Exemplo n.º 1
0
static void gdbstub_report_exception(frame_context *frame,s32 thread)
{
    s32 sigval;
    char *ptr;

    ptr = remcomOutBuffer;
    sigval = computeSignal(frame->EXCPT_Number);
    *ptr++ = 'T';
    *ptr++ = highhex(sigval);
    *ptr++ = lowhex(sigval);
    *ptr++ = highhex(SP_REGNUM);
    *ptr++ = lowhex(SP_REGNUM);
    *ptr++ = ':';
    ptr = mem2hstr(ptr,(char*)&frame->GPR[1],4);
    *ptr++ = ';';
    *ptr++ = highhex(PC_REGNUM);
    *ptr++ = lowhex(PC_REGNUM);
    *ptr++ = ':';
    ptr = mem2hstr(ptr,(char*)&frame->SRR0,4);
    *ptr++ = ';';

    *ptr++ = 't';
    *ptr++ = 'h';
    *ptr++ = 'r';
    *ptr++ = 'e';
    *ptr++ = 'a';
    *ptr++ = 'd';
    *ptr++ = ':';
    ptr = thread2vhstr(ptr,thread);
    *ptr++ = ';';

    *ptr++ = '\0';

}
Exemplo n.º 2
0
int kgdb_dabr_match(struct pt_regs *regs)
{
	if (user_mode(regs))
		return 0;

	kgdb_handle_exception(0, computeSignal(TRAP(regs)), 0, regs);
	return 1;
}
static int kgdb_iabr_match(struct pt_regs *regs)
{
	if (user_mode(regs))
		return 0;

	if (kgdb_handle_exception(0, computeSignal(TRAP(regs)), 0, regs) != 0)
		return 0;
	return 1;
}
Exemplo n.º 4
0
/*
 * This function does all command procesing for interfacing to gdb.
 */
void
gdb_handle_exception (db_regs_t *raw_regs, int type, int code)
{
  int    sigval;
  int    addr, length;
  char * ptr;
  struct i386regs {
    unsigned int eax;
    unsigned int ecx;
    unsigned int edx;
    unsigned int ebx;
    unsigned int esp;
    unsigned int ebp;
    unsigned int esi;
    unsigned int edi;
    unsigned int eip;
    unsigned int eflags;
    unsigned int cs;
    unsigned int ss;
    unsigned int ds;
    unsigned int es;
  };
  struct i386regs registers;

  registers.eax = raw_regs->tf_eax;
  registers.ebx = raw_regs->tf_ebx;
  registers.ecx = raw_regs->tf_ecx;
  registers.edx = raw_regs->tf_edx;

  registers.esp = raw_regs->tf_esp;
  registers.ebp = raw_regs->tf_ebp;
  registers.esi = raw_regs->tf_esi;
  registers.edi = raw_regs->tf_edi;

  registers.eip = raw_regs->tf_eip;
  registers.eflags = raw_regs->tf_eflags;

  registers.cs = raw_regs->tf_cs;
  registers.ss = raw_regs->tf_ss;
  registers.ds = raw_regs->tf_ds;
  registers.es = raw_regs->tf_es;

  /* reply to host that an exception has occurred */
  sigval = computeSignal (type);
  ptr = remcomOutBuffer;

  *ptr++ = 'T';
  *ptr++ = hexchars[sigval >> 4];
  *ptr++ = hexchars[sigval & 0xf];

  *ptr++ = hexchars[PC >> 4];
  *ptr++ = hexchars[PC & 0xf];
  *ptr++ = ':';
  ptr = mem2hex ((vm_offset_t)&registers.eip, ptr, 4);
  *ptr++ = ';';

  *ptr++ = hexchars[FP >> 4];
  *ptr++ = hexchars[FP & 0xf];
  *ptr++ = ':';
  ptr = mem2hex ((vm_offset_t)&registers.ebp, ptr, 4);
  *ptr++ = ';';

  *ptr++ = hexchars[SP >> 4];
  *ptr++ = hexchars[SP & 0xf];
  *ptr++ = ':';
  ptr = mem2hex ((vm_offset_t)&registers.esp, ptr, 4);
  *ptr++ = ';';

