Exemplo n.º 1
0
/* Initialize and fire up non-boot processors */
void
cpu_mp_start(void)
{
	int error, i;

	mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN);

	/* Reserve memory for application processors */
	for(i = 0; i < (mp_ncpus - 1); i++)
		dpcpu[i] = (void *)kmem_malloc(kernel_arena, DPCPU_SIZE,
		    M_WAITOK | M_ZERO);

	cpu_idcache_wbinv_all();
	cpu_l2cache_wbinv_all();
	cpu_idcache_wbinv_all();

	/* Initialize boot code and start up processors */
	platform_mp_start_ap();

	/*  Check if ap's started properly */
	error = check_ap();
	if (error)
		printf("WARNING: Some AP's failed to start\n");
	else
		for (i = 1; i < mp_ncpus; i++)
			CPU_SET(i, &all_cpus);
}
Exemplo n.º 2
0
void
ampscu_attach(struct device *parent, struct device *self, void *args)
{
	struct ampscu_softc *sc = (struct ampscu_softc *)self;
	struct cortex_attach_args *ca = args;

	sc->sc_iot = ca->ca_iot;

	if (bus_space_map(sc->sc_iot, ca->ca_periphbase + SCU_ADDR,
	    SCU_SIZE, 0, &sc->sc_ioh))
		panic("ampscu_attach: bus_space_map failed!");

	ncpusfound = ampscu_ncpus(sc);

	printf(": %d CPUs\n", ncpusfound);

#ifdef MULTIPROCESSOR
	/* ARM Errata 764369 */
	if ((curcpu()->ci_arm_cpuid & CPU_ID_CORTEX_A9_MASK) == CPU_ID_CORTEX_A9)
	    bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0x30,
		bus_space_read_4(sc->sc_iot, sc->sc_ioh, 0x30) | 1);

	bus_space_write_4(sc->sc_iot, sc->sc_ioh, SCU_CTRL,
	    bus_space_read_4(sc->sc_iot, sc->sc_ioh, SCU_CTRL) | 1);

	/* Flush ALL the caches. */
	cpu_drain_writebuf();
	cpu_idcache_wbinv_all();
	cpu_sdcache_wbinv_all();
	cpu_drain_writebuf();
#endif
}
Exemplo n.º 3
0
void    
platform_mp_start_ap(void)
{
	bus_space_handle_t ocm_handle;

	/* Map in magic location to give entry address to CPU1. */
	if (bus_space_map(fdtbus_bs_tag, ZYNQ7_CPU1_ENTRY, 4,
	    0, &ocm_handle) != 0)
		panic("platform_mp_start_ap: Couldn't map OCM\n");

	/* Write start address for CPU1. */
	bus_space_write_4(fdtbus_bs_tag, ocm_handle, 0,
	    pmap_kextract((vm_offset_t)mpentry));

	/*
	 * The SCU is enabled by the BOOTROM but I think the second CPU doesn't
	 * turn on filtering until after the wake-up below. I think that's why
	 * things don't work if I don't put these cache ops here.  Also, the
	 * magic location, 0xfffffff0, isn't in the SCU's filtering range so it
	 * needs a write-back too.
	 */
	cpu_idcache_wbinv_all();
	cpu_l2cache_wbinv_all();

	/* Wake up CPU1. */
	armv7_sev();

	bus_space_unmap(fdtbus_bs_tag, ocm_handle, 4);
}
Exemplo n.º 4
0
int
elf_cpu_load_file(linker_file_t lf __unused)
{

	cpu_idcache_wbinv_all();
	cpu_l2cache_wbinv_all();
	cpu_tlb_flushID();
	return (0);
}
Exemplo n.º 5
0
void
platform_mp_start_ap(void)
{
	bus_space_handle_t scu, rst, ram;
	int reg;

	if (bus_space_map(fdtbus_bs_tag, SCU_PHYSBASE,
					SCU_SIZE, 0, &scu) != 0)
		panic("Couldn't map the SCU\n");
	if (bus_space_map(fdtbus_bs_tag, RSTMGR_PHYSBASE,
					RSTMGR_SIZE, 0, &rst) != 0)
		panic("Couldn't map the reset manager (RSTMGR)\n");
	if (bus_space_map(fdtbus_bs_tag, RAM_PHYSBASE,
					RAM_SIZE, 0, &ram) != 0)
		panic("Couldn't map the first physram page\n");

	/* Invalidate SCU cache tags */
	bus_space_write_4(fdtbus_bs_tag, scu,
		SCU_INV_TAGS_REG, 0x0000ffff);

	/*
	 * Erratum ARM/MP: 764369 (problems with cache maintenance).
	 * Setting the "disable-migratory bit" in the undocumented SCU
	 * Diagnostic Control Register helps work around the problem.
	 */
	reg = bus_space_read_4(fdtbus_bs_tag, scu, SCU_DIAG_CONTROL);
	reg |= (SCU_DIAG_DISABLE_MIGBIT);
	bus_space_write_4(fdtbus_bs_tag, scu, SCU_DIAG_CONTROL, reg);

	/* Put CPU1 to reset state */
	bus_space_write_4(fdtbus_bs_tag, rst, MPUMODRST, MPUMODRST_CPU1);

	/* Enable the SCU, then clean the cache on this core */
	reg = bus_space_read_4(fdtbus_bs_tag, scu, SCU_CONTROL_REG);
	reg |= (SCU_CONTROL_ENABLE);
	bus_space_write_4(fdtbus_bs_tag, scu, SCU_CONTROL_REG, reg);

	/* Set up trampoline code */
	mpentry_addr = (char *)pmap_kextract((vm_offset_t)mpentry);
	bus_space_write_region_4(fdtbus_bs_tag, ram, 0,
	    (uint32_t *)&socfpga_trampoline, 8);

	cpu_idcache_wbinv_all();
	cpu_l2cache_wbinv_all();

