Exemplo n.º 1
0
uint8_t Hw_Trig_Test(void)
{
  // Notes:

  //      PDB settings : continous mode, started by sotware trigger.
  //      This means that once the software "pulls the trigger" by setting a certain bit, the PDB starts counting
  //      and handing out four triggers per cycle of its counter.

  //      PDB settings: CH0_DLY0, CH0_DLY1 , CH1_DLY0, CH1_DLY1
  //      set to different values to distinguish effect on ADCx_Ry register
  //      need to provide 4 different voltages to convert at two ADC0 and two ADC1 input channels
  //      PDB counter clock prescaled to allow time for printf's and slow down things to they are visible, each trigger.

  //      Using adiclk= BUS ,  and adidiv/4 to get  12,5MHz on Tower demonstration.
  //      visibility of PDB start trigger is obtained by generating a toggling edge on
  //      GPIOxx with PDBisr set to trigger immediatly at zero value of PDB counter.

  //      Conversion end of each ADC and channel within the ADC ( A,B ) will be done by
  //      toggling second GPIO pin inside ADCisr  ( this pin is also reset by PDB isr )



// GPIO PIN to low voltage .. this macro sets the PIN low.
 PIN_LOW

// Initialize PIN1 and PIN2 GPIO outputs
 Init_Gpio2();

// Disable ADC and PDB interrupts
 disable_irq(ADC0_irq_no) ;   // not ready for this interrupt yet. Plug vector first.
 disable_irq(ADC1_irq_no) ;   // not ready for this interrupt yet. Plug vector first.
 disable_irq(PDB_irq_no) ;    // not ready for this interrupt yet. Plug vector first.

// Dynamic interrupt vector modification whilst those interruts are disabled
 __VECTOR_RAM[73] = (uint32)adc0_isr;  // plug isr into vector table in case not there already
 __VECTOR_RAM[74] = (uint32)adc1_isr;  // plug isr into vector table in case not there already
 __VECTOR_RAM[88] = (uint32)pdb_isr;   // plug isr into vector table in case not there already

// The System Integration Module largely determines the role of the different ball map locations on Kinetis.
// When an external pin is used, the System Integration Module should be consulted and invoked as needed.
// System integration module registers start with SIM_

// Turn on the ADC0 and ADC1 clocks as well as the PDB clocks to test ADC triggered by PDB
 SIM_SCGC6 |= (SIM_SCGC6_ADC0_MASK );
 SIM_SCGC3 |= (SIM_SCGC3_ADC1_MASK );
 SIM_SCGC6 |= SIM_SCGC6_PDB_MASK ;

// Configure System Integration Module for defaults as far as ADC
 SIM_SOPT7 &= ~(SIM_SOPT7_ADC1ALTTRGEN_MASK  | // selects PDB not ALT trigger
                SIM_SOPT7_ADC1PRETRGSEL_MASK |
                SIM_SOPT7_ADC0ALTTRGEN_MASK  | // selects PDB not ALT trigger
                SIM_SOPT7_ADC0ALTTRGEN_MASK) ;
 SIM_SOPT7 = SIM_SOPT7_ADC0TRGSEL(0);       // applies only in case of ALT trigger, in which case
                                             // PDB external pin input trigger for ADC
 SIM_SOPT7 = SIM_SOPT7_ADC1TRGSEL(0);       // same for both ADCs




/////////////////////////////////////////////////////////////////////////////////////////
//PDB configured below  以下是PDB配置



// Configure the Peripheral Delay Block (PDB):
// enable PDB, pdb counter clock = busclock / 20 , continous triggers, sw trigger , and use prescaler too
 PDB0_SC =  PDB_SC_CONT_MASK       // Contintuous, rather than one-shot, mode
         | PDB_SC_PDBEN_MASK      // PDB enabled
         | PDB_SC_PDBIE_MASK      // PDB Interrupt Enable
         | PDB_SC_PRESCALER(0x5)  // Slow down the period of the PDB for testing
         | PDB_SC_TRGSEL(0xf)     // Trigger source is Software Trigger to be invoked in this file
         | PDB_SC_MULT(2);        // Multiplication factor 20 for the prescale divider for the counter clock
                                  // the software trigger, PDB_SC_SWTRIG_MASK is not triggered at this time.

 PDB0_IDLY = 0x0000;   // need to trigger interrupt every counter reset which happens when modulus reached

 PDB0_MOD = 0xffff;    // largest period possible with the slections above, so slow you can see each conversion.

