				printf("Scale invariant\n");
				break;
			case 'h':
				min_height = atoi(optarg);
				printf("Min height %d\n", min_height);
				continue;
			case 'a':
				min_area = atoi(optarg);
				printf("Min area %d\n", min_area);
				continue;
		}
	argc -= optind;
	argv += optind;
	image_file = argv[0];
	
	ccv_enable_default_cache();
	ccv_dense_matrix_t* image = 0;
	ccv_read(image_file, &image, CCV_IO_GRAY | CCV_IO_ANY_FILE);

	if (image==0) {
		fprintf(stderr, "ERROR: image could not be read\n");
		return 1;
	}
	
	unsigned int elapsed_time = get_current_time();

	ccv_swt_param_t params = ccv_swt_default_params;
	if (scale_invariant)
		params.scale_invariant = 1;
	if (min_height)
		params.min_height = min_height;
	if (min_area)
		params.min_area = min_area;

	ccv_array_t* letters = ccv_swt_detect_chars_contour(image, params);
	elapsed_time = get_current_time() - elapsed_time;
	if (letters)
	{	
		printf("total : %d in time %dms\n", letters->rnum, elapsed_time);
		int i;
		for (i = 0; i < letters->rnum; i++)
		{
			// for each letter
			ccv_contour_t* cont = *(ccv_contour_t**)ccv_array_get(letters, i);
			printf("Contour %d (size=%d):\n", i, cont->size);
			for (int j = 0; j < cont->size; j++) {
				// for each point in contour
				ccv_point_t* point = (ccv_point_t*)ccv_array_get(cont->set, j);
				printf("%d %d\n", point->x, point->y);
			}
			printf("End contour %d\n", i);
		}
		
		ccv_array_free(letters);
	}
	ccv_matrix_free(image);
	