	/* Put CPU1 out from reset */
	bus_space_write_4(fdtbus_bs_tag, rst, MPUMODRST, 0);

	armv7_sev();

	bus_space_unmap(fdtbus_bs_tag, scu, SCU_SIZE);
	bus_space_unmap(fdtbus_bs_tag, rst, RSTMGR_SIZE);
	bus_space_unmap(fdtbus_bs_tag, ram, RAM_SIZE);
}
void
kloader_hpcarm_jump(kloader_bootfunc_t func, vaddr_t sp,
    struct kloader_bootinfo *kbi, struct kloader_page_tag *tag)
{

	disable_interrupts(I32_bit|F32_bit);	
	cpu_idcache_wbinv_all();

	/* jump to 2nd boot-loader */
	(*func)(kbi, tag);
	__builtin_unreachable();
}
Exemplo n.º 7
0
void
dumpsys_wbinv_all(void)
{

    /*
     * Make sure we write coherent data.  Note that in the SMP case this
     * only operates on the L1 cache of the current CPU, but all other CPUs
     * have already been stopped, and their flush/invalidate was done as
     * part of stopping.
     */
    cpu_idcache_wbinv_all();
    cpu_l2cache_wbinv_all();
#ifdef __XSCALE__
    xscale_cache_clean_minidata();
#endif
}
Exemplo n.º 8
0
void    
platform_mp_start_ap(void)
{
	bus_addr_t scu_addr;

	if (bus_space_map(fdtbus_bs_tag, 0x48240000, 0x1000, 0, &scu_addr) != 0)
		panic("Couldn't map the SCU\n");
	/* Enable the SCU */
	*(volatile unsigned int *)scu_addr |= 1;
	//*(volatile unsigned int *)(scu_addr + 0x30) |= 1;
	cpu_idcache_wbinv_all();
	cpu_l2cache_wbinv_all();
	ti_smc0(0x200, 0xfffffdff, MODIFY_AUX_CORE_0);
	ti_smc0(pmap_kextract((vm_offset_t)mpentry), 0, WRITE_AUX_CORE_1);
	armv7_sev();
	bus_space_unmap(fdtbus_bs_tag, scu_addr, 0x1000);
}
Exemplo n.º 9
0
void    
platform_mp_start_ap(void)
{
	bus_space_handle_t scu_handle;
	bus_space_handle_t ocm_handle;
	uint32_t scu_ctrl;

	/* Map in SCU control register. */
	if (bus_space_map(fdtbus_bs_tag, SCU_CONTROL_REG, 4,
			  0, &scu_handle) != 0)
		panic("platform_mp_start_ap: Couldn't map SCU config reg\n");

	/* Set SCU enable bit. */
	scu_ctrl = bus_space_read_4(fdtbus_bs_tag, scu_handle, 0);
	scu_ctrl |= SCU_CONTROL_ENABLE;
	bus_space_write_4(fdtbus_bs_tag, scu_handle, 0, scu_ctrl);

	bus_space_unmap(fdtbus_bs_tag, scu_handle, 4);

	/* Map in magic location to give entry address to CPU1. */
	if (bus_space_map(fdtbus_bs_tag, ZYNQ7_CPU1_ENTRY, 4,
	    0, &ocm_handle) != 0)
		panic("platform_mp_start_ap: Couldn't map OCM\n");

	/* Write start address for CPU1. */
	bus_space_write_4(fdtbus_bs_tag, ocm_handle, 0,
	    pmap_kextract((vm_offset_t)mpentry));

	bus_space_unmap(fdtbus_bs_tag, ocm_handle, 4);

	/*
	 * The SCU is enabled above but I think the second CPU doesn't
	 * turn on filtering until after the wake-up below. I think that's why
	 * things don't work if I don't put these cache ops here.  Also, the
	 * magic location, 0xfffffff0, isn't in the SCU's filtering range so it
	 * needs a write-back too.
	 */
	cpu_idcache_wbinv_all();
	cpu_l2cache_wbinv_all();

	/* Wake up CPU1. */
	armv7_sev();
}
Exemplo n.º 10
0
void
platform_mp_start_ap(void)
{
	uint32_t reg, *ptr, cpu_num;

	/* Copy boot code to SRAM */
	*((unsigned int*)(0xf1020240)) = 0xffff0101;
	*((unsigned int*)(0xf1008500)) = 0xffff0003;

	pmap_kenter_nocache(0x880f0000, 0xffff0000);
	reg = 0x880f0000;

	for (ptr = (uint32_t *)mptramp; ptr < (uint32_t *)mpentry;
	    ptr++, reg += 4)
		*((uint32_t *)reg) = *ptr;

	if (mp_ncpus > 1) {
		reg = read_cpu_clkdiv(CPU_DIVCLK_CTRL2_RATIO_FULL0);
		reg &= 0x00ffffff;
		reg |= 0x01000000;
		write_cpu_clkdiv(CPU_DIVCLK_CTRL2_RATIO_FULL0, reg);
	}
	if (mp_ncpus > 2) {
		reg = read_cpu_clkdiv(CPU_DIVCLK_CTRL2_RATIO_FULL1);
		reg &= 0xff00ffff;
		reg |= 0x00010000;
		write_cpu_clkdiv(CPU_DIVCLK_CTRL2_RATIO_FULL1, reg);
	}
	if (mp_ncpus > 3) {
		reg = read_cpu_clkdiv(CPU_DIVCLK_CTRL2_RATIO_FULL1);
		reg &= 0x00ffffff;
		reg |= 0x01000000;
		write_cpu_clkdiv(CPU_DIVCLK_CTRL2_RATIO_FULL1, reg);
	}

	reg = read_cpu_clkdiv(CPU_DIVCLK_CTRL0);
	reg |= ((0x1 << (mp_ncpus - 1)) - 1) << 21;
	write_cpu_clkdiv(CPU_DIVCLK_CTRL0, reg);
	reg = read_cpu_clkdiv(CPU_DIVCLK_CTRL0);
	reg |= 0x01000000;
	write_cpu_clkdiv(CPU_DIVCLK_CTRL0, reg);