// channel 0 pretrigger 0 and 1 enabled and delayed
 PDB0_CH0C1 = PDB_C1_EN(0x01)
           | PDB_C1_TOS(0x01)
           | PDB_C1_EN(0x02)
           | PDB_C1_TOS(0x02) ;

 PDB0_CH0DLY0 = ADC0_DLYA ;
 PDB0_CH0DLY1 = ADC0_DLYB ;

// channel 1 pretrigger 0 and 1 enabled and delayed
 PDB0_CH1C1 = PDB_C1_EN(0x01)
           | PDB_C1_TOS(0x01)
           | PDB_C1_EN(0x02)
           | PDB_C1_TOS(0x02) ;

 PDB0_CH1DLY0 = ADC1_DLYA ;
 PDB0_CH1DLY1 = ADC1_DLYB ;

 PDB0_SC =  PDB_SC_CONT_MASK        // Contintuous, rather than one-shot, mode
         | PDB_SC_PDBEN_MASK       // PDB enabled
         | PDB_SC_PDBIE_MASK       // PDB Interrupt Enable
         | PDB_SC_PRESCALER(0x5)   // Slow down the period of the PDB for testing
         | PDB_SC_TRGSEL(0xf)      // Trigger source is Software Trigger to be invoked in this file
         | PDB_SC_MULT(2)          // Multiplication factor 20 for the prescale divider for the counter clock
         | PDB_SC_LDOK_MASK;       // Need to ok the loading or it will not load certain regsiters!
                                   // the software trigger, PDB_SC_SWTRIG_MASK is not triggered at this time.



//PDB configured above  以上是PDB配置
/////////////////////////////////////////////////////////////////////////////////////////
//ADC configured below  以下是ADC配置

// setup the initial ADC default configuration
 Master_Adc_Config.CONFIG1  = ADLPC_NORMAL
                            | ADC_CFG1_ADIV(ADIV_4)
                            | ADLSMP_LONG
                            | ADC_CFG1_MODE(MODE_16)
                            | ADC_CFG1_ADICLK(ADICLK_BUS);
 Master_Adc_Config.CONFIG2  = MUXSEL_ADCA
                            | ADACKEN_DISABLED
                            | ADHSC_HISPEED
                            | ADC_CFG2_ADLSTS(ADLSTS_20) ;
 Master_Adc_Config.COMPARE1 = 0x1234u ;                 // can be anything
 Master_Adc_Config.COMPARE2 = 0x5678u ;                 // can be anything
                                                        // since not using
                                                        // compare feature
 Master_Adc_Config.STATUS2  = ADTRG_HW
                            | ACFE_DISABLED
                            | ACFGT_GREATER
                            | ACREN_ENABLED
                            | DMAEN_DISABLED
                            | ADC_SC2_REFSEL(REFSEL_EXT);

 Master_Adc_Config.STATUS3  = CAL_OFF
                            | ADCO_SINGLE
                            | AVGE_ENABLED
                            | ADC_SC3_AVGS(AVGS_32);

 Master_Adc_Config.PGA      = PGAEN_DISABLED
                            | PGACHP_NOCHOP
                            | PGALP_NORMAL
                            | ADC_PGA_PGAG(PGAG_64);
 Master_Adc_Config.STATUS1A = AIEN_OFF | DIFF_SINGLE | ADC_SC1_ADCH(31);
 Master_Adc_Config.STATUS1B = AIEN_OFF | DIFF_SINGLE | ADC_SC1_ADCH(31);


// Configure ADC as it will be used, but becuase ADC_SC1_ADCH is 31,
// the ADC will be inactive.  Channel 31 is just disable function.
// There really is no channel 31.

 ADC_Config_Alt(ADC0_BASE_PTR, &Master_Adc_Config);  // config ADC

// Calibrate the ADC in the configuration in which it will be used:
 ADC_Cal(ADC0_BASE_PTR);                    // do the calibration

// The structure still has the desired configuration.  So restore it.
// Why restore it?  The calibration makes some adjustments to the
// configuration of the ADC.  The are now undone:

// config the ADC again to desired conditions
 ADC_Config_Alt(ADC0_BASE_PTR, &Master_Adc_Config);

// REPEAT for BOTH ADC's.  However we will only 'use' the results from
// the ADC wired to the Potentiometer on the Kinetis Tower Card.

