/**
 * nilfs_copy_page -- copy the page with buffers
 * @dst: destination page
 * @src: source page
 * @copy_dirty: flag whether to copy dirty states on the page's buffer heads.
 *
 * This function is for both data pages and btnode pages.  The dirty flag
 * should be treated by caller.  The page must not be under i/o.
 * Both src and dst page must be locked
 */
static void nilfs_copy_page(struct page *dst, struct page *src, int copy_dirty)
{
	struct buffer_head *dbh, *dbufs, *sbh, *sbufs;
	unsigned long mask = NILFS_BUFFER_INHERENT_BITS;

	BUG_ON(PageWriteback(dst));

	sbh = sbufs = page_buffers(src);
	if (!page_has_buffers(dst))
		create_empty_buffers(dst, sbh->b_size, 0);

	if (copy_dirty)
		mask |= (1UL << BH_Dirty);

	dbh = dbufs = page_buffers(dst);
	do {
		lock_buffer(sbh);
		lock_buffer(dbh);
		dbh->b_state = sbh->b_state & mask;
		dbh->b_blocknr = sbh->b_blocknr;
		dbh->b_bdev = sbh->b_bdev;
		sbh = sbh->b_this_page;
		dbh = dbh->b_this_page;
	} while (dbh != dbufs);

	copy_highpage(dst, src);

	if (PageUptodate(src) && !PageUptodate(dst))
		SetPageUptodate(dst);
	else if (!PageUptodate(src) && PageUptodate(dst))
		ClearPageUptodate(dst);
	if (PageMappedToDisk(src) && !PageMappedToDisk(dst))
		SetPageMappedToDisk(dst);
	else if (!PageMappedToDisk(src) && PageMappedToDisk(dst))
		ClearPageMappedToDisk(dst);

	do {
		unlock_buffer(sbh);
		unlock_buffer(dbh);
		sbh = sbh->b_this_page;
		dbh = dbh->b_this_page;
	} while (dbh != dbufs);
}
Exemplo n.º 2
0
int ttm_tt_swapin(struct ttm_tt *ttm)
{
	struct address_space *swap_space;
	struct file *swap_storage;
	struct page *from_page;
	struct page *to_page;
	int i;
	int ret = -ENOMEM;

	swap_storage = ttm->swap_storage;
	BUG_ON(swap_storage == NULL);

	swap_space = swap_storage->f_mapping;

	for (i = 0; i < ttm->num_pages; ++i) {
		gfp_t gfp_mask = mapping_gfp_mask(swap_space);

		gfp_mask |= (ttm->page_flags & TTM_PAGE_FLAG_NO_RETRY ? __GFP_RETRY_MAYFAIL : 0);
		from_page = shmem_read_mapping_page_gfp(swap_space, i, gfp_mask);

		if (IS_ERR(from_page)) {
			ret = PTR_ERR(from_page);
			goto out_err;
		}
		to_page = ttm->pages[i];
		if (unlikely(to_page == NULL))
			goto out_err;

		copy_highpage(to_page, from_page);
		put_page(from_page);
	}

	if (!(ttm->page_flags & TTM_PAGE_FLAG_PERSISTENT_SWAP))
		fput(swap_storage);
	ttm->swap_storage = NULL;
	ttm->page_flags &= ~TTM_PAGE_FLAG_SWAPPED;

	return 0;
out_err:
	return ret;
}
Exemplo n.º 3
0
/*
 * NOTE:
 * Expect the breakpoint instruction to be the smallest size instruction for
 * the architecture. If an arch has variable length instruction and the
 * breakpoint instruction is not of the smallest length instruction
 * supported by that architecture then we need to modify is_trap_at_addr and
 * uprobe_write_opcode accordingly. This would never be a problem for archs
 * that have fixed length instructions.
 *
 * uprobe_write_opcode - write the opcode at a given virtual address.
 * @mm: the probed process address space.
 * @vaddr: the virtual address to store the opcode.
 * @opcode: opcode to be written at @vaddr.
 *
 * Called with mm->mmap_sem held for write.
 * Return 0 (success) or a negative errno.
 */
int uprobe_write_opcode(struct mm_struct *mm, unsigned long vaddr,
			uprobe_opcode_t opcode)
{
	struct page *old_page, *new_page;
	struct vm_area_struct *vma;
	int ret;

retry:
	/* Read the page with vaddr into memory */
	ret = get_user_pages_remote(NULL, mm, vaddr, 1, FOLL_FORCE, &old_page,
			&vma);
	if (ret <= 0)
		return ret;

	ret = verify_opcode(old_page, vaddr, &opcode);
	if (ret <= 0)
		goto put_old;

	ret = anon_vma_prepare(vma);
	if (ret)
		goto put_old;

	ret = -ENOMEM;
	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
	if (!new_page)
		goto put_old;