	DELAY(100);
	reg &= ~(0xf << 21);
	write_cpu_clkdiv(CPU_DIVCLK_CTRL0, reg);
	DELAY(100);

	bus_space_write_4(fdtbus_bs_tag, MV_BASE, CPU_RESUME_CONTROL, 0);

	for (cpu_num = 1; cpu_num < mp_ncpus; cpu_num++ )
		bus_space_write_4(fdtbus_bs_tag, CPU_PMU(cpu_num), CPU_PMU_BOOT,
		    pmap_kextract((vm_offset_t)mpentry));

	cpu_idcache_wbinv_all();

	for (cpu_num = 1; cpu_num < mp_ncpus; cpu_num++ )
		bus_space_write_4(fdtbus_bs_tag, MP, MP_SW_RESET(cpu_num), 0);

	/* XXX: Temporary workaround for hangup after releasing AP's */
	wmb();
	DELAY(10);

	initialize_coherency_fabric();
}
Exemplo n.º 11
0
void *
initarm(void *arg, void *arg2)
{
	struct pcpu *pc;
	struct pv_addr  kernel_l1pt;
	struct pv_addr	md_addr;
	struct pv_addr	md_bla;
	struct pv_addr  dpcpu;
	int loop;
	u_int l1pagetable;
	vm_offset_t freemempos;
	vm_offset_t lastalloced;
	vm_offset_t lastaddr;
	uint32_t memsize = 32 * 1024 * 1024;
	sa1110_uart_vaddr = SACOM1_VBASE;

	boothowto = RB_VERBOSE | RB_SINGLE;
	cninit();
	set_cpufuncs();
	lastaddr = fake_preload_metadata();
	physmem = memsize / PAGE_SIZE;
	pc = &__pcpu;
	pcpu_init(pc, 0, sizeof(struct pcpu));
	PCPU_SET(curthread, &thread0);

	/* Do basic tuning, hz etc */
	init_param1();
		
	physical_start = (vm_offset_t) KERNBASE;
	physical_end =  lastaddr;
	physical_freestart = (((vm_offset_t)physical_end) + PAGE_MASK) & ~PAGE_MASK;
	md_addr.pv_va = md_addr.pv_pa = MDROOT_ADDR;
	freemempos = (vm_offset_t)round_page(physical_freestart);
	memset((void *)freemempos, 0, 256*1024);
		/* Define a macro to simplify memory allocation */
#define	valloc_pages(var, np)			\
	alloc_pages((var).pv_pa, (np));		\
	(var).pv_va = (var).pv_pa;

#define alloc_pages(var, np)			\
	(var) = freemempos;		\
	freemempos += ((np) * PAGE_SIZE);\
	memset((char *)(var), 0, ((np) * PAGE_SIZE));

	while ((freemempos & (L1_TABLE_SIZE - 1)) != 0)
		freemempos += PAGE_SIZE;
	valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
	valloc_pages(md_bla, L2_TABLE_SIZE / PAGE_SIZE);
	alloc_pages(sa1_cache_clean_addr, CPU_SA110_CACHE_CLEAN_SIZE / PAGE_SIZE);

	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
		if (!(loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) {
			valloc_pages(kernel_pt_table[loop],
			    L2_TABLE_SIZE / PAGE_SIZE);
		} else {
			kernel_pt_table[loop].pv_pa = freemempos +
			    (loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL)) *
			    L2_TABLE_SIZE_REAL;
			kernel_pt_table[loop].pv_va = 
			    kernel_pt_table[loop].pv_pa;
		}
	}

	/*
	 * Allocate a page for the system page mapped to V0x00000000
	 * This page will just contain the system vectors and can be
	 * shared by all processes.
	 */
	valloc_pages(systempage, 1);

	/* Allocate dynamic per-cpu area. */
	valloc_pages(dpcpu, DPCPU_SIZE / PAGE_SIZE);
	dpcpu_init((void *)dpcpu.pv_va, 0);

	/* Allocate stacks for all modes */
	valloc_pages(irqstack, IRQ_STACK_SIZE);
	valloc_pages(abtstack, ABT_STACK_SIZE);
	valloc_pages(undstack, UND_STACK_SIZE);
	valloc_pages(kernelstack, KSTACK_PAGES);
	lastalloced = kernelstack.pv_va;

	/*
	 * Allocate memory for the l1 and l2 page tables. The scheme to avoid
	 * wasting memory by allocating the l1pt on the first 16k memory was
	 * taken from NetBSD rpc_machdep.c. NKPT should be greater than 12 for
	 * this to work (which is supposed to be the case).
	 */

	/*
	 * Now we start construction of the L1 page table
	 * We start by mapping the L2 page tables into the L1.
	 * This means that we can replace L1 mappings later on if necessary
	 */
	l1pagetable = kernel_l1pt.pv_pa;


	/* Map the L2 pages tables in the L1 page table */
	pmap_link_l2pt(l1pagetable, 0x00000000,
	    &kernel_pt_table[KERNEL_PT_SYS]);
	pmap_link_l2pt(l1pagetable, KERNBASE,
	    &kernel_pt_table[KERNEL_PT_KERNEL]);
	pmap_link_l2pt(l1pagetable, 0xd0000000,
	    &kernel_pt_table[KERNEL_PT_IO]);
	pmap_link_l2pt(l1pagetable, lastalloced & ~((L1_S_SIZE * 4) - 1),
	    &kernel_pt_table[KERNEL_PT_L1]);
	pmap_link_l2pt(l1pagetable, 0x90000000, &kernel_pt_table[KERNEL_PT_IRQ]);
	pmap_link_l2pt(l1pagetable, MDROOT_ADDR,
	    &md_bla);
	for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; ++loop)
		pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00100000,
		    &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
	pmap_map_chunk(l1pagetable, KERNBASE, KERNBASE,
	    ((uint32_t)lastaddr - KERNBASE), VM_PROT_READ|VM_PROT_WRITE,
	    PTE_CACHE);
	/* Map the DPCPU pages */
	pmap_map_chunk(l1pagetable, dpcpu.pv_va, dpcpu.pv_pa, DPCPU_SIZE,
	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	/* Map the stack pages */
	pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
	    IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	pmap_map_chunk(l1pagetable, md_addr.pv_va, md_addr.pv_pa,
	    MD_ROOT_SIZE * 1024, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
	    ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
	    UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
	    KSTACK_PAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);

	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
	    L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);