	ccv_drain_cache();
	return 0;
}
Exemplo n.º 10
0
int main(int argc, char** argv)
{
	static struct option swt_options[] = {
		/* help */
		{"help", 0, 0, 0},
		/* optional parameters */
		{"size", 1, 0, 0},
		{"low-thresh", 1, 0, 0},
		{"high-thresh", 1, 0, 0},
		{"max-height", 1, 0, 0},
		{"min-height", 1, 0, 0},
		{"min-area", 1, 0, 0},
		{"aspect-ratio", 1, 0, 0},
		{"std-ratio", 1, 0, 0},
		{"thickness-ratio", 1, 0, 0},
		{"height-ratio", 1, 0, 0},
		{"intensity-thresh", 1, 0, 0},
		{"letter-occlude-thresh", 1, 0, 0},
		{"distance-ratio", 1, 0, 0},
		{"intersect-ratio", 1, 0, 0},
		{"letter-thresh", 1, 0, 0},
		{"elongate-ratio", 1, 0, 0},
		{"breakdown-ratio", 1, 0, 0},
		{"breakdown", 1, 0, 0},
		{"iterations", 1, 0, 0},
		{"base-dir", 1, 0, 0},
		{0, 0, 0, 0}
	};
	if (argc <= 1)
		exit_with_help();
	ccv_swt_param_t params = {
		.interval = 1,
		.same_word_thresh = { 0.2, 0.8 },
		.min_neighbors = 1,
		.scale_invariant = 0,
		.size = 3,
		.low_thresh = 78,
		.high_thresh = 214,
		.max_height = 300,
		.min_height = 10,
		.min_area = 75,
		.letter_occlude_thresh = 2,
		.aspect_ratio = 10,
		.std_ratio = 0.5,
		.thickness_ratio = 1.5,
		.height_ratio = 2.0,
		.intensity_thresh = 45,
		.distance_ratio = 3.0,
		.intersect_ratio = 2.0,
		.letter_thresh = 3,
		.elongate_ratio = 1.3,
		.breakdown = 1,
		.breakdown_ratio = 1.0,
	};
	ccv_swt_range_t size_range = {
		.min_value = 1,
		.max_value = 3,
		.step = 2,
		.enable = 1,
	};
	ccv_swt_range_t low_thresh_range = {
		.min_value = 50,
		.max_value = 150,
		.step = 1,
		.enable = 1,
	};
	ccv_swt_range_t high_thresh_range = {
		.min_value = 200,
		.max_value = 350,
		.step = 1,
		.enable = 1,
	};
	ccv_swt_range_t max_height_range = {
		.min_value = 500,
		.max_value = 500,
		.step = 1,
		.enable = 1,
	};
	ccv_swt_range_t min_height_range = {
		.min_value = 5,
		.max_value = 30,
		.step = 1,
		.enable = 1,
	};
	ccv_swt_range_t min_area_range = {
		.min_value = 10,
		.max_value = 100,
		.step = 1,
		.enable = 1,
	};
	ccv_swt_range_t letter_occlude_thresh_range = {
		.min_value = 0,
		.max_value = 5,
		.step = 1,
		.enable = 1,
	};
	ccv_swt_range_t aspect_ratio_range = {
		.min_value = 5,
		.max_value = 15,
		.step = 1,
		.enable = 1,
	};
	ccv_swt_range_t std_ratio_range = {
		.min_value = 0.1,
		.max_value = 1.0,
		.step = 0.01,
		.enable = 1,
	};
	ccv_swt_range_t thickness_ratio_range = {
		.min_value = 1.0,
		.max_value = 2.0,
		.step = 0.1,
		.enable = 1,
	};
	ccv_swt_range_t height_ratio_range = {
		.min_value = 1.0,
		.max_value = 3.0,
		.step = 0.1,
		.enable = 1,
	};
	ccv_swt_range_t intensity_thresh_range = {
		.min_value = 1,
		.max_value = 50,
		.step = 1,
		.enable = 1,
	};
	ccv_swt_range_t distance_ratio_range = {
		.min_value = 1.0,
		.max_value = 5.0,
		.step = 0.1,
		.enable = 1,
	};
	ccv_swt_range_t intersect_ratio_range = {
		.min_value = 0.0,
		.max_value = 5.0,
		.step = 0.1,
		.enable = 1,
	};
	ccv_swt_range_t letter_thresh_range = {
		.min_value = 0,
		.max_value = 5,
		.step = 1,
		.enable = 1,
	};
	ccv_swt_range_t elongate_ratio_range = {
		.min_value = 0.1,
		.max_value = 2.5,
		.step = 0.1,
		.enable = 1,
	};
	ccv_swt_range_t breakdown_ratio_range = {
		.min_value = 0.5,
		.max_value = 1.5,
		.step = 0.01,
		.enable = 1,
	};
	int i, j, k, iterations = 10;
	while (getopt_long_only(argc - 1, argv + 1, "", swt_options, &k) != -1)
	{
		switch (k)
		{
			case 0:
				exit_with_help();
			case 1:
				decode_range(optarg, &size_range);
				break;
			case 2:
				decode_range(optarg, &low_thresh_range);
				break;
			case 3:
				decode_range(optarg, &high_thresh_range);
				break;
			case 4:
				decode_range(optarg, &max_height_range);
				break;
			case 5:
				decode_range(optarg, &min_height_range);
				break;
			case 6:
				decode_range(optarg, &min_area_range);
				break;
			case 7:
				decode_range(optarg, &aspect_ratio_range);
				break;
			case 8:
				decode_range(optarg, &std_ratio_range);
				break;
			case 9:
				decode_range(optarg, &thickness_ratio_range);
				break;
			case 10:
				decode_range(optarg, &height_ratio_range);
				break;
			case 11:
				decode_range(optarg, &intensity_thresh_range);
				break;
			case 12:
				decode_range(optarg, &letter_occlude_thresh_range);
				break;
			case 13:
				decode_range(optarg, &distance_ratio_range);
				break;
			case 14:
				decode_range(optarg, &intersect_ratio_range);
				break;
			case 15:
				decode_range(optarg, &letter_thresh_range);
				break;
			case 16:
				decode_range(optarg, &elongate_ratio_range);
				break;
			case 17:
				decode_range(optarg, &breakdown_ratio_range);
				break;
			case 18:
				params.breakdown = !!atoi(optarg);
				break;
			case 19:
				iterations = atoi(optarg);
				break;
			case 20:
				chdir(optarg);
				break;
		}
	}
	FILE* r = fopen(argv[1], "rt");
	if (!r)
		exit_with_help();
	ccv_enable_cache(1024 * 1024 * 1024);
	ccv_array_t* aof = ccv_array_new(sizeof(char*), 64, 0);
	ccv_array_t* aow = ccv_array_new(sizeof(ccv_array_t*), 64, 0);
	ccv_array_t* cw = 0;
	char* file = (char*)malloc(1024);
	size_t len = 1024;
	ssize_t read;
	while ((read = getline(&file, &len, r)) != -1)
	{
		while(read > 1 && isspace(file[read - 1]))
			read--;
		file[read] = 0;
		double x, y, width, height;
		int recognized = sscanf(file, "%lf %lf %lf %lf", &x, &y, &width, &height);
		if (recognized == 4)
		{
			ccv_rect_t rect = {
				.x = (int)(x + 0.5),
				.y = (int)(y + 0.5),
				.width = (int)(width + 0.5),
				.height = (int)(height + 0.5)
			};
			ccv_array_push(cw, &rect);
		} else {
			char* name = (char*)malloc(ccv_min(1023, strlen(file)) + 1);
			strncpy(name, file, ccv_min(1023, strlen(file)) + 1);
			ccv_array_push(aof, &name);
			cw = ccv_array_new(sizeof(ccv_rect_t), 1, 0);
			ccv_array_push(aow, &cw);
		}
	}
	free(file);
	printf("loaded %d images for parameter search of:\n", aof->rnum);
	if (size_range.enable)
		printf(" - canny size from %d to %d, += %lg\n", (int)(size_range.min_value + 0.5), (int)(size_range.max_value + 0.5), size_range.step);
	if (std_ratio_range.enable)
		printf(" - std threshold ratio from %lg to %lg, += %lg\n", std_ratio_range.min_value, std_ratio_range.max_value, std_ratio_range.step);
	if (max_height_range.enable)
		printf(" - maximum height from %d to %d, += %lg\n", (int)(max_height_range.min_value + 0.5), (int)(max_height_range.max_value + 0.5), max_height_range.step);
	if (min_height_range.enable)
		printf(" - minimum height from %d to %d, += %lg\n", (int)(min_height_range.min_value + 0.5), (int)(min_height_range.max_value + 0.5), min_height_range.step);
	if (min_area_range.enable)
		printf(" - minimum area from %d to %d, += %lg\n", (int)(min_area_range.min_value + 0.5), (int)(min_area_range.max_value + 0.5), min_area_range.step);
	if (letter_occlude_thresh_range.enable)
		printf(" - letter occlude threshold from %d to %d, += %lg\n", (int)(letter_occlude_thresh_range.min_value + 0.5), (int)(letter_occlude_thresh_range.max_value + 0.5), letter_occlude_thresh_range.step);
	if (aspect_ratio_range.enable)
		printf(" - aspect ratio threshold from %lg to %lg, += %lg\n", aspect_ratio_range.min_value, aspect_ratio_range.max_value, aspect_ratio_range.step);
	if (thickness_ratio_range.enable)
		printf(" - thickness ratio threshold from %lg to %lg, += %lg\n", thickness_ratio_range.min_value, thickness_ratio_range.max_value, thickness_ratio_range.step);
	if (height_ratio_range.enable)
		printf(" - height ratio threshold from %lg to %lg, += %lg\n", height_ratio_range.min_value, height_ratio_range.max_value, height_ratio_range.step);
	if (intensity_thresh_range.enable)
		printf(" - intensity threshold from %d to %d, += %lg\n", (int)(intensity_thresh_range.min_value + 0.5), (int)(intensity_thresh_range.max_value + 0.5), intensity_thresh_range.step);
	if (distance_ratio_range.enable)
		printf(" - distance ratio threshold from %lg to %lg, += %lg\n", distance_ratio_range.min_value, distance_ratio_range.max_value, distance_ratio_range.step);
	if (intersect_ratio_range.enable)
		printf(" - intersect ratio threshold from %lg to %lg, += %lg\n", intersect_ratio_range.min_value, intersect_ratio_range.max_value, intersect_ratio_range.step);
	if (letter_thresh_range.enable)
		printf(" - minimum number of letters from %d to %d, += %lg\n", (int)(letter_thresh_range.min_value + 0.5), (int)(letter_thresh_range.max_value + 0.5), letter_thresh_range.step);
	if (elongate_ratio_range.enable)
		printf(" - elongate ratio threshold from %lg to %lg, += %lg\n", elongate_ratio_range.min_value, elongate_ratio_range.max_value, elongate_ratio_range.step);
	if (breakdown_ratio_range.enable)
		printf(" - breakdown ratio threshold from %lg to %lg, += %lg\n", breakdown_ratio_range.min_value, breakdown_ratio_range.max_value, breakdown_ratio_range.step);
	if (low_thresh_range.enable)
		printf(" - canny low threshold from %d to %d, += %lg\n", (int)(low_thresh_range.min_value + 0.5), (int)(low_thresh_range.max_value + 0.5), low_thresh_range.step);
	if (high_thresh_range.enable)
		printf(" - canny high threshold from %d to %d, += %lg\n", (int)(high_thresh_range.min_value + 0.5), (int)(high_thresh_range.max_value + 0.5), high_thresh_range.step);
	double best_f = 0, best_precision = 0, best_recall = 0;
	double a = 0.5;
	double v;
	ccv_swt_param_t best_params = params;
#define optimize(parameter, type, rounding) \
	if (parameter##_range.enable) \
	{ \
		params = best_params; \
		int total_iterations = 0; \
		for (v = parameter##_range.min_value; v <= parameter##_range.max_value; v += parameter##_range.step) \
			++total_iterations; \
		double* precision = (double*)ccmalloc(sizeof(double) * total_iterations); \
		double* recall = (double*)ccmalloc(sizeof(double) * total_iterations); \
		double* total_words = (double*)ccmalloc(sizeof(double) * total_iterations); \
		memset(precision, 0, sizeof(double) * total_iterations); \
		memset(recall, 0, sizeof(double) * total_iterations); \
		memset(total_words, 0, sizeof(double) * total_iterations); \
		double total_truth = 0; \
		for (j = 0; j < aof->rnum; j++) \
		{ \
			char* name = *(char**)ccv_array_get(aof, j); \
			ccv_dense_matrix_t* image = 0; \
			ccv_read(name, &image, CCV_IO_GRAY | CCV_IO_ANY_FILE); \
			ccv_array_t* truth = *(ccv_array_t**)ccv_array_get(aow, j); \
			total_truth += truth->rnum; \
			for (v = parameter##_range.min_value, k = 0; v <= parameter##_range.max_value; v += parameter##_range.step, k++) \
			{ \
				params.parameter = (type)(v + rounding); \
				ccv_array_t* words = ccv_swt_detect_words(image, params); \