  *ptr++ = 0;

  putpacket (remcomOutBuffer);

  while (1)
    {
      remcomOutBuffer[0] = 0;

      getpacket (remcomInBuffer);
      switch (remcomInBuffer[0]) 
	{
	case '?':
	  remcomOutBuffer[0] = 'S';
	  remcomOutBuffer[1] = hexchars[sigval >> 4];
	  remcomOutBuffer[2] = hexchars[sigval % 16];
	  remcomOutBuffer[3] = 0;
	  break;

	case 'D':		/* detach; say OK and turn off gdb */
	  putpacket(remcomOutBuffer);
	  boothowto &= ~RB_GDB;
	  return;

	case 'g':		/* return the value of the CPU registers */
	  mem2hex ((vm_offset_t)&registers, remcomOutBuffer, NUMREGBYTES);
	  break;

	case 'G':		/* set the value of the CPU registers - return OK */
	  hex2mem (&remcomInBuffer[1], (vm_offset_t)&registers, NUMREGBYTES);
	  strcpy (remcomOutBuffer, "OK");
	  break;

	case 'P':		/* Set the value of one register */
	  {
	    int regno;

	    ptr = &remcomInBuffer[1];

	    if (hexToInt (&ptr, &regno)
		&& *ptr++ == '='
		&& regno < NUM_REGS)
	      {
		hex2mem (ptr, (vm_offset_t)&registers + regno * 4, 4);
		strcpy(remcomOutBuffer,"OK");
	      }
	    else
	      strcpy (remcomOutBuffer, "P01");
	    break;
	  }
	case 'm':	/* mAA..AA,LLLL  Read LLLL bytes at address AA..AA */
	  /* Try to read %x,%x.  */

	  ptr = &remcomInBuffer[1];

	  if (hexToInt (&ptr, &addr)
	      && *(ptr++) == ','
	      && hexToInt (&ptr, &length))
	    {
	      if (mem2hex((vm_offset_t) addr, remcomOutBuffer, length) == NULL)
		strcpy (remcomOutBuffer, "E03");
	      break;
	    }
	  else
	    strcpy (remcomOutBuffer, "E01");
	  break;

	case 'M': /* MAA..AA,LLLL: Write LLLL bytes at address AA.AA return OK */

	  /* Try to read '%x,%x:'.  */

	  ptr = &remcomInBuffer[1];

	  if (hexToInt(&ptr,&addr)
	      && *(ptr++) == ','
	      && hexToInt(&ptr, &length)
	      && *(ptr++) == ':')
	    {
	      if (hex2mem(ptr, (vm_offset_t) addr, length) == NULL)
		strcpy (remcomOutBuffer, "E03");
	      else
		strcpy (remcomOutBuffer, "OK");
	    }
	  else
	    strcpy (remcomOutBuffer, "E02");
	  break;

	  /* cAA..AA    Continue at address AA..AA(optional) */
	  /* sAA..AA   Step one instruction from AA..AA(optional) */
	case 'c' :
	case 's' :
	  /* try to read optional parameter, pc unchanged if no parm */

	  ptr = &remcomInBuffer[1];
	  if (hexToInt(&ptr,&addr))
	    registers.eip = addr;


	  /* set the trace bit if we're stepping */
	  if (remcomInBuffer[0] == 's')
	    registers.eflags |= PSL_T;
	  else
	    registers.eflags &= ~PSL_T;

	  raw_regs->tf_eax = registers.eax;
	  raw_regs->tf_ebx = registers.ebx;
	  raw_regs->tf_ecx = registers.ecx;
	  raw_regs->tf_edx = registers.edx;

	  raw_regs->tf_esp = registers.esp;
	  raw_regs->tf_ebp = registers.ebp;
	  raw_regs->tf_esi = registers.esi;
	  raw_regs->tf_edi = registers.edi;

	  raw_regs->tf_eip = registers.eip;
	  raw_regs->tf_eflags = registers.eflags;

	  raw_regs->tf_cs = registers.cs;
	  raw_regs->tf_ss = registers.ss;
	  raw_regs->tf_ds = registers.ds;
	  raw_regs->tf_es = registers.es;
	  return;

	} /* switch */

      /* reply to the request */
      putpacket (remcomOutBuffer);
    }
}
Exemplo n.º 5
0
/*
 * This function does all command procesing for interfacing to gdb.
 */
void handle_exception (int exceptionVector)
{
    int sigval, stepping;
    int addr, length;
    char *ptr;
    int newPC;
    Frame *frame;

    if (remote_debug)
        printf ("vector=%d, sr=0x%x, pc=0x%x\n",
                exceptionVector, registers[PS], registers[PC]);

    /* reply to host that an exception has occurred */
    sigval = computeSignal (exceptionVector);
    remcomOutBuffer[0] = 'S';
    remcomOutBuffer[1] = hexchars[sigval >> 4];
    remcomOutBuffer[2] = hexchars[sigval % 16];
    remcomOutBuffer[3] = 0;

    putpacket (remcomOutBuffer);

    stepping = 0;

    while (1 == 1)
    {
        remcomOutBuffer[0] = 0;
        ptr = getpacket ();
        switch (*ptr++)
        {
        case '?':
            remcomOutBuffer[0] = 'S';
            remcomOutBuffer[1] = hexchars[sigval >> 4];
            remcomOutBuffer[2] = hexchars[sigval % 16];
            remcomOutBuffer[3] = 0;
            break;
        case 'd':
            remote_debug = !(remote_debug);	/* toggle debug flag */
            break;
        case 'g':		/* return the value of the CPU registers */
            mem2hex ((char *) registers, remcomOutBuffer, NUMREGBYTES);
            break;
        case 'G':		/* set the value of the CPU registers - return OK */
            hex2mem (ptr, (char *) registers, NUMREGBYTES);
            strcpy (remcomOutBuffer, "OK");
            break;