	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
		pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
		    kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
	}
	pmap_map_chunk(l1pagetable, md_bla.pv_va, md_bla.pv_pa, L2_TABLE_SIZE,
	    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
	/* Map the vector page. */
	pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	/* Map the statically mapped devices. */
	pmap_devmap_bootstrap(l1pagetable, assabet_devmap);
	pmap_map_chunk(l1pagetable, sa1_cache_clean_addr, 0xf0000000, 
	    CPU_SA110_CACHE_CLEAN_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);

	data_abort_handler_address = (u_int)data_abort_handler;
	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
	undefined_handler_address = (u_int)undefinedinstruction_bounce;
	undefined_init();
	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
	setttb(kernel_l1pt.pv_pa);
	cpu_tlb_flushID();
	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));

	/*
	 * Pages were allocated during the secondary bootstrap for the
	 * stacks for different CPU modes.
	 * We must now set the r13 registers in the different CPU modes to
	 * point to these stacks.
	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
	 * of the stack memory.
	 */
	set_stackptr(PSR_IRQ32_MODE,
	    irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
	set_stackptr(PSR_ABT32_MODE,
	    abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
	set_stackptr(PSR_UND32_MODE,
	    undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);

	/*
	 * We must now clean the cache again....
	 * Cleaning may be done by reading new data to displace any
	 * dirty data in the cache. This will have happened in setttb()
	 * but since we are boot strapping the addresses used for the read
	 * may have just been remapped and thus the cache could be out
	 * of sync. A re-clean after the switch will cure this.
	 * After booting there are no gross relocations of the kernel thus
	 * this problem will not occur after initarm().
	 */
	cpu_idcache_wbinv_all();

	bootverbose = 1;

	/* Set stack for exception handlers */
	
	proc_linkup0(&proc0, &thread0);
	thread0.td_kstack = kernelstack.pv_va;
	thread0.td_pcb = (struct pcb *)
		(thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
	thread0.td_pcb->pcb_flags = 0;
	thread0.td_frame = &proc0_tf;
	
	
	/* Enable MMU, I-cache, D-cache, write buffer. */

	cpufunc_control(0x337f, 0x107d);
	arm_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);

	pmap_curmaxkvaddr = freemempos + KERNEL_PT_VMDATA_NUM * 0x400000;

	dump_avail[0] = phys_avail[0] = round_page(virtual_avail);
	dump_avail[1] = phys_avail[1] = 0xc0000000 + 0x02000000 - 1;
	dump_avail[2] = phys_avail[2] = 0;
	dump_avail[3] = phys_avail[3] = 0;
					
	mutex_init();
	pmap_bootstrap(freemempos, 0xd0000000, &kernel_l1pt);

	init_param2(physmem);
	kdb_init();
	return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP -
	    sizeof(struct pcb)));
}
Exemplo n.º 12
0
void *
initarm(struct arm_boot_params *abp)
{
	struct pv_addr  kernel_l1pt;
	struct pv_addr  dpcpu;
	int loop, i;
	u_int l1pagetable;
	vm_offset_t freemempos;
	vm_offset_t freemem_pt;
	vm_offset_t afterkern;
	vm_offset_t freemem_after;
	vm_offset_t lastaddr;
	uint32_t memsize, memstart;

	lastaddr = parse_boot_param(abp);
	arm_physmem_kernaddr = abp->abp_physaddr;
	set_cpufuncs();
	pcpu_init(pcpup, 0, sizeof(struct pcpu));
	PCPU_SET(curthread, &thread0);

	/* Do basic tuning, hz etc */
	init_param1();

	freemempos = 0xa0200000;
	/* Define a macro to simplify memory allocation */
#define	valloc_pages(var, np)			\
	alloc_pages((var).pv_pa, (np));		\
	(var).pv_va = (var).pv_pa + 0x20000000;

#define alloc_pages(var, np)			\
	freemempos -= (np * PAGE_SIZE);		\
	(var) = freemempos;		\
	memset((char *)(var), 0, ((np) * PAGE_SIZE));

	while (((freemempos - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) != 0)
		freemempos -= PAGE_SIZE;
	valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
		if (!(loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) {
			valloc_pages(kernel_pt_table[loop],
			    L2_TABLE_SIZE / PAGE_SIZE);
		} else {
			kernel_pt_table[loop].pv_pa = freemempos +
			    (loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL)) *
			    L2_TABLE_SIZE_REAL;
			kernel_pt_table[loop].pv_va =
			    kernel_pt_table[loop].pv_pa + 0x20000000;
		}
	}
	freemem_pt = freemempos;
	freemempos = 0xa0100000;
	/*
	 * Allocate a page for the system page mapped to V0x00000000
	 * This page will just contain the system vectors and can be
	 * shared by all processes.
	 */
	valloc_pages(systempage, 1);

	/* Allocate dynamic per-cpu area. */
	valloc_pages(dpcpu, DPCPU_SIZE / PAGE_SIZE);
	dpcpu_init((void *)dpcpu.pv_va, 0);

	/* Allocate stacks for all modes */
	valloc_pages(irqstack, IRQ_STACK_SIZE);
	valloc_pages(abtstack, ABT_STACK_SIZE);
	valloc_pages(undstack, UND_STACK_SIZE);
	valloc_pages(kernelstack, KSTACK_PAGES);
	alloc_pages(minidataclean.pv_pa, 1);
	valloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE);
	/*
	 * Allocate memory for the l1 and l2 page tables. The scheme to avoid
	 * wasting memory by allocating the l1pt on the first 16k memory was
	 * taken from NetBSD rpc_machdep.c. NKPT should be greater than 12 for
	 * this to work (which is supposed to be the case).
	 */

	/*
	 * Now we start construction of the L1 page table
	 * We start by mapping the L2 page tables into the L1.
	 * This means that we can replace L1 mappings later on if necessary
	 */
	l1pagetable = kernel_l1pt.pv_va;