				double one_precision = 0, one_recall = 0; \
				_ccv_evaluate_wolf(words, truth, params, &one_precision, &one_recall); \
				assert(one_precision <= words->rnum + 0.1); \
				precision[k] += one_precision; \
				recall[k] += one_recall; \
				total_words[k] += words->rnum; \
				ccv_array_free(words); \
				FLUSH("perform SWT on %s (%d / %d) for " #parameter " = (%lg <- [%lg, %lg])", name, j + 1, aof->rnum, v, parameter##_range.min_value, parameter##_range.max_value); \
			} \
			ccv_matrix_free(image); \
		} \
		for (v = parameter##_range.min_value, j = 0; v <= parameter##_range.max_value; v += parameter##_range.step, j++) \
		{ \
			params.parameter = (type)(v + rounding); \
			double f, total_precision = precision[j], total_recall = recall[j]; \
			total_precision /= total_words[j]; \
			total_recall /= total_truth; \
			f = 1.0 / (a / total_precision + (1.0 - a) / total_recall); \
			if (f > best_f) \
			{ \
				best_params = params; \
				best_f = f; \
				best_precision = total_precision; \
				best_recall = total_recall; \
			} \
			FLUSH("current harmonic mean : %.2lf%%, precision : %.2lf%%, recall : %.2lf%% ; best harmonic mean : %.2lf%%, precision : %.2lf%%, recall : %.2lf%% ; at " #parameter " = %lg (%lg <- [%lg, %lg])", f * 100, total_precision * 100, total_recall * 100, best_f * 100, best_precision * 100, best_recall * 100, (double)best_params.parameter, v, parameter##_range.min_value, parameter##_range.max_value); \
		} \
		printf("\n"); \
		ccfree(precision); \
		ccfree(recall); \
		ccfree(total_words); \
	}
	for (i = 0; i < iterations; i++)
	{
		optimize(size, int, 0.5);
		optimize(std_ratio, double, 0);
		optimize(max_height, int, 0.5);
		optimize(min_height, int, 0.5);
		optimize(min_area, int, 0.5);
		optimize(letter_occlude_thresh, int, 0.5);
		optimize(aspect_ratio, double, 0);
		optimize(thickness_ratio, double, 0);
		optimize(height_ratio, double, 0);
		optimize(intensity_thresh, int, 0.5);
		optimize(distance_ratio, double, 0);
		optimize(intersect_ratio, double, 0);
		optimize(letter_thresh, int, 0.5);
		optimize(elongate_ratio, double, 0);
		optimize(breakdown_ratio, double, 0);
		optimize(low_thresh, int, 0.5);
		optimize(high_thresh, int, 0.5);
		printf("At iteration %d(of %d) : best parameters for swt is:\n"
			   "\tsize = %d\n"
			   "\tlow_thresh = %d\n"
			   "\thigh_thresh = %d\n"
			   "\tmax_height = %d\n"
			   "\tmin_height = %d\n"
			   "\tmin_area = %d\n"
			   "\tletter_occlude_thresh = %d\n"
			   "\taspect_ratio = %lf\n"
			   "\tstd_ratio = %lf\n"
			   "\tthickness_ratio = %lf\n"
			   "\theight_ratio = %lf\n"
			   "\tintensity_thresh = %d\n"
			   "\tdistance_ratio = %lf\n"
			   "\tintersect_ratio = %lf\n"
			   "\tletter_thresh = %d\n"
			   "\telongate_ratio = %lf\n"
			   "\tbreakdown_ratio = %lf\n",
			   i + 1, iterations,
			   best_params.size,
			   best_params.low_thresh,
			   best_params.high_thresh,
			   best_params.max_height,
			   best_params.min_height,
			   best_params.min_area,
			   best_params.letter_occlude_thresh,
			   best_params.aspect_ratio,
			   best_params.std_ratio,
			   best_params.thickness_ratio,
			   best_params.height_ratio,
			   best_params.intensity_thresh,
			   best_params.distance_ratio,
			   best_params.intersect_ratio,
			   best_params.letter_thresh,
			   best_params.elongate_ratio,
			   best_params.breakdown_ratio);
	}
#undef optimize
	for (i = 0; i < aof->rnum; i++)
	{
		char* name = *(char**)ccv_array_get(aof, i);
		free(name);
		ccv_array_t* cw = *(ccv_array_t**)ccv_array_get(aow, i);
		ccv_array_free(cw);
	}
	ccv_array_free(aof);
	ccv_array_free(aow);
	ccv_drain_cache();
	return 0;
}
Exemplo n.º 11
0
static void _ccv_set_union_mser(ccv_dense_matrix_t* a, ccv_dense_matrix_t* h, ccv_dense_matrix_t* b, ccv_array_t* seq, ccv_mser_param_t params)
{
	assert(params.direction == CCV_BRIGHT_TO_DARK || params.direction == CCV_DARK_TO_BRIGHT);
	int v, i, j;
	ccv_mser_node_t* node = (ccv_mser_node_t*)ccmalloc(sizeof(ccv_mser_node_t) * a->rows * a->cols);
	ccv_mser_node_t** rnode = (ccv_mser_node_t**)ccmalloc(sizeof(ccv_mser_node_t*) * a->rows * a->cols);
	if (params.range <= 0)
		params.range = 255;
	// put it in a block so that the memory allocated can be released in the end
	int* buck = (int*)alloca(sizeof(int) * (params.range + 2));
	memset(buck, 0, sizeof(int) * (params.range + 2));
	ccv_mser_node_t* pnode = node;
	// this for_block is the only computation that can be shared between dark to bright and bright to dark
	// two MSER alternatives, and it only occupies 10% of overall time, we won't share this computation
	// at all (also, we need to reinitialize node for the two passes anyway).
	if (h != 0)
	{
		unsigned char* aptr = a->data.u8;
		unsigned char* hptr = h->data.u8;
#define for_block(_for_get_a, _for_get_h) \
		for (i = 0; i < a->rows; i++) \
		{ \
			for (j = 0; j < a->cols; j++) \
				if (!_for_get_h(hptr, j, 0)) \
					++buck[_for_get_a(aptr, j, 0)]; \
			aptr += a->step; \
			hptr += h->step; \
		} \
		for (i = 1; i <= params.range; i++) \
			buck[i] += buck[i - 1]; \
		buck[params.range + 1] = buck[params.range]; \
		aptr = a->data.u8; \
		hptr = h->data.u8; \
		for (i = 0; i < a->rows; i++) \
		{ \
			for (j = 0; j < a->cols; j++) \
			{ \
				_ccv_mser_init_node(pnode, j, i); \
				if (!_for_get_h(hptr, j, 0)) \
					rnode[--buck[_for_get_a(aptr, j, 0)]] = pnode; \
				else \
					pnode->shortcut = 0; /* this means the pnode is not available */ \
				++pnode; \
			} \
			aptr += a->step; \
			hptr += h->step; \
		}
		ccv_matrix_getter_integer_only_a(a->type, ccv_matrix_getter_integer_only, h->type, for_block);
#undef for_block
	} else {
		unsigned char* aptr = a->data.u8;
#define for_block(_, _for_get) \
		for (i = 0; i < a->rows; i++) \
		{ \
			for (j = 0; j < a->cols; j++) \
				++buck[_for_get(aptr, j, 0)]; \
			aptr += a->step; \
		} \
		for (i = 1; i <= params.range; i++) \
			buck[i] += buck[i - 1]; \
		buck[params.range + 1] = buck[params.range]; \
		aptr = a->data.u8; \
		for (i = 0; i < a->rows; i++) \
		{ \
			for (j = 0; j < a->cols; j++) \
			{ \
				_ccv_mser_init_node(pnode, j, i); \
				rnode[--buck[_for_get(aptr, j, 0)]] = pnode; \
				++pnode; \
			} \
			aptr += a->step; \
		}
		ccv_matrix_getter_integer_only(a->type, for_block);
#undef for_block
	}
	ccv_array_t* history_list = ccv_array_new(sizeof(ccv_mser_history_t), 64, 0);
	for (v = 0; v <= params.range; v++)
	{
		int range_segment = buck[params.direction == CCV_DARK_TO_BRIGHT ? v : params.range - v];
		int range_segment_cap = buck[params.direction == CCV_DARK_TO_BRIGHT ? v + 1 : params.range - v + 1];
		for (i = range_segment; i < range_segment_cap; i++)
		{
			pnode = rnode[i];
			// try to merge pnode with its neighbors
			static int dx[] = {-1, 0, 1, -1, 1, -1, 0, 1};
			static int dy[] = {-1, -1, -1, 0, 0, 1, 1, 1};
			ccv_mser_node_t* node0 = _ccv_mser_find_root(pnode);
			for (j = 0; j < 8; j++)
			{
				int x = dx[j] + pnode->point.x;
				int y = dy[j] + pnode->point.y;
				if (x >= 0 && x < a->cols && y >= 0 && y < a->rows)
				{
					ccv_mser_node_t* nnode = pnode + dx[j] + dy[j] * a->cols;
					if (nnode->shortcut == 0) // this is a void node, skip
						continue;
					ccv_mser_node_t* node1 = _ccv_mser_find_root(nnode);
					if (node0 != node1)
					{
						// grep the extended root information
						ccv_mser_history_t* root0 = (node0->root >= 0) ? (ccv_mser_history_t*)ccv_array_get(history_list, node0->root) : 0;
						ccv_mser_history_t* root1 = (node1->root >= 0) ? (ccv_mser_history_t*)ccv_array_get(history_list, node1->root) : 0;
						// swap the node if root1 has higher rank, or larger in size, or root0 is non-existent
						if ((root0 && root1 && (root1->value > root0->value
												|| (root1->value == root0->value && root1->rank > root0->rank)
												|| (root1->value == root0->value && root1->rank == root0->rank && root1->size > root0->size)))
							|| (root1 && !root0))
						{
							ccv_mser_node_t* exnode = node0;
							node0 = node1;
							node1 = exnode;
							ccv_mser_history_t* root = root0;
							root0 = root1;
							root1 = root;
						}
						if (!root0)
						{
							ccv_mser_history_t root = {
								.rank = 0,
								.size = 1,
								.value = v,
								.shortcut = history_list->rnum,
								.parent = history_list->rnum,
								.head = node0,
								.tail = node1
							};
							node0->root = history_list->rnum;
							ccv_array_push(history_list, &root);
							root0 = (ccv_mser_history_t*)ccv_array_get(history_list, history_list->rnum - 1);
							assert(node1->root == -1);
						} else if (root0->value < v) {
							// conceal the old root as history (er), making a new one and pointing to it
							root0->shortcut = root0->parent = history_list->rnum;
							ccv_mser_history_t root = *root0;
							root.value = v;
							node0->root = history_list->rnum;
							ccv_array_push(history_list, &root);
							root0 = (ccv_mser_history_t*)ccv_array_get(history_list, history_list->rnum - 1);
							root1 = (node1->root >= 0) ? (ccv_mser_history_t*)ccv_array_get(history_list, node1->root) : 0; // the memory may be reallocated
							root0->rank = ccv_max(root0->rank, (root1 ? root1->rank : 0)) + 1;
						}
						if (root1)
						{
							if (root1->value < root0->value) // in this case, root1 is sealed as well
								root1->parent = node0->root;
							// thus, if root1->parent == itself && root1->shortcut != itself
							// it is voided, and not sealed
							root1->shortcut = node0->root;
						}
						// merge the two
						node1->shortcut = node0;
						root0->size += root1 ? root1->size : 1;
						/* insert one endless double link list to another, see illustration:
						 * 0->1->2->3->4->5->0
						 * a->b->c->d->a
						 * set 5.next (0.prev.next) point to a
						 * set 0.prev point to d
						 * set d.next (a.prev.next) point to 0
						 * set a.prev point to 5
						 * the result endless double link list will be:
						 * 0->1->2->3->4->5->a->b->c->d->0 */
						node0->prev->next = node1;
						ccv_mser_node_t* prev = node0->prev;
						node0->prev = node1->prev;
						node1->prev->next = node0; // consider self-referencing
						node1->prev = prev;
						root0->head = node0;
						root0->tail = node0->prev;
					}
				}
			}
Exemplo n.º 12
0
int main(int argc, char** argv)
{
        FILE* file;
        char *output_file = "my_output.txt";
        int i, ret_val;
        ccv_dense_matrix_t* image = 0;
        ccv_array_t* seq;