        /* mAA..AA,LLLL  Read LLLL bytes at address AA..AA */
        case 'm':
            if (setjmp (remcomEnv) == 0)
            {
                exceptionHandler (2, handle_buserror);

                /* TRY TO READ %x,%x.  IF SUCCEED, SET PTR = 0 */
                if (hexToInt (&ptr, &addr))
                    if (*(ptr++) == ',')
                        if (hexToInt (&ptr, &length))
                        {
                            ptr = 0;
                            mem2hex ((char *) addr, remcomOutBuffer, length);
                        }

                if (ptr)
                {
                    strcpy (remcomOutBuffer, "E01");
                }
            }
            else
            {
                exceptionHandler (2, _catchException);
                strcpy (remcomOutBuffer, "E03");
                debug_error ("%s","bus error");
            }

            /* restore handler for bus error */
            exceptionHandler (2, _catchException);
            break;

        /* MAA..AA,LLLL: Write LLLL bytes at address AA.AA return OK */
        case 'M':
            if (setjmp (remcomEnv) == 0)
            {
                exceptionHandler (2, handle_buserror);

                /* TRY TO READ '%x,%x:'.  IF SUCCEED, SET PTR = 0 */
                if (hexToInt (&ptr, &addr))
                    if (*(ptr++) == ',')
                        if (hexToInt (&ptr, &length))
                            if (*(ptr++) == ':')
                            {
                                hex2mem (ptr, (char *) addr, length);
                                ptr = 0;
                                strcpy (remcomOutBuffer, "OK");
                            }
                if (ptr)
                {
                    strcpy (remcomOutBuffer, "E02");
                }
            }
            else
            {
                exceptionHandler (2, _catchException);
                strcpy (remcomOutBuffer, "E03");
                debug_error ("%s","bus error");
            }

            /* restore handler for bus error */
            exceptionHandler (2, _catchException);
            break;

        /* cAA..AA    Continue at address AA..AA(optional) */
        /* sAA..AA   Step one instruction from AA..AA(optional) */
        case 's':
            stepping = 1;
        case 'c':
            /* try to read optional parameter, pc unchanged if no parm */
            if (hexToInt (&ptr, &addr))
                registers[PC] = addr;

            newPC = registers[PC];

            /* clear the trace bit */
            registers[PS] &= 0x7fff;

            /* set the trace bit if we're stepping */
            if (stepping)
                registers[PS] |= 0x8000;

            /*
             * look for newPC in the linked list of exception frames.
             * if it is found, use the old frame it.  otherwise,
             * fake up a dummy frame in returnFromException().
             */
            if (remote_debug)
                printf ("new pc = 0x%x\n", newPC);
            frame = lastFrame;
            while (frame)
            {
                if (remote_debug)
                    printf ("frame at 0x%x has pc=0x%x, except#=%d\n",
                            frame, frame->exceptionPC, frame->exceptionVector);
                if (frame->exceptionPC == newPC)
                    break;		/* bingo! a match */
                /*
                 * for a breakpoint instruction, the saved pc may
                 * be off by two due to re-executing the instruction
                 * replaced by the trap instruction.  Check for this.
                 */
                if ((frame->exceptionVector == 33) &&
                        (frame->exceptionPC == (newPC + 2)))
                    break;
                if (frame == frame->previous)
                {
                    frame = 0;	/* no match found */
                    break;
                }
                frame = frame->previous;
            }

            /*
             * If we found a match for the PC AND we are not returning
             * as a result of a breakpoint (33),
             * trace exception (9), nmi (31), jmp to
             * the old exception handler as if this code never ran.
             */
            if (frame)
            {
                if ((frame->exceptionVector != 9) &&
                        (frame->exceptionVector != 31) &&
                        (frame->exceptionVector != 33))
                {
                    /*
                     * invoke the previous handler.
                     */
                    if (oldExceptionHook)
                        (*oldExceptionHook) (frame->exceptionVector);
                    newPC = registers[PC];	/* pc may have changed  */
                    if (newPC != frame->exceptionPC)
                    {
                        if (remote_debug)
                            printf ("frame at 0x%x has pc=0x%x, except#=%d\n",
                                    frame, frame->exceptionPC,
                                    frame->exceptionVector);
                        /* re-use the last frame, we're skipping it (longjump?) */
                        frame = (Frame *) 0;
                        _returnFromException (frame);	/* this is a jump */
                    }
                }
            }