	/* Map the L2 pages tables in the L1 page table */
	pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH & ~(0x00100000 - 1),
	    &kernel_pt_table[KERNEL_PT_SYS]);
	pmap_link_l2pt(l1pagetable, IQ80321_IOPXS_VBASE,
	    &kernel_pt_table[KERNEL_PT_IOPXS]);
	pmap_link_l2pt(l1pagetable, KERNBASE,
	    &kernel_pt_table[KERNEL_PT_BEFOREKERN]);
	pmap_map_chunk(l1pagetable, KERNBASE, IQ80321_SDRAM_START, 0x100000,
	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	pmap_map_chunk(l1pagetable, KERNBASE + 0x100000, IQ80321_SDRAM_START + 0x100000,
	    0x100000, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
	pmap_map_chunk(l1pagetable, KERNBASE + 0x200000, IQ80321_SDRAM_START + 0x200000,
	    (((uint32_t)(lastaddr) - KERNBASE - 0x200000) + L1_S_SIZE) & ~(L1_S_SIZE - 1),
	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	freemem_after = ((int)lastaddr + PAGE_SIZE) & ~(PAGE_SIZE - 1);
	afterkern = round_page(((vm_offset_t)lastaddr + L1_S_SIZE) & ~(L1_S_SIZE
	    - 1));
	for (i = 0; i < KERNEL_PT_AFKERNEL_NUM; i++) {
		pmap_link_l2pt(l1pagetable, afterkern + i * 0x00100000,
		    &kernel_pt_table[KERNEL_PT_AFKERNEL + i]);
	}
	pmap_map_entry(l1pagetable, afterkern, minidataclean.pv_pa,
	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	

	/* Map the Mini-Data cache clean area. */
	xscale_setup_minidata(l1pagetable, afterkern,
	    minidataclean.pv_pa);

	/* Map the vector page. */
	pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	arm_devmap_bootstrap(l1pagetable, ep80219_devmap);
	/*
	 * Give the XScale global cache clean code an appropriately
	 * sized chunk of unmapped VA space starting at 0xff000000
	 * (our device mappings end before this address).
	 */
	xscale_cache_clean_addr = 0xff000000U;

	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
	setttb(kernel_l1pt.pv_pa);
	cpu_tlb_flushID();
	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
	/*
	 * Pages were allocated during the secondary bootstrap for the
	 * stacks for different CPU modes.
	 * We must now set the r13 registers in the different CPU modes to
	 * point to these stacks.
	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
	 * of the stack memory.
	 */
	set_stackptrs(0);

	/*
	 * We must now clean the cache again....
	 * Cleaning may be done by reading new data to displace any
	 * dirty data in the cache. This will have happened in setttb()
	 * but since we are boot strapping the addresses used for the read
	 * may have just been remapped and thus the cache could be out
	 * of sync. A re-clean after the switch will cure this.
	 * After booting there are no gross relocations of the kernel thus
	 * this problem will not occur after initarm().
	 */
	cpu_idcache_wbinv_all();
	cpu_setup("");

	/*
	 * Fetch the SDRAM start/size from the i80321 SDRAM configration
	 * registers.
	 */
	i80321_calibrate_delay();
	i80321_sdram_bounds(obio_bs_tag, IQ80321_80321_VBASE + VERDE_MCU_BASE,
	    &memstart, &memsize);
	physmem = memsize / PAGE_SIZE;
	cninit();

	undefined_init();
				
	init_proc0(kernelstack.pv_va);
	
	/* Enable MMU, I-cache, D-cache, write buffer. */

	arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
	vm_max_kernel_address = 0xd0000000;
	pmap_bootstrap(pmap_curmaxkvaddr, &kernel_l1pt);
	msgbufp = (void*)msgbufpv.pv_va;
	msgbufinit(msgbufp, msgbufsize);
	mutex_init();
	
	/*
	 * Add the physical ram we have available.
	 *
	 * Exclude the kernel (and all the things we allocated which immediately
	 * follow the kernel) from the VM allocation pool but not from crash
	 * dumps.  virtual_avail is a global variable which tracks the kva we've
	 * "allocated" while setting up pmaps.
	 *
	 * Prepare the list of physical memory available to the vm subsystem.
	 */
	arm_physmem_hardware_region(IQ80321_SDRAM_START, memsize);
	arm_physmem_exclude_region(abp->abp_physaddr, 
	    virtual_avail - KERNVIRTADDR, EXFLAG_NOALLOC);
	arm_physmem_init_kernel_globals();

	init_param2(physmem);
	kdb_init();
	return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP -
	    sizeof(struct pcb)));
}
Exemplo n.º 13
0
void *
initarm(struct arm_boot_params *abp)
{
	struct pv_addr	kernel_l1pt;
	int loop;
	u_int l1pagetable;
	vm_offset_t freemempos;
	vm_offset_t afterkern;
	vm_offset_t lastaddr;

	int i;
	uint32_t memsize;

	boothowto = 0;  /* Likely not needed */
	lastaddr = parse_boot_param(abp);
	i = 0;
	set_cpufuncs();
	cpufuncs.cf_sleep = s3c24x0_sleep;

	pcpu0_init();

	/* Do basic tuning, hz etc */
	init_param1();

#define KERNEL_TEXT_BASE (KERNBASE)
	freemempos = (lastaddr + PAGE_MASK) & ~PAGE_MASK;
	/* Define a macro to simplify memory allocation */
#define valloc_pages(var, np)			\
	alloc_pages((var).pv_va, (np));		\
	(var).pv_pa = (var).pv_va + (KERNPHYSADDR - KERNVIRTADDR);

#define alloc_pages(var, np)			\
	(var) = freemempos;			\
	freemempos += (np * PAGE_SIZE);		\
	memset((char *)(var), 0, ((np) * PAGE_SIZE));

	while (((freemempos - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) != 0)
		freemempos += PAGE_SIZE;
	valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
		if (!(loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) {
			valloc_pages(kernel_pt_table[loop],
			    L2_TABLE_SIZE / PAGE_SIZE);
		} else {
			kernel_pt_table[loop].pv_va = freemempos -
			    (loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL)) *
			    L2_TABLE_SIZE_REAL;
			kernel_pt_table[loop].pv_pa =
			    kernel_pt_table[loop].pv_va - KERNVIRTADDR +
			    KERNPHYSADDR;
		}
	}
	/*
	 * Allocate a page for the system page mapped to V0x00000000
	 * This page will just contain the system vectors and can be
	 * shared by all processes.
	 */
	valloc_pages(systempage, 1);