        accept_roi_begin();
	assert(argc >= 3);
	ccv_enable_default_cache();
	ccv_bbf_classifier_cascade_t* cascade = ccv_bbf_read_classifier_cascade(argv[2]);
	ccv_read(argv[1], &image, CCV_IO_GRAY | CCV_IO_ANY_FILE);
	if (image != 0)
	{
		unsigned int elapsed_time = get_current_time();
		seq = ccv_bbf_detect_objects(image, &cascade, 1, ccv_bbf_default_params);
		elapsed_time = get_current_time() - elapsed_time;
		for (i = 0; ENDORSE(i < seq->rnum); i++)
		{
			ccv_comp_t* comp = (ccv_comp_t*)ENDORSE(ccv_array_get(seq, i));
			printf("%d %d %d %d %f\n", comp->rect.x, comp->rect.y, comp->rect.width, comp->rect.height, comp->classification.confidence);
		}
		printf("total : %d in time %dms\n", seq->rnum, elapsed_time);
                ccv_bbf_classifier_cascade_free(cascade);
                ccv_disable_cache();
                accept_roi_end();
                
                file = fopen(output_file, "w");
                if (file == NULL) {
                  perror("fopen for write failed");
                  return EXIT_FAILURE;
                }
                // latest changes
                struct coordinates {
                    APPROX int x;
                    APPROX int y;
                };
                for (i = 0; ENDORSE(i < seq->rnum); i++) {
                  ccv_comp_t* comp = (ccv_comp_t*) ENDORSE(ccv_array_get(seq, i));
                  struct coordinates upperleft, upperright, lowerleft, lowerright;
                  upperleft.x = comp->rect.x;
                  upperleft.y = comp->rect.y;
                  upperright.x = comp->rect.x + comp->rect.width;
                  upperright.y = upperleft.y;
                  lowerleft.x = upperleft.x;
                  lowerleft.y = upperleft.y + comp->rect.height;
                  lowerright.x = upperright.x;
                  lowerright.y = lowerleft.y;
                  ret_val = fprintf(file, "%d %d\n%d %d\n%d %d\n%d %d\n", upperleft.x, upperleft.y, upperright.x, upperright.y,
                      lowerright.x, lowerright.y, lowerleft.x, lowerleft.y);
                  // latest changes
                  if (ret_val < 0) {
                    perror("fprintf of coordinates failed");
                    fclose(file);
                    return EXIT_FAILURE;
                  }
                }
                ret_val = fclose(file);
                if (ret_val != 0) {
                  perror("fclose failed");
                  return EXIT_FAILURE;
                }
                ccv_array_free(seq);
                ccv_matrix_free(image);
	} else {
		FILE* r = fopen(argv[1], "rt");
		if (argc == 4)
			chdir(argv[3]);
		if(r)
		{
			size_t len = 1024;
			char* file = (char*)malloc(len);
			ssize_t read;
			while((read = getline(&file, &len, r)) != -1)
			{
				while(read > 1 && isspace(file[read - 1]))
					read--;
				file[read] = 0;
				image = 0;
				ccv_read(file, &image, CCV_IO_GRAY | CCV_IO_ANY_FILE);
				assert(image != 0);
				seq = ccv_bbf_detect_objects(image, &cascade, 1, ccv_bbf_default_params); // seq already declared above
				for (i = 0; ENDORSE(i < seq->rnum); i++)
				{
					ccv_comp_t* comp = (ccv_comp_t*) ENDORSE(ccv_array_get(seq, i));
					printf("%s %d %d %d %d %f\n", file, comp->rect.x, comp->rect.y, comp->rect.width, comp->rect.height, comp->classification.confidence);
				}
			}
			free(file);
			fclose(r);
		}
                ccv_bbf_classifier_cascade_free(cascade);
                ccv_disable_cache();
                accept_roi_end();
                file = fopen(output_file, "w");
                if (file == NULL) {
                  perror("fopen for write failed");
                  return EXIT_FAILURE;
                }
                for (i = 0; ENDORSE(i < seq->rnum); i++) {
                  ccv_comp_t* comp = (ccv_comp_t*) ENDORSE(ccv_array_get(seq, i));
                  ret_val = fprintf(file, "%d\n%d\n%d\n%d\n%f\n", comp->rect.x, comp->rect.y, comp->rect.width,
                      comp->rect.height, comp->classification.confidence);
                  if (ret_val < 0) {
                    perror("fprintf of coordinates and confidence failed");
                    fclose(file);
                    return EXIT_FAILURE;
                  }
                }
                ret_val = fclose(file);
                if (ret_val != 0) {
                  perror("fclose failed");
                  return EXIT_FAILURE;
                }
                ccv_array_free(seq);
                ccv_matrix_free(image);
	}
	return 0;
}
Exemplo n.º 13
0
int uri_dpm_detect_objects(const void* context, const void* parsed, ebb_buf* buf)
{
	if (!parsed)
		return -1;
	dpm_param_parser_t* parser = (dpm_param_parser_t*)parsed;
	param_parser_terminate(&parser->param_parser);
	if (parser->source.data == 0)
	{
		free(parser);
		return -1;
	}
	if (parser->mixture_model == 0)
	{
		free(parser->source.data);
		free(parser);
		return -1;
	}
	ccv_dense_matrix_t* image = 0;
	ccv_read(parser->source.data, &image, CCV_IO_ANY_STREAM | CCV_IO_GRAY, parser->source.written);
	free(parser->source.data);
	if (image == 0)
	{
		free(parser);
		return -1;
	}
	ccv_array_t* seq = ccv_dpm_detect_objects(image, &parser->mixture_model, 1, parser->params);
	ccv_matrix_free(image);
	if (seq  == 0)
	{
		free(parser);
		return -1;
	}
	if (seq->rnum > 0)
	{
		int i, j;
		buf->len = 192 + seq->rnum * 131 + 2;
		char* data = (char*)malloc(buf->len);
		data[0] = '[';
		buf->written = 1;
		for (i = 0; i < seq->rnum; i++)
		{
			char cell[128];
			ccv_root_comp_t* comp = (ccv_root_comp_t*)ccv_array_get(seq, i);
			snprintf(cell, 128, "{\"x\":%d,\"y\":%d,\"width\":%d,\"height\":%d,\"confidence\":%f,\"parts\":[", comp->rect.x, comp->rect.y, comp->rect.width, comp->rect.height, comp->confidence);
			size_t len = strnlen(cell, 128);
			while (buf->written + len >= buf->len)
			{
				buf->len = (buf->len * 3 + 1) / 2;
				data = (char*)realloc(data, buf->len);
			}
			memcpy(data + buf->written, cell, len);
			buf->written += len;
			for (j = 0; j < comp->pnum; j++)
			{
				snprintf(cell, 128, "{\"x\":%d,\"y\":%d,\"width\":%d,\"height\":%d,\"confidence\":%f}", comp->part[j].rect.x, comp->part[j].rect.y, comp->part[j].rect.width, comp->part[j].rect.height, comp->part[j].confidence);
				len = strnlen(cell, 128);
				while (buf->written + len + 3 >= buf->len)
				{
					buf->len = (buf->len * 3 + 1) / 2;
					data = (char*)realloc(data, buf->len);
				}
				memcpy(data + buf->written, cell, len);
				buf->written += len + 1;
				data[buf->written - 1] = (j == comp->pnum - 1) ? ']' : ',';
			}
			buf->written += 2;
			data[buf->written - 2] = '}';
			data[buf->written - 1] = (i == seq->rnum - 1) ? ']' : ',';
		}
		char http_header[192];
		snprintf(http_header, 192, ebb_http_header, buf->written);
		size_t len = strnlen(http_header, 192);
		if (buf->written + len + 1 >= buf->len)
		{
			buf->len = buf->written + len + 1;
			data = (char*)realloc(data, buf->len);
		}
		memmove(data + len, data, buf->written);
		memcpy(data, http_header, len);
		buf->written += len + 1;
		data[buf->written - 1] = '\n';
		buf->data = data;
		buf->len = buf->written;
		buf->on_release = uri_ebb_buf_free;
	} else {
		buf->data = (void*)ebb_http_empty_array;
		buf->len = sizeof(ebb_http_empty_array);
		buf->on_release = 0;
	}
	ccv_array_free(seq);
	free(parser);
	return 0;
}
Exemplo n.º 14
0
ccv_nnc_tensor_symbol_t ccv_nnc_find_tensor_symbol_from_graph(const ccv_nnc_symbolic_graph_t* const graph, const ccv_nnc_tensor_symbol_t symbol)
{
	if (symbol.graph == graph)
		return symbol;
	const ccv_nnc_symbolic_graph_t* curr_graph = symbol.graph;
	ccv_nnc_tensor_symbol_info_t* const symbol_info = (ccv_nnc_tensor_symbol_info_t*)ccv_array_get(symbol.graph->tensor_symbol_info, symbol.d);
	assert(symbol.d >= 0 && symbol.d < curr_graph->tensor_symbol_info->rnum);
	while (curr_graph && curr_graph != graph)
		curr_graph = curr_graph->p;
	if (curr_graph)
	{
		curr_graph = symbol.graph;
		ccv_nnc_tensor_symbol_info_t* curr_symbol_info = symbol_info;
		ccv_nnc_tensor_symbol_t curr_symbol = symbol;
		while (curr_graph != graph)
		{
			ccv_nnc_symbolic_graph_t* const p = curr_graph->p;
			// I need to find the symbol, it must exist.
			assert(curr_symbol_info->p_ref);
			// Move on.
			curr_symbol.d = curr_symbol_info->p_ref - 1;
			curr_symbol.graph = p;
			assert(curr_symbol.d >= 0 && curr_symbol.d < p->tensor_symbol_info->rnum);
			curr_symbol_info = (ccv_nnc_tensor_symbol_info_t*)ccv_array_get(p->tensor_symbol_info, curr_symbol.d);
			curr_graph = p;
		}
		return curr_symbol;
	}
	// Otherwise, if the symbol is in the parent graph, this is a bit more expensive because I need to keep a trace stack.
	curr_graph = graph;
	ccv_array_t* trace = ccv_array_new(sizeof(int), 0, 0);
	while (curr_graph && curr_graph != symbol.graph)
	{
		const int p_idx = curr_graph->p_idx - 1;
		ccv_array_push(trace, &p_idx);
		curr_graph = curr_graph->p;
	}
	// If it is not in both the parent graph and the sub-graph, the input is invalid.
	assert(curr_graph);
	curr_graph = symbol.graph;
	ccv_nnc_tensor_symbol_info_t* curr_symbol_info = symbol_info;
	ccv_nnc_tensor_symbol_t curr_symbol = symbol;
	// The graph is a sub graph of the symbol passed in.
	int i;
	for (i = trace->rnum - 1; i >= 0; i--)
	{
		const int p_idx = *(int*)ccv_array_get(trace, i);
		assert(p_idx >= 0);
		assert(curr_graph->sub_graphs);
		assert(curr_symbol_info->s_ref);
		assert(p_idx >= 0 && p_idx < curr_symbol_info->s_ref->rnum);