	__SetPageUptodate(new_page);
	copy_highpage(new_page, old_page);
	copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);

	ret = __replace_page(vma, vaddr, old_page, new_page);
	put_page(new_page);
put_old:
	put_page(old_page);

	if (unlikely(ret == -EAGAIN))
		goto retry;
	return ret;
}
Exemplo n.º 4
0
int ttm_tt_swapin(struct ttm_tt *ttm)
{
	struct address_space *swap_space;
	struct file *swap_storage;
	struct page *from_page;
	struct page *to_page;
	int i;
	int ret = -ENOMEM;

	swap_storage = ttm->swap_storage;
	BUG_ON(swap_storage == NULL);

	swap_space = swap_storage->f_path.dentry->d_inode->i_mapping;

	for (i = 0; i < ttm->num_pages; ++i) {
		from_page = shmem_read_mapping_page(swap_space, i);
		if (IS_ERR(from_page)) {
			ret = PTR_ERR(from_page);
			goto out_err;
		}
		to_page = ttm->pages[i];
		if (unlikely(to_page == NULL))
			goto out_err;

		preempt_disable();
		copy_highpage(to_page, from_page);
		preempt_enable();
		page_cache_release(from_page);
	}

	if (!(ttm->page_flags & TTM_PAGE_FLAG_PERSISTENT_SWAP))
		fput(swap_storage);
	ttm->swap_storage = NULL;
	ttm->page_flags &= ~TTM_PAGE_FLAG_SWAPPED;

	return 0;
out_err:
	return ret;
}
Exemplo n.º 5
0
static int wrapfs_writepage(struct page *page, struct writeback_control *wbc)
{
        int err = -EIO;
        struct inode *inode;
        struct inode *lower_inode;
        struct page *lower_page;
        struct address_space *lower_mapping; /* lower inode mapping */
        gfp_t mask;

        /*printk(KERN_ALERT "in writepage() \n");*/

        BUG_ON(!PageUptodate(page));
        inode = page->mapping->host;
        /* if no lower inode, nothing to do */
        if (!inode || !WRAPFS_I(inode) || WRAPFS_I(inode)->lower_inode) {
                err = 0;
                goto out;
        }
        lower_inode = wrapfs_lower_inode(inode);
        lower_mapping = lower_inode->i_mapping;

        /*
         * find lower page (returns a locked page)
         *
         * We turn off __GFP_FS while we look for or create a new lower
         * page.  This prevents a recursion into the file system code, which
         * under memory pressure conditions could lead to a deadlock.  This
         * is similar to how the loop driver behaves (see loop_set_fd in
         * drivers/block/loop.c).  If we can't find the lower page, we
         * redirty our page and return "success" so that the VM will call us
         * again in the (hopefully near) future.
         */
        mask = mapping_gfp_mask(lower_mapping) & ~(__GFP_FS);
        lower_page = find_or_create_page(lower_mapping, page->index, mask);
        if (!lower_page) {
                err = 0;
                set_page_dirty(page);
                goto out;
        }

        /* copy page data from our upper page to the lower page */
        copy_highpage(lower_page, page);
        flush_dcache_page(lower_page);
        SetPageUptodate(lower_page);
        set_page_dirty(lower_page);

        /*
         * Call lower writepage (expects locked page).  However, if we are
         * called with wbc->for_reclaim, then the VFS/VM just wants to
         * reclaim our page.  Therefore, we don't need to call the lower
         * ->writepage: just copy our data to the lower page (already done
         * above), then mark the lower page dirty and unlock it, and return
         * success.
         */
        if (wbc->for_reclaim) {
                unlock_page(lower_page);
                goto out_release;
        }

        BUG_ON(!lower_mapping->a_ops->writepage);
        wait_on_page_writeback(lower_page); /* prevent multiple writers */
        clear_page_dirty_for_io(lower_page); /* emulate VFS behavior */
        err = lower_mapping->a_ops->writepage(lower_page, wbc);
        if (err < 0)
                goto out_release;