// Repeating for ADC1:
  ADC_Config_Alt(ADC1_BASE_PTR, &Master_Adc_Config);  // config ADC
  ADC_Cal(ADC1_BASE_PTR);                    // do the calibration
//  ADC_Read_Cal(ADC1_BASE_PTR,&CalibrationStore[0]);   // store the cal


// config the ADC again to default conditions
 ADC_Config_Alt(ADC1_BASE_PTR, &Master_Adc_Config);

// *****************************************************************************
//      ADC0 and ADC1 using the PDB trigger in ping pong
// *****************************************************************************

// use interrupts, single ended mode, and real channel numbers now:

 Master_Adc_Config.STATUS1A = AIEN_ON | DIFF_SINGLE | ADC_SC1_ADCH(ADC0_CHANA);
 Master_Adc_Config.STATUS1B = AIEN_ON | DIFF_SINGLE | ADC_SC1_ADCH(ADC0_CHANB);
 ADC_Config_Alt(ADC0_BASE_PTR, &Master_Adc_Config);  // config ADC0

 Master_Adc_Config.STATUS1A = AIEN_ON | DIFF_SINGLE | ADC_SC1_ADCH(ADC1_CHANA);
 Master_Adc_Config.STATUS1B = AIEN_ON | DIFF_SINGLE | ADC_SC1_ADCH(ADC1_CHANB);
 ADC_Config_Alt(ADC1_BASE_PTR, &Master_Adc_Config);  // config ADC1

 // Note that three different balls are being sampled:
 // ADC0_CHANA not used in this demo, but readings are shown
 // ADC0_CHANB not used in this demo, but readings are shown
 // ADC1_CHANA POT channel set the same as the following for demo: 20
 // ADC1_CHANB POT channel set the same as the above for demo: 20

 // The potentiometer is only on ADC1.  That is the one used
 // to calculate the change of the potentiometer below.


 while(char_present()) in_char();                     // flush terminal buffer

 printf ("\n\n\n");
 printf("********************************************************\n");
 printf("* Running ADC0 & ADC1 HARDWARE TRIGGER by PDB          *\n");
 printf("* The one PDB is triggering both ADC0 and ADC1         *\n");
 printf("* ADC1 A,B is the POT.   Vary the POT setting.         *\n");
 printf("* Hit any key to exit   (ADC0 readings not used)       *\n");
 printf("********************************************************\n");
 printf ("\n\n");

// Enable the ADC and PDB interrupts in NVIC
 enable_irq(ADC0_irq_no) ;   // ready for this interrupt.
 enable_irq(ADC1_irq_no) ;   // ready for this interrupt.
 enable_irq(PDB_irq_no) ;    // ready for this interrupt.

// In case previous test did not end with interrupts enabled, enable used ones.
 EnableInterrupts ;

 cycle_flags=0;
 PDB0_SC |= PDB_SC_SWTRIG_MASK ;    // kick off the PDB  - just once

 //The system is now working!!!!  The PDB is *continuously* triggering ADC
 // conversions.  Now, to display the results!  The line above
 // was the SOFTWARE TRIGGER...

 // The demo will continue as long as no character is pressed on the terminal.

 while(!char_present()) // as long as no operater intervention, keep running this:
 {
  while( cycle_flags != ( ADC0A_DONE | ADC0B_DONE | ADC1A_DONE | ADC1B_DONE ));  // wait for one complete cycle
  printf("R0A=%6d  R0B=%6d  R1A=%6d  R1B=%6d   POT=%6d\r",
          result0A,result0B,result1A,result1B, exponentially_filtered_result1);
 }

// disable the PDB

  PDB0_SC = 0 ;

// Disable the ADC and PDB interrupts in NVIC
  disable_irq(ADC0_irq_no) ;   // through with this interrupt.
  disable_irq(ADC1_irq_no) ;   // through with this interrupt.
  disable_irq(PDB_irq_no) ;    // through with this interrupt.


 printf ("\n\n\n");
 printf("********************************************************\n");
 printf("* Demonstration ended at operator request              *\n");
 printf("* ADC0 & ADC1 PDB      TRIGGER DEMO COMPLETE           *\n");
 printf("********************************************************\n");
 printf ("\n\n");


return 0;
}
int main (void)
{  
	uint32_t execution_cycle;	//actual execution cycle
	char ch;