		const int s_idx = *(int*)ccv_array_get(curr_symbol_info->s_ref, p_idx);
		ccv_nnc_symbolic_graph_t* const s = *(ccv_nnc_symbolic_graph_t**)ccv_array_get(curr_graph->sub_graphs, p_idx);
		// I need to find the symbol, it must exist.
		assert(s_idx);
		curr_symbol.d = s_idx - 1;
		curr_symbol.graph = s;
		assert(curr_symbol.d >= 0 && curr_symbol.d < s->tensor_symbol_info->rnum);
		curr_symbol_info = (ccv_nnc_tensor_symbol_info_t*)ccv_array_get(s->tensor_symbol_info, curr_symbol.d);
		// Move on.
		curr_graph = s;
	}
	ccv_array_free(trace);
	return curr_symbol;
}
Exemplo n.º 15
0
int main(int argc, char** argv)
{
	static struct option icf_options[] = {
		/* help */
		{"help", 0, 0, 0},
		/* required parameters */
		{"positive-list", 1, 0, 0},
		{"background-list", 1, 0, 0},
		{"validate-list", 1, 0, 0},
		{"working-dir", 1, 0, 0},
		{"negative-count", 1, 0, 0},
		{"positive-count", 1, 0, 0},
		{"acceptance", 1, 0, 0},
		{"size", 1, 0, 0},
		{"feature-size", 1, 0, 0},
		{"weak-classifier-count", 1, 0, 0},
		/* optional parameters */
		{"base-dir", 1, 0, 0},
		{"grayscale", 1, 0, 0},
		{"margin", 1, 0, 0},
		{"deform-shift", 1, 0, 0},
		{"deform-angle", 1, 0, 0},
		{"deform-scale", 1, 0, 0},
		{"min-dimension", 1, 0, 0},
		{"bootstrap", 1, 0, 0},
		{0, 0, 0, 0}
	};
	char* positive_list = 0;
	char* background_list = 0;
	char* validate_list = 0;
	char* working_dir = 0;
	char* base_dir = 0;
	int negative_count = 0;
	int positive_count = 0;
	ccv_icf_new_param_t params = {
		.grayscale = 0,
		.margin = ccv_margin(0, 0, 0, 0),
		.size = ccv_size(0, 0),
		.deform_shift = 1,
		.deform_angle = 0,
		.deform_scale = 0.075,
		.feature_size = 0,
		.weak_classifier = 0,
		.min_dimension = 2,
		.bootstrap = 3,
		.detector = ccv_icf_default_params,
	};
	params.detector.step_through = 4; // for faster negatives bootstrap time
	int i, k;
	char* token;
	char* saveptr;
	while (getopt_long_only(argc, argv, "", icf_options, &k) != -1)
	{
		switch (k)
		{
			case 0:
				exit_with_help();
			case 1:
				positive_list = optarg;
				break;
			case 2:
				background_list = optarg;
				break;
			case 3:
				validate_list = optarg;
				break;
			case 4:
				working_dir = optarg;
				break;
			case 5:
				negative_count = atoi(optarg);
				break;
			case 6:
				positive_count = atoi(optarg);
				break;
			case 7:
				params.acceptance = atof(optarg);
				break;
			case 8:
				token = strtok_r(optarg, "x", &saveptr);
				params.size.width = atoi(token);
				token = strtok_r(0, "x", &saveptr);
				params.size.height = atoi(token);
				break;
			case 9:
				params.feature_size = atoi(optarg);
				break;
			case 10:
				params.weak_classifier = atoi(optarg);
				break;
			case 11:
				base_dir = optarg;
				break;
			case 12:
				params.grayscale = !!atoi(optarg);
				break;
			case 13:
				token = strtok_r(optarg, ",", &saveptr);
				params.margin.left = atoi(token);
				token = strtok_r(0, ",", &saveptr);
				params.margin.top = atoi(token);
				token = strtok_r(0, ",", &saveptr);
				params.margin.right = atoi(token);
				token = strtok_r(0, ",", &saveptr);
				params.margin.bottom = atoi(token);
				break;
			case 14:
				params.deform_shift = atof(optarg);
				break;
			case 15:
				params.deform_angle = atof(optarg);
				break;
			case 16:
				params.deform_scale = atof(optarg);
				break;
			case 17:
				params.min_dimension = atoi(optarg);
				break;
			case 18:
				params.bootstrap = atoi(optarg);
				break;
		}
	}
	assert(positive_list != 0);
	assert(background_list != 0);
	assert(validate_list != 0);
	assert(working_dir != 0);
	assert(positive_count > 0);
	assert(negative_count > 0);
	assert(params.size.width > 0);
	assert(params.size.height > 0);
	ccv_enable_cache(512 * 1024 * 1024);
	FILE* r0 = fopen(positive_list, "r");
	assert(r0 && "positive-list doesn't exists");
	FILE* r1 = fopen(background_list, "r");
	assert(r1 && "background-list doesn't exists");
	FILE* r2 = fopen(validate_list, "r");
	assert(r2 && "validate-list doesn't exists");
	char* file = (char*)malloc(1024);
	ccv_decimal_pose_t pose;
	int dirlen = (base_dir != 0) ? strlen(base_dir) + 1 : 0;
	ccv_array_t* posfiles = ccv_array_new(sizeof(ccv_file_info_t), 32, 0);
	// roll pitch yaw
	while (fscanf(r0, "%s %f %f %f %f %f %f %f", file, &pose.x, &pose.y, &pose.a, &pose.b, &pose.roll, &pose.pitch, &pose.yaw) != EOF)
	{
		ccv_file_info_t file_info;
		file_info.filename = (char*)ccmalloc(1024);
		if (base_dir != 0)
		{
			strncpy(file_info.filename, base_dir, 1024);
			file_info.filename[dirlen - 1] = '/';
		}
		strncpy(file_info.filename + dirlen, file, 1024 - dirlen);
		file_info.pose = pose;
		ccv_array_push(posfiles, &file_info);
	}
	fclose(r0);
	size_t len = 1024;
	ssize_t read;
	ccv_array_t* bgfiles = (ccv_array_t*)ccv_array_new(sizeof(ccv_file_info_t), 32, 0);
	while ((read = getline(&file, &len, r1)) != -1)
	{
		while(read > 1 && isspace(file[read - 1]))
			read--;
		file[read] = 0;
		ccv_file_info_t file_info;
		file_info.filename = (char*)ccmalloc(1024);
		if (base_dir != 0)
		{
			strncpy(file_info.filename, base_dir, 1024);
			file_info.filename[dirlen - 1] = '/';
		}
		strncpy(file_info.filename + dirlen, file, 1024 - dirlen);
		ccv_array_push(bgfiles, &file_info);
	}
	fclose(r1);
	ccv_array_t* validatefiles = ccv_array_new(sizeof(ccv_file_info_t), 32, 0);
	// roll pitch yaw
	while (fscanf(r2, "%s %f %f %f %f %f %f %f", file, &pose.x, &pose.y, &pose.a, &pose.b, &pose.roll, &pose.pitch, &pose.yaw) != EOF)
	{
		ccv_file_info_t file_info;
		file_info.filename = (char*)ccmalloc(1024);
		if (base_dir != 0)
		{
			strncpy(file_info.filename, base_dir, 1024);
			file_info.filename[dirlen - 1] = '/';
		}
		strncpy(file_info.filename + dirlen, file, 1024 - dirlen);
		file_info.pose = pose;
		ccv_array_push(validatefiles, &file_info);
	}
	fclose(r2);
	free(file);
	ccv_icf_classifier_cascade_t* classifier = ccv_icf_classifier_cascade_new(posfiles, positive_count, bgfiles, negative_count, validatefiles, working_dir, params);
	char filename[1024];
	snprintf(filename, 1024, "%s/final-cascade", working_dir);
	ccv_icf_write_classifier_cascade(classifier, filename);
	for (i = 0; i < posfiles->rnum; i++)
	{
		ccv_file_info_t* file_info = (ccv_file_info_t*)ccv_array_get(posfiles, i);
		free(file_info->filename);
	}
	ccv_array_free(posfiles);
	for (i = 0; i < bgfiles->rnum; i++)
	{
		ccv_file_info_t* file_info = (ccv_file_info_t*)ccv_array_get(bgfiles, i);
		free(file_info->filename);
	}
	ccv_array_free(bgfiles);
	for (i = 0; i < validatefiles->rnum; i++)
	{
		ccv_file_info_t* file_info = (ccv_file_info_t*)ccv_array_get(validatefiles, i);
		free(file_info->filename);
	}
	ccv_array_free(validatefiles);
	ccv_disable_cache();
	return 0;
}
Exemplo n.º 16
0
// compute harmonic mean of precision / recall of swt
static void _ccv_evaluate_wolf(ccv_array_t* words, ccv_array_t* truth, ccv_swt_param_t params, double* precision, double* recall)
{
	if (words->rnum == 0 || truth->rnum == 0)
		return;
	int j, k;
	double total_recall = 0, total_precision = 0;
	int* cG = (int*)ccmalloc(sizeof(int) * truth->rnum);
	int* cD = (int*)ccmalloc(sizeof(int) * words->rnum);
	memset(cG, 0, sizeof(int) * truth->rnum);
	memset(cD, 0, sizeof(int) * words->rnum);
	double* mG = (double*)ccmalloc(sizeof(double) * truth->rnum * words->rnum);
	double* mD = (double*)ccmalloc(sizeof(double) * truth->rnum * words->rnum);
	memset(mG, 0, sizeof(double) * truth->rnum * words->rnum);
	memset(mD, 0, sizeof(double) * truth->rnum * words->rnum);
	for (j = 0; j < truth->rnum; j++)
	{
		ccv_rect_t* rect = (ccv_rect_t*)ccv_array_get(truth, j);
		for (k = 0; k < words->rnum; k++)
		{
			ccv_rect_t* target = (ccv_rect_t*)ccv_array_get(words, k);
			int match = ccv_max(ccv_min(target->x + target->width, rect->x + rect->width) - ccv_max(target->x, rect->x), 0) * ccv_max(ccv_min(target->y + target->height, rect->y + rect->height) - ccv_max(target->y, rect->y), 0);
			if (match > 0)
			{
				mG[j * words->rnum + k] = (double)match / (double)(rect->width * rect->height);
				mD[k * truth->rnum + j] = (double)match / (double)(target->width * target->height);
				++cG[j];
				++cD[k];
			}
		}
	}
	unsigned char* tG = (unsigned char*)ccmalloc(truth->rnum);
	unsigned char* tD = (unsigned char*)ccmalloc(words->rnum);
	memset(tG, 0, truth->rnum);
	memset(tD, 0, words->rnum);
	// one to one match
	for (j = 0; j < truth->rnum; j++)
	{
		if (cG[j] != 1)
			continue;
		ccv_rect_t* rect = (ccv_rect_t*)ccv_array_get(truth, j);
		for (k = 0; k < words->rnum; k++)
		{
			if (cD[k] != 1)
				continue;
			ccv_rect_t* target = (ccv_rect_t*)ccv_array_get(words, k);
			if (mG[j * words->rnum + k] >= one_g && mD[k * truth->rnum + j] >= one_d)
			{
				double dx = (target->x + target->width * 0.5) - (rect->x + rect->width * 0.5);
				double dy = (target->y + target->height * 0.5) - (rect->y + rect->height * 0.5);
				double d = sqrt(dx * dx + dy * dy) * 2.0 / (sqrt(target->width * target->width + target->height * target->height) + sqrt(rect->width * rect->width + rect->height * rect->height));
				if (d < center_diff_thr)
				{
					total_recall += 1.0;
					total_precision += 1.0;
					assert(tG[j] == 0);
					assert(tD[k] == 0);
					tG[j] = tD[k] = 1;
				}
			}
		}
	}
	int* many = (int*)ccmalloc(sizeof(int) * ccv_max(words->rnum, truth->rnum));
	// one to many match, starts with ground truth
	for (j = 0; j < truth->rnum; j++)
	{
		if (tG[j] || cG[j] <= 1)
			continue;
		double one_sum = 0;
		int no_many = 0;
		for (k = 0; k < words->rnum; k++)
		{