	/* Allocate stacks for all modes */
	valloc_pages(irqstack, IRQ_STACK_SIZE);
	valloc_pages(abtstack, ABT_STACK_SIZE);
	valloc_pages(undstack, UND_STACK_SIZE);
	valloc_pages(kernelstack, KSTACK_PAGES);
	valloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE);
	/*
	 * Now we start construction of the L1 page table
	 * We start by mapping the L2 page tables into the L1.
	 * This means that we can replace L1 mappings later on if necessary
	 */
	l1pagetable = kernel_l1pt.pv_va;

	/* Map the L2 pages tables in the L1 page table */
	pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH,
	    &kernel_pt_table[KERNEL_PT_SYS]);
	for (i = 0; i < KERNEL_PT_KERN_NUM; i++)
		pmap_link_l2pt(l1pagetable, KERNBASE + i * L1_S_SIZE,
		    &kernel_pt_table[KERNEL_PT_KERN + i]);
	pmap_map_chunk(l1pagetable, KERNBASE, PHYSADDR,
	   (((uint32_t)(lastaddr) - KERNBASE) + PAGE_SIZE) & ~(PAGE_SIZE - 1),
	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	afterkern = round_page((lastaddr + L1_S_SIZE) & ~(L1_S_SIZE
	    - 1));
	for (i = 0; i < KERNEL_PT_AFKERNEL_NUM; i++) {
		pmap_link_l2pt(l1pagetable, afterkern + i * L1_S_SIZE,
		    &kernel_pt_table[KERNEL_PT_AFKERNEL + i]);
	}

	/* Map the vector page. */
	pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	/* Map the stack pages */
	pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
	    IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
	    ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
	    UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
	    KSTACK_PAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);

	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
	    L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
	pmap_map_chunk(l1pagetable, msgbufpv.pv_va, msgbufpv.pv_pa,
	    msgbufsize, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);


	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
		pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
		    kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
	}

	arm_devmap_bootstrap(l1pagetable, s3c24x0_devmap);

	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
	setttb(kernel_l1pt.pv_pa);
	cpu_tlb_flushID();
	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));

	/*
	 * Pages were allocated during the secondary bootstrap for the
	 * stacks for different CPU modes.
	 * We must now set the r13 registers in the different CPU modes to
	 * point to these stacks.
	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
	 * of the stack memory.
	 */

	cpu_control(CPU_CONTROL_MMU_ENABLE, CPU_CONTROL_MMU_ENABLE);
	set_stackptrs(0);

	/*
	 * We must now clean the cache again....
	 * Cleaning may be done by reading new data to displace any
	 * dirty data in the cache. This will have happened in setttb()
	 * but since we are boot strapping the addresses used for the read
	 * may have just been remapped and thus the cache could be out
	 * of sync. A re-clean after the switch will cure this.
	 * After booting there are no gross reloations of the kernel thus
	 * this problem will not occur after initarm().
	 */
	cpu_idcache_wbinv_all();

	/* Disable all peripheral interrupts */
	ioreg_write32(S3C24X0_INTCTL_BASE + INTCTL_INTMSK, ~0);
	memsize = board_init();
	/* Find pclk for uart */
	switch(ioreg_read32(S3C24X0_GPIO_BASE + GPIO_GSTATUS1) >> 16) {
	case 0x3241:
		s3c2410_clock_freq2(S3C24X0_CLKMAN_BASE, NULL, NULL,
		    &s3c2410_pclk);
		break;
	case 0x3244:
		s3c2440_clock_freq2(S3C24X0_CLKMAN_BASE, NULL, NULL,
		    &s3c2410_pclk);
		break;
	}
	cninit();

	/* Set stack for exception handlers */
	data_abort_handler_address = (u_int)data_abort_handler;
	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
	undefined_handler_address = (u_int)undefinedinstruction_bounce;
	undefined_init();
	
	init_proc0(kernelstack.pv_va);			
	
	arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);

	pmap_curmaxkvaddr = afterkern + 0x100000 * (KERNEL_PT_KERN_NUM - 1);
	arm_dump_avail_init(memsize, sizeof(dump_avail) / sizeof(dump_avail[0]));
	vm_max_kernel_address = KERNVIRTADDR + 3 * memsize;
	pmap_bootstrap(freemempos, &kernel_l1pt);
	msgbufp = (void*)msgbufpv.pv_va;
	msgbufinit(msgbufp, msgbufsize);
	mutex_init();

	physmem = memsize / PAGE_SIZE;

	phys_avail[0] = virtual_avail - KERNVIRTADDR + KERNPHYSADDR;
	phys_avail[1] = PHYSADDR + memsize;
	phys_avail[2] = 0;
	phys_avail[3] = 0;

	init_param2(physmem);
	kdb_init();

	return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP -
	    sizeof(struct pcb)));
}
Exemplo n.º 14
0
void *
initarm(void *arg, void *arg2)
{
#define	next_chunk2(a,b)	(((a) + (b)) &~ ((b)-1))
#define	next_page(a)		next_chunk2(a,PAGE_SIZE)
	struct pv_addr  kernel_l1pt;
	struct pv_addr  dpcpu;
	int loop, i;
	u_int l1pagetable;
	vm_offset_t freemempos;
	vm_offset_t freemem_pt;
	vm_offset_t afterkern;
	vm_offset_t freemem_after;
	vm_offset_t lastaddr;
	uint32_t memsize;

	set_cpufuncs();		/* NB: sets cputype */
	lastaddr = fake_preload_metadata();
	pcpu_init(pcpup, 0, sizeof(struct pcpu));
	PCPU_SET(curthread, &thread0);

	/* Do basic tuning, hz etc */
      	init_param1();
		
	/*
	 * We allocate memory downwards from where we were loaded
	 * by RedBoot; first the L1 page table, then NUM_KERNEL_PTS
	 * entries in the L2 page table.  Past that we re-align the
	 * allocation boundary so later data structures (stacks, etc)
	 * can be mapped with different attributes (write-back vs
	 * write-through).  Note this leaves a gap for expansion
	 * (or might be repurposed).
	 */
	freemempos = KERNPHYSADDR;