            /* if we couldn't find a frame, create one */
            if (frame == 0)
            {
                frame = lastFrame - 1;

                /* by using a bunch of print commands with breakpoints,
                   it's possible for the frame stack to creep down.  If it creeps
                   too far, give up and reset it to the top.  Normal use should
                   not see this happen.
                 */
                if ((unsigned int) (frame - 2) < (unsigned int) &gdbFrameStack)
                {
                    initializeRemcomErrorFrame ();
                    frame = lastFrame;
                }
                frame->previous = lastFrame;
                lastFrame = frame;
                frame = 0;	/* null so _return... will properly initialize it */
            }

            _returnFromException (frame);	/* this is a jump */

            break;

        /* kill the program */
        case 'k':		/* do nothing */
            break;
        }			/* switch */

        /* reply to the request */
        putpacket (remcomOutBuffer);
    }
}
Exemplo n.º 6
0
/* KGDB functions to use existing PowerPC hooks. */
static void kgdb_debugger(struct pt_regs *regs)
{
	kgdb_handle_exception(0, computeSignal(TRAP(regs)), 0, regs);
}
/*
 * This function does all command procesing for interfacing to gdb.
 */
void
handle_exception (int exceptionVector)
{
  int sigval;
  int addr, length, reg;
  char *ptr;
  int newPC;

  gdb_i386vector = exceptionVector;

  if (remote_debug)
    printf ("vector=%d, sr=0x%x, pc=0x%x\n",
	    exceptionVector,
	    registers[PS],
	    registers[PC]);

  /* Reply to host that an exception has occurred.  Always return the
     PC, SP, and FP, since gdb always wants them.  */
  ptr = remcomOutBuffer;
  *ptr++ = 'T';
  sigval = computeSignal (exceptionVector);
  *ptr++ = hexchars[sigval >> 4];
  *ptr++ = hexchars[sigval % 16];

  *ptr++ = hexchars[ESP];
  *ptr++ = ':';
  mem2hex ((char *) &registers[ESP], ptr, REGBYTES, 0);
  ptr += REGBYTES * 2;
  *ptr++ = ';';

  *ptr++ = hexchars[EBP];
  *ptr++ = ':';
  mem2hex ((char *) &registers[EBP], ptr, REGBYTES, 0);
  ptr += REGBYTES * 2;
  *ptr++ = ';';

  *ptr++ = hexchars[PC];
  *ptr++ = ':';
  mem2hex ((char *) &registers[PC], ptr, REGBYTES, 0);
  ptr += REGBYTES * 2;
  *ptr++ = ';';

  *ptr = '\0';

  putpacket (remcomOutBuffer);

  while (1 == 1)
    {
      error = 0;
      remcomOutBuffer[0] = 0;
      getpacket (remcomInBuffer);
      switch (remcomInBuffer[0])
	{
	case '?':
	  remcomOutBuffer[0] = 'S';
	  remcomOutBuffer[1] = hexchars[sigval >> 4];
	  remcomOutBuffer[2] = hexchars[sigval % 16];
	  remcomOutBuffer[3] = 0;
	  break;
	case 'd':
	  remote_debug = !(remote_debug);	/* toggle debug flag */
	  break;
	case 'g':		/* return the value of the CPU registers */
	  mem2hex ((char *) registers, remcomOutBuffer, NUMREGBYTES, 0);
	  break;
	case 'G':		/* set the value of the CPU registers - return OK */
	  hex2mem (&remcomInBuffer[1], (char *) registers, NUMREGBYTES, 0);
	  strcpy (remcomOutBuffer, "OK");
	  break;

	case 'P':		/* Set specific register */
	  ptr = &remcomInBuffer[1];
	  if (hexToInt (&ptr, &reg)
	      && *ptr++ == '=')
	    {
	      hex2mem (ptr, (char *) &registers[reg], REGBYTES, 0);
	      strcpy (remcomOutBuffer, "OK");
	    }
	  else
	    {
	      strcpy (remcomOutBuffer, "E01");
	      debug_error ("malformed register set command; %s",
			   remcomInBuffer);
	    }
	  break;