        /*
         * Lower file systems such as ramfs and tmpfs, may return
         * AOP_WRITEPAGE_ACTIVATE so that the VM won't try to (pointlessly)
         * write the page again for a while.  But those lower file systems
         * also set the page dirty bit back again.  Since we successfully
         * copied our page data to the lower page, then the VM will come
         * back to the lower page (directly) and try to flush it.  So we can
         * save the VM the hassle of coming back to our page and trying to
         * flush too.  Therefore, we don't re-dirty our own page, and we
         * never return AOP_WRITEPAGE_ACTIVATE back to the VM (we consider
         * this a success).
         *
         * We also unlock the lower page if the lower ->writepage returned
         * AOP_WRITEPAGE_ACTIVATE.  (This "anomalous" behaviour may be
         * addressed in future shmem/VM code.)
         */
        if (err == AOP_WRITEPAGE_ACTIVATE) {
                err = 0;
                unlock_page(lower_page);
        }

        /* all is well */

        /* lower mtimes have changed: update ours */
        /*	fsstack_copy_inode_size(dentry->d_inode,
				lower_file->f_path.dentry->d_inode);
        fsstack_copy_attr_times(dentry->d_inode,
				lower_file->f_path.dentry->d_inode);	
        */

out_release:
        /* b/c find_or_create_page increased refcnt */
        page_cache_release(lower_page);
out:
        /*
         * We unlock our page unconditionally, because we never return
         * AOP_WRITEPAGE_ACTIVATE.
         */
        unlock_page(page);
        return err;
}
Exemplo n.º 6
0
/*
 * do_no_page() tries to create a new page mapping. It aggressively
 * tries to share with existing pages, but makes a separate copy if
 * the "write_access" parameter is true in order to avoid the next
 * page fault.
 *
 * As this is called only for pages that do not currently exist, we
 * do not need to flush old virtual caches or the TLB.
 *
 * This is called with the MM semaphore held and the page table
 * spinlock held. Exit with the spinlock released.
 */
static int do_no_page(struct mm_struct * mm, struct vm_area_struct * vma,
	unsigned long address, int write_access, pte_t *page_table)
{
	struct page * new_page;
	pte_t entry;

	if (!vma->vm_ops || !vma->vm_ops->nopage)
		return do_anonymous_page(mm, vma, page_table, write_access, address);
	spin_unlock(&mm->page_table_lock);

	new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, 0);

	if (new_page == NULL)	/* no page was available -- SIGBUS */
		return 0;
	if (new_page == NOPAGE_OOM)
		return -1;

	/*
	 * Should we do an early C-O-W break?
	 */
	if (write_access && !(vma->vm_flags & VM_SHARED)) {
		struct page * page = alloc_page(GFP_HIGHUSER);
		if (!page) {
			page_cache_release(new_page);
			return -1;
		}
		copy_highpage(page, new_page);
		page_cache_release(new_page);
		lru_cache_add(page);
		new_page = page;
	}

	spin_lock(&mm->page_table_lock);
	/*
	 * This silly early PAGE_DIRTY setting removes a race
	 * due to the bad i386 page protection. But it's valid
	 * for other architectures too.
	 *
	 * Note that if write_access is true, we either now have
	 * an exclusive copy of the page, or this is a shared mapping,
	 * so we can make it writable and dirty to avoid having to
	 * handle that later.
	 */
	/* Only go through if we didn't race with anybody else... */
	if (pte_none(*page_table)) {
		++mm->rss;
		flush_page_to_ram(new_page);
		flush_icache_page(vma, new_page);
		entry = mk_pte(new_page, vma->vm_page_prot);
		if (write_access)
			entry = pte_mkwrite(pte_mkdirty(entry));
		set_pte(page_table, entry);
	} else {
		/* One of our sibling threads was faster, back out. */
		page_cache_release(new_page);
		spin_unlock(&mm->page_table_lock);
		return 1;
	}

	/* no need to invalidate: a not-present page shouldn't be cached */
	update_mmu_cache(vma, address, entry);
	spin_unlock(&mm->page_table_lock);
	return 2;	/* Major fault */
}
Exemplo n.º 7
0
static int wrapfs_writepage(struct page *page, struct writeback_control *wbc)
{
	int err = -EIO;
	struct inode *inode;
	struct inode *lower_inode;
	struct page *lower_page;
	struct address_space *lower_mapping; /* lower inode mapping */
	gfp_t mask;
	char *lower_page_data = NULL;
/*#ifdef WRAPFS_CRYPTO
	char *enc_buf = NULL;
#endif*/
	wrapfs_debug_aops(
		WRAPFS_SB(page->mapping->host->i_sb)->wrapfs_debug_a_ops, "");
	wrapfs_debug("");
	BUG_ON(!PageUptodate(page));
	wrapfs_debug("");
	inode = page->mapping->host;