	/* macros to simplify initial memory allocation */
#define alloc_pages(var, np) do {					\
	freemempos -= (np * PAGE_SIZE);					\
	(var) = freemempos;						\
	/* NB: this works because locore maps PA=VA */			\
	memset((char *)(var), 0, ((np) * PAGE_SIZE));			\
} while (0)
#define	valloc_pages(var, np) do {					\
	alloc_pages((var).pv_pa, (np));					\
	(var).pv_va = (var).pv_pa + (KERNVIRTADDR - KERNPHYSADDR);	\
} while (0)

	/* force L1 page table alignment */
	while (((freemempos - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) != 0)
		freemempos -= PAGE_SIZE;
	/* allocate contiguous L1 page table */
	valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
	/* now allocate L2 page tables; they are linked to L1 below */
	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
		if (!(loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) {
			valloc_pages(kernel_pt_table[loop],
			    L2_TABLE_SIZE / PAGE_SIZE);
		} else {
			kernel_pt_table[loop].pv_pa = freemempos +
			    (loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL)) *
			    L2_TABLE_SIZE_REAL;
			kernel_pt_table[loop].pv_va = 
			    kernel_pt_table[loop].pv_pa +
				(KERNVIRTADDR - KERNPHYSADDR);
		}
	}
	freemem_pt = freemempos;		/* base of allocated pt's */

	/*
	 * Re-align allocation boundary so we can map the area
	 * write-back instead of write-through for the stacks and
	 * related structures allocated below.
	 */
	freemempos = PHYSADDR + 0x100000;
	/*
	 * Allocate a page for the system page mapped to V0x00000000
	 * This page will just contain the system vectors and can be
	 * shared by all processes.
	 */
	valloc_pages(systempage, 1);

	/* Allocate dynamic per-cpu area. */
	valloc_pages(dpcpu, DPCPU_SIZE / PAGE_SIZE);
	dpcpu_init((void *)dpcpu.pv_va, 0);

	/* Allocate stacks for all modes */
	valloc_pages(irqstack, IRQ_STACK_SIZE);
	valloc_pages(abtstack, ABT_STACK_SIZE);
	valloc_pages(undstack, UND_STACK_SIZE);
	valloc_pages(kernelstack, KSTACK_PAGES);
	alloc_pages(minidataclean.pv_pa, 1);
	valloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE);
#ifdef ARM_USE_SMALL_ALLOC
	freemempos -= PAGE_SIZE;
	freemem_pt = trunc_page(freemem_pt);
	freemem_after = freemempos - ((freemem_pt - (PHYSADDR + 0x100000)) /
	    PAGE_SIZE) * sizeof(struct arm_small_page);
	arm_add_smallalloc_pages(
	    (void *)(freemem_after + (KERNVIRTADDR - KERNPHYSADDR)),
	    (void *)0xc0100000,
	    freemem_pt - (PHYSADDR + 0x100000), 1);
	freemem_after -= ((freemem_after - (PHYSADDR + 0x1000)) / PAGE_SIZE) *
	    sizeof(struct arm_small_page);
	arm_add_smallalloc_pages(
	    (void *)(freemem_after + (KERNVIRTADDR - KERNPHYSADDR)),
	    (void *)0xc0001000,
	    trunc_page(freemem_after) - (PHYSADDR + 0x1000), 0);
	freemempos = trunc_page(freemem_after);
	freemempos -= PAGE_SIZE;
#endif

	/*
	 * Now construct the L1 page table.  First map the L2
	 * page tables into the L1 so we can replace L1 mappings
	 * later on if necessary
	 */
	l1pagetable = kernel_l1pt.pv_va;

	/* Map the L2 pages tables in the L1 page table */
	pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH & ~(0x00100000 - 1),
	    &kernel_pt_table[KERNEL_PT_SYS]);
	pmap_link_l2pt(l1pagetable, IXP425_IO_VBASE,
	    &kernel_pt_table[KERNEL_PT_IO]);
	pmap_link_l2pt(l1pagetable, IXP425_MCU_VBASE,
	    &kernel_pt_table[KERNEL_PT_IO + 1]);
	pmap_link_l2pt(l1pagetable, IXP425_PCI_MEM_VBASE,
	    &kernel_pt_table[KERNEL_PT_IO + 2]);
	pmap_link_l2pt(l1pagetable, KERNBASE,
	    &kernel_pt_table[KERNEL_PT_BEFOREKERN]);
	pmap_map_chunk(l1pagetable, KERNBASE, PHYSADDR, 0x100000,
	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	pmap_map_chunk(l1pagetable, KERNBASE + 0x100000, PHYSADDR + 0x100000,
	    0x100000, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
	pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE, KERNEL_TEXT_PHYS,
	    next_chunk2(((uint32_t)lastaddr) - KERNEL_TEXT_BASE, L1_S_SIZE),
	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	freemem_after = next_page((int)lastaddr);
	afterkern = round_page(next_chunk2((vm_offset_t)lastaddr, L1_S_SIZE));
	for (i = 0; i < KERNEL_PT_AFKERNEL_NUM; i++) {
		pmap_link_l2pt(l1pagetable, afterkern + i * 0x00100000,
		    &kernel_pt_table[KERNEL_PT_AFKERNEL + i]);
	}
	pmap_map_entry(l1pagetable, afterkern, minidataclean.pv_pa, 
	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);

#ifdef ARM_USE_SMALL_ALLOC
	if ((freemem_after + 2 * PAGE_SIZE) <= afterkern) {
		arm_add_smallalloc_pages((void *)(freemem_after),
		    (void*)(freemem_after + PAGE_SIZE),
		    afterkern - (freemem_after + PAGE_SIZE), 0);
		    
	}
#endif

	/* Map the Mini-Data cache clean area. */
	xscale_setup_minidata(l1pagetable, afterkern,
	    minidataclean.pv_pa);