	  /* mAA..AA,LLLL  Read LLLL bytes at address AA..AA */
	case 'm':
	  /* TRY TO READ %x,%x.  IF SUCCEED, SET PTR = 0 */
	  ptr = &remcomInBuffer[1];
	  if (hexToInt (&ptr, &addr))
	    if (*(ptr++) == ',')
	      if (hexToInt (&ptr, &length))
		{
		  ptr = 0;
		  mem_err = 0;
		  mem2hex ((char *) addr, remcomOutBuffer, length, 1);
		  if (mem_err)
		    {
		      strcpy (remcomOutBuffer, "E03");
		      debug_error ("memory fault", 0);
		    }
		}

	  if (ptr)
	    {
	      strcpy (remcomOutBuffer, "E01");
	      debug_error ("malformed read memory command: %s", remcomInBuffer);
	    }
	  break;

	  /* MAA..AA,LLLL: Write LLLL bytes at address AA.AA return OK */
	case 'M':
	  /* TRY TO READ '%x,%x:'.  IF SUCCEED, SET PTR = 0 */
	  ptr = &remcomInBuffer[1];
	  if (hexToInt (&ptr, &addr))
	    if (*(ptr++) == ',')
	      if (hexToInt (&ptr, &length))
		if (*(ptr++) == ':')
		  {
		    mem_err = 0;
		    hex2mem (ptr, (char *) addr, length, 1);

		    if (mem_err)
		      {
			strcpy (remcomOutBuffer, "E03");
			debug_error ("memory fault", 0);
		      }
		    else
		      {
			strcpy (remcomOutBuffer, "OK");
		      }

		    ptr = 0;
		  }
	  if (ptr)
	    {
	      strcpy (remcomOutBuffer, "E02");
	      debug_error ("malformed write memory command: %s", remcomInBuffer);
	    }
	  break;

	  /* cAA..AA    Continue at address AA..AA(optional) */
	  /* sAA..AA   Step one instruction from AA..AA(optional) */
	case 'c':
	case 's':
	  /* try to read optional parameter, pc unchanged if no parm */
	  ptr = &remcomInBuffer[1];
	  if (hexToInt (&ptr, &addr))
	    registers[PC] = addr;

	  newPC = registers[PC];

	  /* clear the trace bit */
	  registers[PS] &= 0xfffffeff;

	  /* set the trace bit if we're stepping */
	  if (remcomInBuffer[0] == 's')
	    registers[PS] |= 0x100;

	  _returnFromException ();	/* this is a jump */

	  break;

	  /* Detach.  */
	case 'D':
	  putpacket (remcomOutBuffer);
	  registers[PS] &= 0xfffffeff;
	  _returnFromException ();	/* this is a jump */

	  break;

	  /* kill the program */
	case 'k':		/* do nothing */
	  break;
	}			/* switch */

      /* reply to the request */
      putpacket (remcomOutBuffer);
    }
}
Exemplo n.º 8
0
/*
 * This function does all command procesing for interfacing to
 * a remote gdb.
 */
int
kgdb_trap(int type, struct frame *frame)
{
    u_long len;
    u_char *addr;
    u_char *cp;
    u_char out, in;
    int outlen;
    int inlen;
    u_long gdb_regs[NUM_REGS];

    if ((int)kgdb_dev < 0) {
        /* not debugging */
        return (0);
    }
    if (kgdb_active == 0) {
        if (type != T_TRAP15) {
            /* No debugger active -- let trap handle this. */
            return (0);
        }
        kgdb_getc = 0;
        for (inlen = 0; constab[inlen].cn_probe; inlen++)
            if (major(constab[inlen].cn_dev) == major(kgdb_dev)) {
                kgdb_getc = constab[inlen].cn_getc;
                kgdb_putc = constab[inlen].cn_putc;
                break;
            }
        if (kgdb_getc == 0 || kgdb_putc == 0)
            return (0);
        /*
         * If the packet that woke us up isn't an exec packet,
         * ignore it since there is no active debugger.  Also,
         * we check that it's not an ack to be sure that the
         * remote side doesn't send back a response after the
         * local gdb has exited.  Otherwise, the local host
         * could trap into gdb if it's running a gdb kernel too.
         */
        in = GETC;
        /*
         * If we came in asynchronously through the serial line,
         * the framing character is eaten by the receive interrupt,
         * but if we come in through a synchronous trap (i.e., via
         * kgdb_connect()), we will see the extra character.
         */
        if (in == FRAME_START)
            in = GETC;

