Exemplo n.º 1
0
void checkSize(CheckedFrom c, const TensorGeometryArg& t, IntList sizes) {
  checkDim(c, t, sizes.size());
  if (!t->sizes().equals(sizes)) {
    std::ostringstream oss;
    oss << "Expected tensor of size " << sizes << ", but got tensor of size "
        << t->sizes() << " for " << t
        << " (while checking arguments for " << c << ")";
    throw std::runtime_error(oss.str());
  }
}
Exemplo n.º 2
0
ALOperator::ALOperator(const std::vector<std::vector<int> > & vars,
      const Teuchos::RCP<Epetra_Operator> & content,
      double gamma, const std::string & label) :
      Teko::Epetra::BlockedEpetraOperator(vars, content, label),
      pressureMassMatrix_(Teuchos::null), gamma_(gamma)
{
   checkDim(vars);
   SetContent(vars, content);
   BuildALOperator();
}
Exemplo n.º 3
0
Tensor adaptive_avg_pool1d(const Tensor & self, IntList output_size) {
  checkDim("adaptive_avg_pool1d", TensorArg(self, "self", 1), 3);
  check1d("output_size", output_size);

  auto output = at::adaptive_avg_pool2d(
      self.unsqueeze(2),
      {1, output_size[0]});

  return output.squeeze(2);
}
Exemplo n.º 4
0
std::tuple<Tensor,Tensor> adaptive_max_pool1d(const Tensor & self, IntList output_size) {
  checkDim("adaptive_max_pool1d", TensorArg(self, "self", 1), 3);
  check1d("output_size", output_size);

  Tensor output, indices;
  std::tie(output, indices) = at::adaptive_max_pool2d(
      self.unsqueeze(2),
      {1, output_size[0]});

  return std::make_tuple(output.squeeze(2), indices.squeeze(2));
}
Exemplo n.º 5
0
std::tuple<Tensor,Tensor> max_pool1d(
    const Tensor & self, IntList kernel_size, IntList stride, IntList padding,
    IntList dilation, bool ceil_mode) {

  if (stride.empty()) {
    stride = kernel_size;
  }
  checkDim("max_pool1d", TensorArg(self, "self", 1), 3);
  check1d("kernel_size", kernel_size);
  check1d("stride", stride);
  check1d("padding", padding);
  check1d("dilation", dilation);

  Tensor output, indices;
  std::tie(output, indices) = at::max_pool2d(
      self.unsqueeze(2),
      {1, kernel_size[0]},
      {1, stride[0]},
      {0, padding[0]},
      {1, dilation[0]},
      ceil_mode);

  return std::make_tuple(output.squeeze(2), indices.squeeze(2));
}