			if (tD[k])
				continue;
			double many_single = mD[k * truth->rnum + j];
			if (many_single >= one_d)
			{
				one_sum += mG[j * words->rnum + k];
				many[no_many] = k;
				++no_many;
			}
		}
		if (no_many == 1)
		{
			// degrade to one to one match
			if (mG[j * words->rnum + many[0]] >= one_g && mD[many[0] * truth->rnum + j] >= one_d)
			{
				total_recall += 1.0;
				total_precision += 1.0;
				tG[j] = tD[many[0]] = 1;
			}
		} else if (one_sum >= one_g) {
			for (k = 0; k < no_many; k++)
				tD[many[k]] = 1;
			total_recall += om_one;
			total_precision += om_one / (1 + log(no_many));
		}
	}
	// one to many match, with estimate
	for (k = 0; k < words->rnum; k++)
	{
		if (tD[k] || cD[k] <= 1)
			continue;
		double one_sum = 0;
		int no_many = 0;
		for (j = 0; j < truth->rnum; j++)
		{
			if (tG[j])
				continue;
			double many_single = mG[j * words->rnum + k];
			if (many_single >= one_g)
			{
				one_sum += mD[k * truth->rnum + j];
				many[no_many] = j;
				++no_many;
			}
		}
		if (no_many == 1)
		{
			// degrade to one to one match
			if (mG[many[0] * words->rnum + k] >= one_g && mD[k * truth->rnum + many[0]] >= one_d)
			{
				total_recall += 1.0;
				total_precision += 1.0;
				tG[many[0]] = tD[k] = 1;
			}
		} else if (one_sum >= one_g) {
			for (j = 0; j < no_many; j++)
				tG[many[j]] = 1;
			total_recall += om_one / (1 + log(no_many));
			total_precision += om_one;
		}
	}
	ccfree(many);
	ccfree(tG);
	ccfree(tD);
	ccfree(cG);
	ccfree(cD);
	ccfree(mG);
	ccfree(mD);
	assert(total_precision < words->rnum + 0.1);
	assert(total_recall < truth->rnum + 0.1);
	if (precision)
		*precision = total_precision;
	if (recall)
		*recall = total_recall;
}
Exemplo n.º 17
0
/* this code is a rewrite from OpenCV's legendary Lucas-Kanade optical flow implementation */
void ccv_optical_flow_lucas_kanade(ccv_dense_matrix_t* a, ccv_dense_matrix_t* b, ccv_array_t* point_a, ccv_array_t** point_b, ccv_size_t win_size, int level, double min_eigen)
{
	assert(a && b && a->rows == b->rows && a->cols == b->cols);
	assert(CCV_GET_CHANNEL(a->type) == CCV_GET_CHANNEL(b->type) && CCV_GET_DATA_TYPE(a->type) == CCV_GET_DATA_TYPE(b->type));
	assert(CCV_GET_CHANNEL(a->type) == 1);
	assert(CCV_GET_DATA_TYPE(a->type) == CCV_8U);
	assert(point_a->rnum > 0);
	level = ccv_clamp(level + 1, 1, (int)(log((double)ccv_min(a->rows, a->cols) / ccv_max(win_size.width * 2, win_size.height * 2)) / log(2.0) + 0.5));
	ccv_declare_derived_signature(sig, a->sig != 0 && b->sig != 0 && point_a->sig != 0, ccv_sign_with_format(128, "ccv_optical_flow_lucas_kanade(%d,%d,%d,%la)", win_size.width, win_size.height, level, min_eigen), a->sig, b->sig, point_a->sig, CCV_EOF_SIGN);
	ccv_array_t* seq = *point_b = ccv_array_new(sizeof(ccv_decimal_point_with_status_t), point_a->rnum, sig);
	ccv_object_return_if_cached(, seq);
	seq->rnum = point_a->rnum;
	ccv_dense_matrix_t** pyr_a = (ccv_dense_matrix_t**)malloc(sizeof(ccv_dense_matrix_t*) * level);
	ccv_dense_matrix_t** pyr_a_dx = (ccv_dense_matrix_t**)malloc(sizeof(ccv_dense_matrix_t*) * level);
	ccv_dense_matrix_t** pyr_a_dy = (ccv_dense_matrix_t**)malloc(sizeof(ccv_dense_matrix_t*) * level);
	ccv_dense_matrix_t** pyr_b = (ccv_dense_matrix_t**)malloc(sizeof(ccv_dense_matrix_t*) * level);
	int i, j, t, x, y;
	/* generating image pyramid */
	pyr_a[0] = a;
	pyr_a_dx[0] = pyr_a_dy[0] = 0;
	ccv_sobel(pyr_a[0], &pyr_a_dx[0], 0, 3, 0);
	ccv_sobel(pyr_a[0], &pyr_a_dy[0], 0, 0, 3);
	pyr_b[0] = b;
	for (i = 1; i < level; i++)
	{
		pyr_a[i] = pyr_a_dx[i] = pyr_a_dy[i] = pyr_b[i] = 0;
		ccv_sample_down(pyr_a[i - 1], &pyr_a[i], 0, 0, 0);
		ccv_sobel(pyr_a[i], &pyr_a_dx[i], 0, 3, 0);
		ccv_sobel(pyr_a[i], &pyr_a_dy[i], 0, 0, 3);
		ccv_sample_down(pyr_b[i - 1], &pyr_b[i], 0, 0, 0);
	}
	int* wi = (int*)malloc(sizeof(int) * win_size.width * win_size.height);
	int* widx = (int*)malloc(sizeof(int) * win_size.width * win_size.height);
	int* widy = (int*)malloc(sizeof(int) * win_size.width * win_size.height);
	ccv_decimal_point_t half_win = ccv_decimal_point((win_size.width - 1) * 0.5f, (win_size.height - 1) * 0.5f);
	const int W_BITS14 = 14, W_BITS7 = 7, W_BITS9 = 9;
	const float FLT_SCALE = 1.0f / (1 << 25);
	// clean up status to 1
	for (i = 0; i < point_a->rnum; i++)
	{
		ccv_decimal_point_with_status_t* point_with_status = (ccv_decimal_point_with_status_t*)ccv_array_get(seq, i);
		point_with_status->status = 1;
	}
	int prev_rows, prev_cols;
	for (t = level - 1; t >= 0; t--)
	{
		ccv_dense_matrix_t* a = pyr_a[t];
		ccv_dense_matrix_t* adx = pyr_a_dx[t];
		ccv_dense_matrix_t* ady = pyr_a_dy[t];
		assert(CCV_GET_DATA_TYPE(adx->type) == CCV_32S);
		assert(CCV_GET_DATA_TYPE(ady->type) == CCV_32S);
		ccv_dense_matrix_t* b = pyr_b[t];
		for (i = 0; i < point_a->rnum; i++)
		{
			ccv_decimal_point_t prev_point = *(ccv_decimal_point_t*)ccv_array_get(point_a, i);
			ccv_decimal_point_with_status_t* point_with_status = (ccv_decimal_point_with_status_t*)ccv_array_get(seq, i);
			prev_point.x = prev_point.x / (float)(1 << t);
			prev_point.y = prev_point.y / (float)(1 << t);
			ccv_decimal_point_t next_point;
			if (t == level - 1)
				next_point = prev_point;
			else {
				next_point.x = point_with_status->point.x * 2 + (a->cols - prev_cols * 2) * 0.5;
				next_point.y = point_with_status->point.y * 2 + (a->rows - prev_rows * 2) * 0.5;
			}
			point_with_status->point = next_point;
			prev_point.x -= half_win.x;
			prev_point.y -= half_win.y;
			ccv_point_t iprev_point = ccv_point((int)prev_point.x, (int)prev_point.y);
			if (iprev_point.x < 0 || iprev_point.x >= a->cols - win_size.width - 1 ||
				iprev_point.y < 0 || iprev_point.y >= a->rows - win_size.height - 1)
			{
				if (t == 0)
					point_with_status->status = 0;
				continue;
			}
			float xd = prev_point.x - iprev_point.x;
			float yd = prev_point.y - iprev_point.y;
			int iw00 = (int)((1 - xd) * (1 - yd) * (1 << W_BITS14) + 0.5);
			int iw01 = (int)(xd * (1 - yd) * (1 << W_BITS14) + 0.5);
			int iw10 = (int)((1 - xd) * yd * (1 << W_BITS14) + 0.5);
			int iw11 = (1 << W_BITS14) - iw00 - iw01 - iw10;
			float a11 = 0, a12 = 0, a22 = 0;
			unsigned char* a_ptr = (unsigned char*)ccv_get_dense_matrix_cell_by(CCV_C1 | CCV_8U, a, iprev_point.y, iprev_point.x, 0);
			int* adx_ptr = (int*)ccv_get_dense_matrix_cell_by(CCV_C1 | CCV_32S, adx, iprev_point.y, iprev_point.x, 0);
			int* ady_ptr = (int*)ccv_get_dense_matrix_cell_by(CCV_C1 | CCV_32S, ady, iprev_point.y, iprev_point.x, 0);
			int* wi_ptr = wi;
			int* widx_ptr = widx;
			int* widy_ptr = widy;
			for (y = 0; y < win_size.height; y++)
			{
				for (x = 0; x < win_size.width; x++)
				{
					wi_ptr[x] = ccv_descale(a_ptr[x] * iw00 + a_ptr[x + 1] * iw01 + a_ptr[x + a->step] * iw10 + a_ptr[x + a->step + 1] * iw11, W_BITS7);
					// because we use 3x3 sobel, which scaled derivative up by 4
					widx_ptr[x] = ccv_descale(adx_ptr[x] * iw00 + adx_ptr[x + 1] * iw01 + adx_ptr[x + adx->cols] * iw10 + adx_ptr[x + adx->cols + 1] * iw11, W_BITS9);
					widy_ptr[x] = ccv_descale(ady_ptr[x] * iw00 + ady_ptr[x + 1] * iw01 + ady_ptr[x + ady->cols] + iw10 + ady_ptr[x + ady->cols + 1] * iw11, W_BITS9);
					a11 += (float)(widx_ptr[x] * widx_ptr[x]);
					a12 += (float)(widx_ptr[x] * widy_ptr[x]);
					a22 += (float)(widy_ptr[x] * widy_ptr[x]);
				}
				a_ptr += a->step;
				adx_ptr += adx->cols;
				ady_ptr += ady->cols;
				wi_ptr += win_size.width;
				widx_ptr += win_size.width;
				widy_ptr += win_size.width;
			}
			a11 *= FLT_SCALE;
			a12 *= FLT_SCALE;
			a22 *= FLT_SCALE;
			float D = a11 * a22 - a12 * a12;
			float eigen = (a22 + a11 - sqrtf((a11 - a22) * (a11 - a22) + 4.0f * a12 * a12)) / (2 * win_size.width * win_size.height);
			if (eigen < min_eigen || D < FLT_EPSILON)
			{
				if (t == 0)
					point_with_status->status = 0;
				continue;
			}
			D = 1.0f / D;
			next_point.x -= half_win.x;
			next_point.y -= half_win.y;
			ccv_decimal_point_t prev_delta;
			for (j = 0; j < LK_MAX_ITER; j++)
			{
				ccv_point_t inext_point = ccv_point((int)next_point.x, (int)next_point.y);
				if (inext_point.x < 0 || inext_point.x >= a->cols - win_size.width - 1 ||
					inext_point.y < 0 || inext_point.y >= a->rows - win_size.height - 1)
					break;
				float xd = next_point.x - inext_point.x;
				float yd = next_point.y - inext_point.y;
				int iw00 = (int)((1 - xd) * (1 - yd) * (1 << W_BITS14) + 0.5);
				int iw01 = (int)(xd * (1 - yd) * (1 << W_BITS14) + 0.5);
				int iw10 = (int)((1 - xd) * yd * (1 << W_BITS14) + 0.5);
				int iw11 = (1 << W_BITS14) - iw00 - iw01 - iw10;
				float b1 = 0, b2 = 0;
				unsigned char* b_ptr = (unsigned char*)ccv_get_dense_matrix_cell_by(CCV_C1 | CCV_8U, b, inext_point.y, inext_point.x, 0);
				int* wi_ptr = wi;
				int* widx_ptr = widx;
				int* widy_ptr = widy;
				for (y = 0; y < win_size.height; y++)
				{
					for (x = 0; x < win_size.width; x++)
					{
						int diff = ccv_descale(b_ptr[x] * iw00 + b_ptr[x + 1] * iw01 + b_ptr[x + b->step] * iw10 + b_ptr[x + b->step + 1] * iw11, W_BITS7) - wi_ptr[x];
						b1 += (float)(diff * widx_ptr[x]);
						b2 += (float)(diff * widy_ptr[x]);
					}
					b_ptr += b->step;
					wi_ptr += win_size.width;
					widx_ptr += win_size.width;
					widy_ptr += win_size.width;
				}
				b1 *= FLT_SCALE;
				b2 *= FLT_SCALE;
				ccv_decimal_point_t delta = ccv_decimal_point((a12 * b2 - a22 * b1) * D, (a12 * b1 - a11 * b2) * D);
				next_point.x += delta.x;
				next_point.y += delta.y;
				if (delta.x * delta.x + delta.y * delta.y < LK_EPSILON)
					break;