        /*
         * Check that this is a debugger exec message.  If so,
         * slurp up the entire message then ack it, and fall
         * through to the recv loop.
         */
        if (KGDB_CMD(in) != KGDB_EXEC || (in & KGDB_ACK) != 0)
            return (0);
        while (GETC != FRAME_END)
            ;
        /*
         * Do the printf *before* we ack the message.  This way
         * we won't drop any inbound characters while we're
         * doing the polling printf.
         */
        printf("kgdb started from device %x\n", kgdb_dev);
        kgdb_send(in | KGDB_ACK, (u_char *)0, 0);
        kgdb_active = 1;
    }
    /*
     * Stick frame regs into our reg cache then tell remote host
     * that an exception has occurred.
     */
    regs_to_gdb(frame, gdb_regs);
    if (type != T_TRAP15) {
        /*
         * Only send an asynchronous SIGNAL message when we hit
         * a breakpoint.  Otherwise, we will drop the incoming
         * packet while we output this one (and on entry the other
         * side isn't interested in the SIGNAL type -- if it is,
         * it will have used a signal packet.)
         */
        outbuffer[0] = computeSignal(type);
        kgdb_send(KGDB_SIGNAL, outbuffer, 1);
    }

    while (1) {
        in = kgdb_recv(inbuffer, &inlen);
        if (in == 0 || (in & KGDB_ACK))
            /* Ignore inbound acks and error conditions. */
            continue;

        out = in | KGDB_ACK;
        switch (KGDB_CMD(in)) {

        case KGDB_SIGNAL:
            /*
             * if this command came from a running gdb,
             * answer it -- the other guy has no way of
             * knowing if we're in or out of this loop
             * when he issues a "remote-signal".  (Note
             * that without the length check, we could
             * loop here forever if the ourput line is
             * looped back or the remote host is echoing.)
             */
            if (inlen == 0) {
                outbuffer[0] = computeSignal(type);
                kgdb_send(KGDB_SIGNAL, outbuffer, 1);
            }
            continue;

        case KGDB_REG_R:
        case KGDB_REG_R | KGDB_DELTA:
            cp = outbuffer;
            outlen = 0;
            for (len = inbuffer[0]; len < NUM_REGS; ++len) {
                if (reg_cache[len] != gdb_regs[len] ||
                        (in & KGDB_DELTA) == 0) {
                    if (outlen + 5 > SL_MAXDATA) {
                        out |= KGDB_MORE;
                        break;
                    }
                    cp[outlen] = len;
                    kgdb_copy((u_char *)&gdb_regs[len],
                              &cp[outlen + 1], 4);
                    reg_cache[len] = gdb_regs[len];
                    outlen += 5;
                }
            }
            break;

        case KGDB_REG_W:
        case KGDB_REG_W | KGDB_DELTA:
            cp = inbuffer;
            for (len = 0; len < inlen; len += 5) {
                int j = cp[len];

                kgdb_copy(&cp[len + 1],
                          (u_char *)&gdb_regs[j], 4);
                reg_cache[j] = gdb_regs[j];
            }
            gdb_to_regs(frame, gdb_regs);
            outlen = 0;
            break;

        case KGDB_MEM_R:
            len = inbuffer[0];
            kgdb_copy(&inbuffer[1], (u_char *)&addr, 4);
            if (len > SL_MAXDATA) {
                outlen = 1;
                outbuffer[0] = E2BIG;
            } else if (!kgdb_acc(addr, len, B_READ)) {
                outlen = 1;
                outbuffer[0] = EFAULT;
            } else {
                outlen = len + 1;
                outbuffer[0] = 0;
                kgdb_copy(addr, &outbuffer[1], len);
            }
            break;

        case KGDB_MEM_W:
            len = inlen - 4;
            kgdb_copy(inbuffer, (u_char *)&addr, 4);
            outlen = 1;
            if (!kgdb_acc(addr, len, B_READ))
                outbuffer[0] = EFAULT;
            else {
                outbuffer[0] = 0;
                if (!kgdb_acc(addr, len, B_WRITE))
                    chgkprot(addr, len, B_WRITE);
                kgdb_copy(&inbuffer[4], addr, len);
                ICIA();
            }
            break;

        case KGDB_KILL:
            kgdb_active = 0;
            printf("kgdb detached\n");
        /* fall through */
        case KGDB_CONT:
            kgdb_send(out, 0, 0);
            frame->f_sr &=~ PSL_T;
            return (1);

        case KGDB_STEP:
            kgdb_send(out, 0, 0);
            frame->f_sr |= PSL_T;
            return (1);

        case KGDB_EXEC:
        default:
            /* Unknown command.  Ack with a null message. */
            outlen = 0;
            break;
        }
        /* Send the reply */
        kgdb_send(out, outbuffer, outlen);
    }
}
/* KGDB functions to use existing PowerPC64 hooks. */
static int kgdb_debugger(struct pt_regs *regs)
{
	return !kgdb_handle_exception(1, computeSignal(TRAP(regs)),
				      DIE_OOPS, regs);
}
Exemplo n.º 10
0
void
handle_exception (int exceptionVector)
{
  int sigval, stepping;
  int addr, length, i;
  unsigned char *ptr;
  unsigned char buf[16];
  int binary;

  if (!finish_from_step ())
    return;			/* "false step": let the target continue */

  gdb_m32r_vector = exceptionVector;

  if (remote_debug)
    {
      mem2hex ((unsigned char *) &exceptionVector, buf, 4, 0);
      gdb_error ("Handle exception %s, ", buf);
      mem2hex ((unsigned char *) &registers[PC], buf, 4, 0);
      gdb_error ("PC == 0x%s\n", buf);
    }