	/* if no lower inode, nothing to do */
	if (!inode || !WRAPFS_I(inode) || WRAPFS_I(inode)->lower_inode) {
		err = 0;
		goto out;
	}
	lower_inode = wrapfs_lower_inode(inode);
	lower_mapping = lower_inode->i_mapping;

	/*
	 * find lower page (returns a locked page)
	 *
	 * We turn off __GFP_FS while we look for or create a new lower
	 * page.  This prevents a recursion into the file system code, which
	 * under memory pressure conditions could lead to a deadlock.  This
	 * is similar to how the loop driver behaves (see loop_set_fd in
	 * drivers/block/loop.c).  If we can't find the lower page, we
	 * redirty our page and return "success" so that the VM will call us
	 * again in the (hopefully near) future.
	 */
	mask = mapping_gfp_mask(lower_mapping) & ~(__GFP_FS);
	lower_page = find_or_create_page(lower_mapping, page->index, mask);
	if (!lower_page) {
		err = 0;
		set_page_dirty(page);
		goto out;
	}
	lower_page_data = (char *)kmap(lower_page);

	/* copy page data from our upper page to the lower page */
	copy_highpage(lower_page, page);
	flush_dcache_page(lower_page);
	SetPageUptodate(lower_page);
	set_page_dirty(lower_page);

/*#ifdef WRAPFS_CRYPTO
	enc_buf = kmalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
	if (enc_buf == NULL) {
		wrapfs_debug("No memory!!");
		err = -ENOMEM;
		goto out_release;
	}
	err = my_encrypt(lower_page_data, PAGE_CACHE_SIZE, enc_buf,
			PAGE_CACHE_SIZE,
			WRAPFS_SB(inode->i_sb)->key,
			WRAPFS_CRYPTO_KEY_LEN);
	if (err < 0) {
		wrapfs_debug("encrypt error!!");
		kfree(enc_buf);
		err = -EINVAL;
		goto out_release;
	}
	memcpy(lower_page_data, enc_buf, PAGE_CACHE_SIZE);
	kfree(enc_buf);
#endif*/

	/*
	 * Call lower writepage (expects locked page).  However, if we are
	 * called with wbc->for_reclaim, then the VFS/VM just wants to
	 * reclaim our page.  Therefore, we don't need to call the lower
	 * ->writepage: just copy our data to the lower page (already done
	 * above), then mark the lower page dirty and unlock it, and return
	 * success.
	 */
	/*if (wbc->for_reclaim) {
		unlock_page(lower_page);
		goto out_release;
	}*/

	BUG_ON(!lower_mapping->a_ops->writepage);
	wait_on_page_writeback(lower_page); /* prevent multiple writers */
	clear_page_dirty_for_io(lower_page); /* emulate VFS behavior */
	err = lower_mapping->a_ops->writepage(lower_page, wbc);
	if (err < 0)
		goto out_release;

	/*
	 * Lower file systems such as ramfs and tmpfs, may return
	 * AOP_WRITEPAGE_ACTIVATE so that the VM won't try to (pointlessly)
	 * write the page again for a while.  But those lower file systems
	 * also set the page dirty bit back again.  Since we successfully
	 * copied our page data to the lower page, then the VM will come
	 * back to the lower page (directly) and try to flush it.  So we can
	 * save the VM the hassle of coming back to our page and trying to
	 * flush too.  Therefore, we don't re-dirty our own page, and we
	 * never return AOP_WRITEPAGE_ACTIVATE back to the VM (we consider
	 * this a success).
	 *
	 * We also unlock the lower page if the lower ->writepage returned
	 * AOP_WRITEPAGE_ACTIVATE.  (This "anomalous" behaviour may be
	 * addressed in future shmem/VM code.)
	 */
	if (err == AOP_WRITEPAGE_ACTIVATE) {
		err = 0;
		unlock_page(lower_page);
	}

out_release:
	kunmap(lower_page);
	/* b/c find_or_create_page increased refcnt */
	page_cache_release(lower_page);
out:
	/*
	 * We unlock our page unconditionally, because we never return
	 * AOP_WRITEPAGE_ACTIVATE.
	 */
	unlock_page(page);
	wrapfs_debug_aops(WRAPFS_SB(inode->i_sb)->wrapfs_debug_a_ops,
				"err : %d", err);
	return err;
}