				if (j > 0 && fabs(prev_delta.x - delta.x) < 0.01 && fabs(prev_delta.y - delta.y) < 0.01)
				{
					next_point.x -= delta.x * 0.5;
					next_point.y -= delta.y * 0.5;
					break;
				}
				prev_delta = delta;
			}
			ccv_point_t inext_point = ccv_point((int)next_point.x, (int)next_point.y);
			if (inext_point.x < 0 || inext_point.x >= a->cols - win_size.width - 1 ||
				inext_point.y < 0 || inext_point.y >= a->rows - win_size.height - 1)
				point_with_status->status = 0;
			else {
				point_with_status->point.x = next_point.x + half_win.x;
				point_with_status->point.y = next_point.y + half_win.y;
			}
		}
		prev_rows = a->rows;
		prev_cols = a->cols;
		ccv_matrix_free(adx);
		ccv_matrix_free(ady);
		if (t > 0)
		{
			ccv_matrix_free(a);
			ccv_matrix_free(b);
		}
	}
        free(widy);
        free(widx);
        free(wi);
        free(pyr_b);
        free(pyr_a_dy);
        free(pyr_a_dx);
        free(pyr_a);
}
Exemplo n.º 18
0
int main(int argc, char** argv)
{
	assert(argc == 3);
	ccv_enable_default_cache();
	ccv_dense_matrix_t* object = 0;
	ccv_dense_matrix_t* image = 0;
	ccv_read(argv[1], &object, CCV_IO_GRAY | CCV_IO_ANY_FILE);
	ccv_read(argv[2], &image, CCV_IO_GRAY | CCV_IO_ANY_FILE);
	unsigned int elapsed_time = get_current_time();
	ccv_sift_param_t params = {
		.noctaves = 3,
		.nlevels = 6,
		.up2x = 1,
		.edge_threshold = 10,
		.norm_threshold = 0,
		.peak_threshold = 0,
	};
	ccv_array_t* obj_keypoints = 0;
	ccv_dense_matrix_t* obj_desc = 0;
	ccv_sift(object, &obj_keypoints, &obj_desc, 0, params);
	ccv_array_t* image_keypoints = 0;
	ccv_dense_matrix_t* image_desc = 0;
	ccv_sift(image, &image_keypoints, &image_desc, 0, params);
	elapsed_time = get_current_time() - elapsed_time;
	int i, j, k;
	int match = 0;
	for (i = 0; i < obj_keypoints->rnum; i++)
	{
		float* odesc = obj_desc->data.f32 + i * 128;
		int minj = -1;
		double mind = 1e6, mind2 = 1e6;
		for (j = 0; j < image_keypoints->rnum; j++)
		{
			float* idesc = image_desc->data.f32 + j * 128;
			double d = 0;
			for (k = 0; k < 128; k++)
			{
				d += (odesc[k] - idesc[k]) * (odesc[k] - idesc[k]);
				if (d > mind2)
					break;
			}
			if (d < mind)
			{
				mind2 = mind;
				mind = d;
				minj = j;
			} else if (d < mind2) {
				mind2 = d;
			}
		}
		if (mind < mind2 * 0.36)
		{
			ccv_keypoint_t* op = (ccv_keypoint_t*)ccv_array_get(obj_keypoints, i);
			ccv_keypoint_t* kp = (ccv_keypoint_t*)ccv_array_get(image_keypoints, minj);
			printf("%f %f => %f %f\n", op->x, op->y, kp->x, kp->y);
			match++;
		}
	}
	printf("%dx%d on %dx%d\n", object->cols, object->rows, image->cols, image->rows);
	printf("%d keypoints out of %d are matched\n", match, obj_keypoints->rnum);
	printf("elpased time : %d\n", elapsed_time);
	ccv_array_free(obj_keypoints);
	ccv_array_free(image_keypoints);
	ccv_matrix_free(obj_desc);
	ccv_matrix_free(image_desc);
	ccv_matrix_free(object);
	ccv_matrix_free(image);
	ccv_disable_cache();
	return 0;
}
Exemplo n.º 19
0
int main(int argc, char** argv)
{
	assert(argc >= 3);
	int i, j;
	ccv_enable_default_cache();
	ccv_dense_matrix_t* image = 0;
	ccv_read(argv[1], &image, CCV_IO_ANY_FILE);
	ccv_dpm_mixture_model_t* model = ccv_dpm_read_mixture_model(argv[2]);
	if (image != 0)
	{
		unsigned int elapsed_time = get_current_time();
		ccv_array_t* seq = ccv_dpm_detect_objects(image, &model, 1, ccv_dpm_default_params);
		elapsed_time = get_current_time() - elapsed_time;
		if (seq)
		{
			for (i = 0; i < seq->rnum; i++)
			{
				ccv_root_comp_t* comp = (ccv_root_comp_t*)ccv_array_get(seq, i);
				printf("%d %d %d %d %f %d\n", comp->rect.x, comp->rect.y, comp->rect.width, comp->rect.height, comp->classification.confidence, comp->pnum);
				for (j = 0; j < comp->pnum; j++)
					printf("| %d %d %d %d %f\n", comp->part[j].rect.x, comp->part[j].rect.y, comp->part[j].rect.width, comp->part[j].rect.height, comp->part[j].classification.confidence);
			}
			printf("total : %d in time %dms\n", seq->rnum, elapsed_time);
			ccv_array_free(seq);
		} else {
			printf("elapsed time %dms\n", elapsed_time);
		}
		ccv_matrix_free(image);
	} else {
		FILE* r = fopen(argv[1], "rt");
		if (argc == 4)
			chdir(argv[3]);
		if(r)
		{
			size_t len = 1024;
			char* file = (char*)malloc(len);
			ssize_t read;
			while((read = getline(&file, &len, r)) != -1)
			{
				while(read > 1 && isspace(file[read - 1]))
					read--;
				file[read] = 0;
				image = 0;
				ccv_read(file, &image, CCV_IO_GRAY | CCV_IO_ANY_FILE);
				assert(image != 0);
				ccv_array_t* seq = ccv_dpm_detect_objects(image, &model, 1, ccv_dpm_default_params);
				if (seq != 0)
				{
					for (i = 0; i < seq->rnum; i++)
					{
						ccv_root_comp_t* comp = (ccv_root_comp_t*)ccv_array_get(seq, i);
						printf("%s %d %d %d %d %f %d\n", file, comp->rect.x, comp->rect.y, comp->rect.width, comp->rect.height, comp->classification.confidence, comp->pnum);
						for (j = 0; j < comp->pnum; j++)
							printf("| %d %d %d %d %f\n", comp->part[j].rect.x, comp->part[j].rect.y, comp->part[j].rect.width, comp->part[j].rect.height, comp->part[j].classification.confidence);
					}
					ccv_array_free(seq);
				}
				ccv_matrix_free(image);
			}
			free(file);
			fclose(r);
		}
	}
	ccv_drain_cache();
	ccv_dpm_mixture_model_free(model);
	return 0;
}
Exemplo n.º 20
0
ccv_array_t* ccv_bbf_detect_objects(ccv_dense_matrix_t* a, ccv_bbf_classifier_cascade_t** _cascade, int count, ccv_bbf_param_t params)
{
	int hr = a->rows / ENDORSE(params.size.height);
	int wr = a->cols / ENDORSE(params.size.width);
	double scale = pow(2., 1. / (params.interval + 1.));
	APPROX int next = params.interval + 1;
	int scale_upto = (int)(log((double)ccv_min(hr, wr)) / log(scale));
	ccv_dense_matrix_t** pyr = (ccv_dense_matrix_t**)alloca(ENDORSE(scale_upto + next * 2) * 4 * sizeof(ccv_dense_matrix_t*));
	memset(pyr, 0, (scale_upto + next * 2) * 4 * sizeof(ccv_dense_matrix_t*));
	if (ENDORSE(params.size.height != _cascade[0]->size.height || params.size.width != _cascade[0]->size.width))
		ccv_resample(a, &pyr[0], 0, a->rows * ENDORSE(_cascade[0]->size.height / params.size.height), a->cols * ENDORSE(_cascade[0]->size.width / params.size.width), CCV_INTER_AREA);
	else
		pyr[0] = a;
	APPROX int i;
        int j, k, t, x, y, q;
	for (i = 1; ENDORSE(i < ccv_min(params.interval + 1, scale_upto + next * 2)); i++)
		ccv_resample(pyr[0], &pyr[i * 4], 0, (int)(pyr[0]->rows / pow(scale, i)), (int)(pyr[0]->cols / pow(scale, i)), CCV_INTER_AREA);
	for (i = next; ENDORSE(i < scale_upto + next * 2); i++)
		ccv_sample_down(pyr[i * 4 - next * 4], &pyr[i * 4], 0, 0, 0);
	if (params.accurate)
		for (i = next * 2; ENDORSE(i < scale_upto + next * 2); i++)
		{
			ccv_sample_down(pyr[i * 4 - next * 4], &pyr[i * 4 + 1], 0, 1, 0);
			ccv_sample_down(pyr[i * 4 - next * 4], &pyr[i * 4 + 2], 0, 0, 1);
			ccv_sample_down(pyr[i * 4 - next * 4], &pyr[i * 4 + 3], 0, 1, 1);
		}
	ccv_array_t* idx_seq;
	ccv_array_t* seq = ccv_array_new(sizeof(ccv_comp_t), 64, 0);
	ccv_array_t* seq2 = ccv_array_new(sizeof(ccv_comp_t), 64, 0);
	ccv_array_t* result_seq = ccv_array_new(sizeof(ccv_comp_t), 64, 0);
	/* detect in multi scale */
	for (t = 0; t < count; t++)
	{
		ccv_bbf_classifier_cascade_t* cascade = _cascade[t];
		APPROX float scale_x = (float) params.size.width / (float) cascade->size.width;
		APPROX float scale_y = (float) params.size.height / (float) cascade->size.height;
		ccv_array_clear(seq);
		for (i = 0; ENDORSE(i < scale_upto); i++)
		{
			APPROX int dx[] = {0, 1, 0, 1};
			APPROX int dy[] = {0, 0, 1, 1};
			APPROX int i_rows = pyr[i * 4 + next * 8]->rows - ENDORSE(cascade->size.height >> 2);
			APPROX int steps[] = { pyr[i * 4]->step, pyr[i * 4 + next * 4]->step, pyr[i * 4 + next * 8]->step };
			APPROX int i_cols = pyr[i * 4 + next * 8]->cols - ENDORSE(cascade->size.width >> 2);
			int paddings[] = { pyr[i * 4]->step * 4 - i_cols * 4,
							   pyr[i * 4 + next * 4]->step * 2 - i_cols * 2,
							   pyr[i * 4 + next * 8]->step - i_cols };
			for (q = 0; q < (params.accurate ? 4 : 1); q++)
			{
				APPROX unsigned char* u8[] = { pyr[i * 4]->data.u8 + dx[q] * 2 + dy[q] * pyr[i * 4]->step * 2, pyr[i * 4 + next * 4]->data.u8 + dx[q] + dy[q] * pyr[i * 4 + next * 4]->step, pyr[i * 4 + next * 8 + q]->data.u8 };
				for (y = 0; ENDORSE(y < i_rows); y++)
				{
					for (x = 0; ENDORSE(x < i_cols); x++)
					{
						APPROX float sum;
						APPROX int flag = 1;
						ccv_bbf_stage_classifier_t* classifier = cascade->stage_classifier;
						for (j = 0; j < ENDORSE(cascade->count); ++j, ++classifier)
						{
							sum = 0;
							APPROX float* alpha = classifier->alpha;
							ccv_bbf_feature_t* feature = classifier->feature;
							for (k = 0; k < ENDORSE(classifier->count); ++k, alpha += 2, ++feature)
								sum += alpha[_ccv_run_bbf_feature(feature, ENDORSE(steps), u8)];
							if (ENDORSE(sum) < ENDORSE(classifier->threshold))
							{
								flag = 0;
								break;
							}
						}
						if (ENDORSE(flag))
						{
							ccv_comp_t comp;
							comp.rect = ccv_rect((int)((x * 4 + dx[q] * 2) * scale_x + 0.5), (int)((y * 4 + dy[q] * 2) * scale_y + 0.5), (int)(cascade->size.width * scale_x + 0.5), (int)(cascade->size.height * scale_y + 0.5));
							comp.neighbors = 1;
							comp.classification.id = t;
							comp.classification.confidence = sum;
							ccv_array_push(seq, &comp);
						}
						u8[0] += 4;
						u8[1] += 2;
						u8[2] += 1;
					}
					u8[0] += paddings[0];
					u8[1] += paddings[1];
					u8[2] += paddings[2];
				}
			}
			scale_x *= scale;
			scale_y *= scale;
		}