  /* reply to host that an exception has occurred */
  sigval = computeSignal (exceptionVector);

  ptr = remcomOutBuffer;

  *ptr++ = 'T';			/* notify gdb with signo, PC, FP and SP */
  *ptr++ = hexchars[sigval >> 4];
  *ptr++ = hexchars[sigval & 0xf];

  *ptr++ = hexchars[PC >> 4];
  *ptr++ = hexchars[PC & 0xf];
  *ptr++ = ':';
  ptr = mem2hex ((unsigned char *) &registers[PC], ptr, 4, 0);	/* PC */
  *ptr++ = ';';

  *ptr++ = hexchars[R13 >> 4];
  *ptr++ = hexchars[R13 & 0xf];
  *ptr++ = ':';
  ptr = mem2hex ((unsigned char *) &registers[R13], ptr, 4, 0);	/* FP */
  *ptr++ = ';';

  *ptr++ = hexchars[R15 >> 4];
  *ptr++ = hexchars[R15 & 0xf];
  *ptr++ = ':';
  ptr = mem2hex ((unsigned char *) &registers[R15], ptr, 4, 0);	/* SP */
  *ptr++ = ';';
  *ptr++ = 0;

  if (exceptionVector == 0)	/* simulated SYS call stuff */
    {
      mem2hex ((unsigned char *) &registers[PC], buf, 4, 0);
      switch (registers[R0])
	{
	case SYS_exit:
	  gdb_error ("Target program has exited at %s\n", buf);
	  ptr = remcomOutBuffer;
	  *ptr++ = 'W';
	  sigval = registers[R1] & 0xff;
	  *ptr++ = hexchars[sigval >> 4];
	  *ptr++ = hexchars[sigval & 0xf];
	  *ptr++ = 0;
	  break;
	case SYS_open:
	  gdb_error ("Target attempts SYS_open call at %s\n", buf);
	  break;
	case SYS_close:
	  gdb_error ("Target attempts SYS_close call at %s\n", buf);
	  break;
	case SYS_read:
	  gdb_error ("Target attempts SYS_read call at %s\n", buf);
	  break;
	case SYS_write:
	  if (registers[R1] == 1 ||	/* write to stdout  */
	      registers[R1] == 2)	/* write to stderr  */
	    {			/* (we can do that) */
	      registers[R0] =
		gdb_write ((void *) registers[R2], registers[R3]);
	      return;
	    }
	  else
	    gdb_error ("Target attempts SYS_write call at %s\n", buf);
	  break;
	case SYS_lseek:
	  gdb_error ("Target attempts SYS_lseek call at %s\n", buf);
	  break;
	case SYS_unlink:
	  gdb_error ("Target attempts SYS_unlink call at %s\n", buf);
	  break;
	case SYS_getpid:
	  gdb_error ("Target attempts SYS_getpid call at %s\n", buf);
	  break;
	case SYS_kill:
	  gdb_error ("Target attempts SYS_kill call at %s\n", buf);
	  break;
	case SYS_fstat:
	  gdb_error ("Target attempts SYS_fstat call at %s\n", buf);
	  break;
	default:
	  gdb_error ("Target attempts unknown SYS call at %s\n", buf);
	  break;
	}
    }
Exemplo n.º 11
0
/*
 * This function does all command procesing for interfacing to gdb.
 */
void
gdb_handle_exception (db_regs_t *raw_regs, int type, int code)
{
  int    sigval;
  long   addr, length;
  char * ptr;
  struct alpharegs {
    u_int64_t r[32];
    u_int64_t f[32];
    u_int64_t pc, vfp;
  };
  static struct alpharegs registers;
  int i;

  clear_single_step(raw_regs);

  bzero(&registers, sizeof registers);

  /*
   * Map trapframe to registers.
   * Ignore float regs for now.
   */
  for (i = 0; i < FRAME_SIZE; i++)
    if (tf2gdb[i] >= 0)
      registers.r[tf2gdb[i]] = raw_regs->tf_regs[i];
  registers.pc = raw_regs->tf_regs[FRAME_PC];

  /* reply to host that an exception has occurred */
  sigval = computeSignal (type, code);
  ptr = remcomOutBuffer;

  *ptr++ = 'T';
  *ptr++ = hexchars[sigval >> 4];
  *ptr++ = hexchars[sigval & 0xf];