#ifdef CMSIS  // If we are conforming to CMSIS, we need to call start here
    start();
#endif

	printf("\n\rRunning the LQRUG_bme_ex2 project.\n\r");
	

	if (RCM_SRS0 & RCM_SRS0_WAKEUP_MASK)
	{
	  	printf("Wakeup initialization flow\n\r");
		
		systick_init();
		
		cnt_start_value = SYST_CVR;
			
		Init_BME_GPIO();
		
		ADC_BME_Trigger();
		
		//Set LPTMR to timeout about 1 second
		Lptmr_BME_Init(1000, LPOCLK);	
		
		ADC_BME_Init();
		Calibrate_BME_ADC();
		ADC_BME_Init();
		ADC_Start(ADC0_CHANB);
		
		// Enable the ADC interrupt in NVIC
#ifdef CMSIS
		enable_irq(ADC0_IRQn) ;   // ready for this interrupt.  
		enable_irq(LPTimer_IRQn);
#else
		enable_irq(ADC0_irq_no) ;   // ready for this interrupt.  
		enable_irq(LPTMR0_irq_no);
#endif
	  
		cnt_end_value = SYST_CVR;
		
		execution_cycle = cnt_start_value - cnt_end_value - overhead;
		
		systick_disable();
		
#ifdef DEBUG_PRINT
		printf("Systick start value: 0x%x\n\r", cnt_start_value);
		printf("Systick end value: 0x%x\n\r", cnt_end_value);
		printf("Actual execution cycle for initialization phase in normal C code: 0x%x\n\r", execution_cycle);
#endif	
	}
	else
	{
	  	printf("Normal initialization flow\n\r");	//make sure the two printf has the same characters to output
		
	  	systick_init();
	
		cnt_start_value = SYST_CVR;
			
		Init_GPIO();
		
		ADC_Trigger();
		
		//Set LPTMR to timeout about 1 second
		Lptmr_Init(1000, LPOCLK);	
		
		ADC_Init();
		Calibrate_ADC();
		ADC_Init();
		
		ADC_Start(ADC0_CHANB);
		
		// Enable the ADC interrupt in NVIC
#ifdef CMSIS
		enable_irq(ADC0_IRQn) ;   // ready for this interrupt.  
		enable_irq(LPTimer_IRQn);
#else
		enable_irq(ADC0_irq_no) ;   // ready for this interrupt.  
		enable_irq(LPTMR0_irq_no);
#endif

		cnt_end_value = SYST_CVR;
		
		execution_cycle = cnt_start_value - cnt_end_value - overhead;
		
		systick_disable();
		
#ifdef DEBUG_PRINT
		printf("Systick start value: 0x%x\n\r", cnt_start_value);
		printf("Systick end value: 0x%x\n\r", cnt_end_value);
		printf("Actual execution cycle for initialization phase in normal C code: 0x%x\n\r", execution_cycle);
#endif	
	}
	
	Lptmr_Start();
	
#ifndef FREEDOM
	printf("ADC conversion for potentiometer started, press any key to stop ADC conversion\n\r");
#else
	printf("No potentiometer or LED on FREEDOM board, press any key to stop ADC conversion\n\r");
#endif
	
	while(!char_present()) 
	{
#ifndef FREEDOM
		if (cycle_flags == ADC0A_DONE) 
		{
			printf("\r  R0A=%8d",result0A); 
			cycle_flags &= ~ADC0A_DONE ;
		}	
#endif
	} 
	
	in_char();	//Read out any available characters 
	
	ADC_Stop();
	
	printf("ADC conversion stopped, press 'l' to enter VLLS1 mode\n\r");
	
#ifndef FREEDOM
	printf("Press SW3 or SW4(Reset button) on TWR-KL25Z48M to exit VLLS1 mode\n\r");	
#else
	printf("Press SW1(Reset button) on FREEDOM board to exit VLLS1 mode\n\r");
#endif	
	
	while(1)
	{
	  ch = in_char();
	  //out_char(ch);
	  if(ch != 'l')
	  	printf("Incorrect character input, Press 'l' to enter VLLS1 mode\n\r");	
	  else
		break;
	}
		
	llwu_configure(0x0080/*PTC3*/, LLWU_PIN_FALLING, 0x0);
	
	/* Configure SW3 - init for GPIO PTC3/LLWU_P7/UART1_RX/FTM0_CH2/CLKOUT*/
	PORTC_PCR3 = ( PORT_PCR_MUX(1) |
				   PORT_PCR_PE_MASK |
				   PORT_PCR_PFE_MASK |
				   PORT_PCR_PS_MASK);
	  
	enter_vlls1();		  
	
}