		/* the following code from OpenCV's haar feature implementation */
		if(params.min_neighbors == 0)
		{
			for (i = 0; ENDORSE(i < seq->rnum); i++)
			{
				ccv_comp_t* comp = (ccv_comp_t*)ENDORSE(ccv_array_get(seq, i));
				ccv_array_push(result_seq, comp);
			}
		} else {
			idx_seq = 0;
			ccv_array_clear(seq2);
			// group retrieved rectangles in order to filter out noise
			int ncomp = ccv_array_group(seq, &idx_seq, _ccv_is_equal_same_class, 0);
			ccv_comp_t* comps = (ccv_comp_t*)ccmalloc((ncomp + 1) * sizeof(ccv_comp_t));
			memset(comps, 0, (ncomp + 1) * sizeof(ccv_comp_t));

			// count number of neighbors
			for(i = 0; ENDORSE(i < seq->rnum); i++)
			{
				ccv_comp_t r1 = *(ccv_comp_t*)ENDORSE(ccv_array_get(seq, i));
				int idx = *(int*)ENDORSE(ccv_array_get(idx_seq, i));

				if (ENDORSE(comps[idx].neighbors) == 0)
					comps[idx].classification.confidence = r1.classification.confidence;

				++comps[idx].neighbors;

				comps[idx].rect.x += r1.rect.x;
				comps[idx].rect.y += r1.rect.y;
				comps[idx].rect.width += r1.rect.width;
				comps[idx].rect.height += r1.rect.height;
				comps[idx].classification.id = r1.classification.id;
				comps[idx].classification.confidence = ccv_max(comps[idx].classification.confidence, r1.classification.confidence);
			}

			// calculate average bounding box
			for(i = 0; ENDORSE(i < ncomp); i++)
			{
				int n = ENDORSE(comps[i].neighbors);
				if(n >= params.min_neighbors)
				{
					ccv_comp_t comp;
					comp.rect.x = (comps[i].rect.x * 2 + n) / (2 * n);
					comp.rect.y = (comps[i].rect.y * 2 + n) / (2 * n);
					comp.rect.width = (comps[i].rect.width * 2 + n) / (2 * n);
					comp.rect.height = (comps[i].rect.height * 2 + n) / (2 * n);
					comp.neighbors = comps[i].neighbors;
					comp.classification.id = comps[i].classification.id;
					comp.classification.confidence = comps[i].classification.confidence;
					ccv_array_push(seq2, &comp);
				}
			}

			// filter out small face rectangles inside large face rectangles
			for(i = 0; ENDORSE(i < seq2->rnum); i++)
			{
				ccv_comp_t r1 = *(ccv_comp_t*)ENDORSE(ccv_array_get(seq2, i));
				APPROX int flag = 1;

				for(j = 0; ENDORSE(j < seq2->rnum); j++)
				{
					ccv_comp_t r2 = *(ccv_comp_t*)ENDORSE(ccv_array_get(seq2, j));
					APPROX int distance = (int)(r2.rect.width * 0.25 + 0.5);

					if(ENDORSE(i != j &&
					   r1.classification.id == r2.classification.id &&
					   r1.rect.x >= r2.rect.x - distance &&
					   r1.rect.y >= r2.rect.y - distance &&
					   r1.rect.x + r1.rect.width <= r2.rect.x + r2.rect.width + distance &&
					   r1.rect.y + r1.rect.height <= r2.rect.y + r2.rect.height + distance &&
					   (r2.neighbors > ccv_max(3, r1.neighbors) || r1.neighbors < 3)))
					{
						flag = 0;
						break;
					}
				}

				if(ENDORSE(flag))
					ccv_array_push(result_seq, &r1);
			}
			ccv_array_free(idx_seq);
			ccfree(comps);
		}
	}

	ccv_array_free(seq);
	ccv_array_free(seq2);

	ccv_array_t* result_seq2;
	/* the following code from OpenCV's haar feature implementation */
	if (params.flags & CCV_BBF_NO_NESTED)
	{
		result_seq2 = ccv_array_new(sizeof(ccv_comp_t), 64, 0);
		idx_seq = 0;
		// group retrieved rectangles in order to filter out noise
		int ncomp = ccv_array_group(result_seq, &idx_seq, _ccv_is_equal, 0);
		ccv_comp_t* comps = (ccv_comp_t*)ccmalloc((ncomp + 1) * sizeof(ccv_comp_t));
		memset(comps, 0, (ncomp + 1) * sizeof(ccv_comp_t));

		// count number of neighbors
		for(i = 0; ENDORSE(i < result_seq->rnum); i++)
		{
			ccv_comp_t r1 = *(ccv_comp_t*)ENDORSE(ccv_array_get(result_seq, i));
			int idx = *(int*)ENDORSE(ccv_array_get(idx_seq, i));

			if (ENDORSE(comps[idx].neighbors == 0 || comps[idx].classification.confidence < r1.classification.confidence))
			{
				comps[idx].classification.confidence = r1.classification.confidence;
				comps[idx].neighbors = 1;
				comps[idx].rect = r1.rect;
				comps[idx].classification.id = r1.classification.id;
			}
		}

		// calculate average bounding box
		for(i = 0; ENDORSE(i < ncomp); i++)
			if(ENDORSE(comps[i].neighbors))
				ccv_array_push(result_seq2, &comps[i]);

		ccv_array_free(result_seq);
		ccfree(comps);
	} else {
		result_seq2 = result_seq;
	}

	for (i = 1; ENDORSE(i < scale_upto + next * 2); i++)
		ccv_matrix_free(pyr[i * 4]);
	if (params.accurate)
		for (i = next * 2; ENDORSE(i < scale_upto + next * 2); i++)
		{
			ccv_matrix_free(pyr[i * 4 + 1]);
			ccv_matrix_free(pyr[i * 4 + 2]);
			ccv_matrix_free(pyr[i * 4 + 3]);
		}
	if (ENDORSE(params.size.height != _cascade[0]->size.height || params.size.width != _cascade[0]->size.width))
		ccv_matrix_free(pyr[0]);

	return result_seq2;
}