  *ptr++ = hexchars[PC >> 4];
  *ptr++ = hexchars[PC & 0xf];
  *ptr++ = ':';
  ptr = mem2hex ((vm_offset_t)&registers.pc, ptr, 8);
  *ptr++ = ';';

  *ptr++ = hexchars[FP >> 4];
  *ptr++ = hexchars[FP & 0xf];
  *ptr++ = ':';
  ptr = mem2hex ((vm_offset_t)&registers.r[FP], ptr, 8);
  *ptr++ = ';';

  *ptr++ = hexchars[SP >> 4];
  *ptr++ = hexchars[SP & 0xf];
  *ptr++ = ':';
  ptr = mem2hex ((vm_offset_t)&registers.r[SP], ptr, 8);
  *ptr++ = ';';

  *ptr++ = 0;

  putpacket (remcomOutBuffer);

  while (1)
    {
      remcomOutBuffer[0] = 0;

      getpacket (remcomInBuffer);
      switch (remcomInBuffer[0]) 
	{
	case '?':
	  remcomOutBuffer[0] = 'S';
	  remcomOutBuffer[1] = hexchars[sigval >> 4];
	  remcomOutBuffer[2] = hexchars[sigval % 16];
	  remcomOutBuffer[3] = 0;
	  break;

	case 'D':		/* detach; say OK and turn off gdb */
	  putpacket(remcomOutBuffer);
	  boothowto &= ~RB_GDB;
	  return;

	case 'k':
	  prom_halt();
	  /*NOTREACHED*/
	  break;

	case 'g':		/* return the value of the CPU registers */
	  mem2hex ((vm_offset_t)&registers, remcomOutBuffer, NUMREGBYTES);
	  break;

	case 'G':		/* set the value of the CPU registers - return OK */
	  hex2mem (&remcomInBuffer[1], (vm_offset_t)&registers, NUMREGBYTES);
	  strcpy (remcomOutBuffer, "OK");
	  break;

	case 'P':		/* Set the value of one register */
	  {
	    long regno;

	    ptr = &remcomInBuffer[1];

	    if (hexToInt (&ptr, &regno)
		&& *ptr++ == '='
		&& regno < NUM_REGS)
	      {
		hex2mem (ptr, (vm_offset_t)&registers + regno * 8, 8);
		strcpy(remcomOutBuffer,"OK");
	      }
	    else
	      strcpy (remcomOutBuffer, "P01");
	    break;
	  }
	case 'm':	/* mAA..AA,LLLL  Read LLLL bytes at address AA..AA */
	  /* Try to read %x,%x.  */

	  ptr = &remcomInBuffer[1];

	  if (hexToInt (&ptr, &addr)
	      && *(ptr++) == ','
	      && hexToInt (&ptr, &length))
	    {
	      if (mem2hex((vm_offset_t) addr, remcomOutBuffer, length) == NULL)
		strcpy (remcomOutBuffer, "E03");
	      break;
	    }
	  else
	    strcpy (remcomOutBuffer, "E01");
	  break;

	case 'M': /* MAA..AA,LLLL: Write LLLL bytes at address AA.AA return OK */

	  /* Try to read '%x,%x:'.  */

	  ptr = &remcomInBuffer[1];

	  if (hexToInt(&ptr,&addr)
	      && *(ptr++) == ','
	      && hexToInt(&ptr, &length)
	      && *(ptr++) == ':')
	    {
	      if (hex2mem(ptr, (vm_offset_t) addr, length) == NULL)
		strcpy (remcomOutBuffer, "E03");
	      else
		strcpy (remcomOutBuffer, "OK");
	    }
	  else
	    strcpy (remcomOutBuffer, "E02");
	  break;

	  /* cAA..AA    Continue at address AA..AA(optional) */
	  /* sAA..AA   Step one instruction from AA..AA(optional) */
	case 'c' :
	case 's' :
	  /* try to read optional parameter, pc unchanged if no parm */

	  ptr = &remcomInBuffer[1];
	  if (hexToInt(&ptr,&addr))
	    registers.pc = addr;

	  /*
	   * Map gdb registers back to trapframe (ignoring fp regs).
	   */
	  for (i = 0; i < NUM_REGS; i++)
	    if (gdb2tf[i] >= 0)
	      raw_regs->tf_regs[gdb2tf[i]] = registers.r[i];
	  raw_regs->tf_regs[FRAME_PC] = registers.pc;

	  if (remcomInBuffer[0] == 's')
	    if (!set_single_step(raw_regs))
	      printf("Can't set single step breakpoint\n");

	  return;

	} /* switch */

      /* reply to the request */
      putpacket (remcomOutBuffer);
    }
}