	/* Map the vector page. */
	pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	if (cpu_is_ixp43x())
		pmap_devmap_bootstrap(l1pagetable, ixp435_devmap);
	else
		pmap_devmap_bootstrap(l1pagetable, ixp425_devmap);
	/*
	 * Give the XScale global cache clean code an appropriately
	 * sized chunk of unmapped VA space starting at 0xff000000
	 * (our device mappings end before this address).
	 */
	xscale_cache_clean_addr = 0xff000000U;

	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
	setttb(kernel_l1pt.pv_pa);
	cpu_tlb_flushID();
	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));

	/*
	 * Pages were allocated during the secondary bootstrap for the
	 * stacks for different CPU modes.
	 * We must now set the r13 registers in the different CPU modes to
	 * point to these stacks.
	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
	 * of the stack memory.
	 */
	set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE*PAGE_SIZE);
	set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE*PAGE_SIZE);
	set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE*PAGE_SIZE);

	/*
	 * We must now clean the cache again....
	 * Cleaning may be done by reading new data to displace any
	 * dirty data in the cache. This will have happened in setttb()
	 * but since we are boot strapping the addresses used for the read
	 * may have just been remapped and thus the cache could be out
	 * of sync. A re-clean after the switch will cure this.
	 * After booting there are no gross relocations of the kernel thus
	 * this problem will not occur after initarm().
	 */
	cpu_idcache_wbinv_all();
	/* ready to setup the console (XXX move earlier if possible) */
	cninit();
	/*
	 * Fetch the RAM size from the MCU registers.  The
	 * expansion bus was mapped above so we can now read 'em.
	 */
	if (cpu_is_ixp43x())
		memsize = ixp435_ddram_size();
	else
		memsize = ixp425_sdram_size();
	physmem = memsize / PAGE_SIZE;

	/* Set stack for exception handlers */

	data_abort_handler_address = (u_int)data_abort_handler;
	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
	undefined_handler_address = (u_int)undefinedinstruction_bounce;
	undefined_init();

	proc_linkup0(&proc0, &thread0);
	thread0.td_kstack = kernelstack.pv_va;
	thread0.td_pcb = (struct pcb *)
		(thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
	thread0.td_pcb->pcb_flags = 0;
	thread0.td_frame = &proc0_tf;
	pcpup->pc_curpcb = thread0.td_pcb;

	arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);

	pmap_curmaxkvaddr = afterkern + PAGE_SIZE;
	dump_avail[0] = PHYSADDR;
	dump_avail[1] = PHYSADDR + memsize;
	dump_avail[2] = 0;
	dump_avail[3] = 0;

	pmap_bootstrap(pmap_curmaxkvaddr, 0xd0000000, &kernel_l1pt);
	msgbufp = (void*)msgbufpv.pv_va;
	msgbufinit(msgbufp, msgbufsize);
	mutex_init();

	i = 0;
#ifdef ARM_USE_SMALL_ALLOC
	phys_avail[i++] = PHYSADDR;
	phys_avail[i++] = PHYSADDR + PAGE_SIZE; 	/*
					 *XXX: Gross hack to get our
					 * pages in the vm_page_array.
					 */
#endif
	phys_avail[i++] = round_page(virtual_avail - KERNBASE + PHYSADDR);
	phys_avail[i++] = trunc_page(PHYSADDR + memsize - 1);
	phys_avail[i++] = 0;
	phys_avail[i] = 0;

	init_param2(physmem);
	kdb_init();

	/* use static kernel environment if so configured */
	if (envmode == 1)
		kern_envp = static_env;

	return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP -
	    sizeof(struct pcb)));
#undef next_page
#undef next_chunk2
}
Exemplo n.º 15
0
void *
initarm(struct arm_boot_params *abp)
{
#define	next_chunk2(a,b)	(((a) + (b)) &~ ((b)-1))
#define	next_page(a)		next_chunk2(a,PAGE_SIZE)
	struct pv_addr  kernel_l1pt;
	struct pv_addr  dpcpu;
	int loop, i;
	u_int l1pagetable;
	vm_offset_t freemempos;
	vm_offset_t freemem_pt;
	vm_offset_t afterkern;
	vm_offset_t freemem_after;
	vm_offset_t lastaddr;
	uint32_t memsize;

	/* kernel text starts where we were loaded at boot */
#define	KERNEL_TEXT_OFF		(abp->abp_physaddr  - PHYSADDR)
#define	KERNEL_TEXT_BASE	(KERNBASE + KERNEL_TEXT_OFF)
#define	KERNEL_TEXT_PHYS	(PHYSADDR + KERNEL_TEXT_OFF)

	lastaddr = parse_boot_param(abp);
	arm_physmem_kernaddr = abp->abp_physaddr;
	set_cpufuncs();		/* NB: sets cputype */
	pcpu_init(pcpup, 0, sizeof(struct pcpu));
	PCPU_SET(curthread, &thread0);

	if (envmode == 1)
		kern_envp = static_env;
	/* Do basic tuning, hz etc */
      	init_param1();
		
	/*
	 * We allocate memory downwards from where we were loaded
	 * by RedBoot; first the L1 page table, then NUM_KERNEL_PTS
	 * entries in the L2 page table.  Past that we re-align the
	 * allocation boundary so later data structures (stacks, etc)
	 * can be mapped with different attributes (write-back vs
	 * write-through).  Note this leaves a gap for expansion
	 * (or might be repurposed).
	 */
	freemempos = abp->abp_physaddr;

	/* macros to simplify initial memory allocation */
#define alloc_pages(var, np) do {					\
	freemempos -= (np * PAGE_SIZE);					\
	(var) = freemempos;						\
	/* NB: this works because locore maps PA=VA */			\
	memset((char *)(var), 0, ((np) * PAGE_SIZE));			\
} while (0)
#define	valloc_pages(var, np) do {					\
	alloc_pages((var).pv_pa, (np));					\
	(var).pv_va = (var).pv_pa + (KERNVIRTADDR - abp->abp_physaddr);	\
} while (0)

	/* force L1 page table alignment */
	while (((freemempos - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) != 0)
		freemempos -= PAGE_SIZE;
	/* allocate contiguous L1 page table */
	valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
	/* now allocate L2 page tables; they are linked to L1 below */
	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
		if (!(loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) {
			valloc_pages(kernel_pt_table[loop],
			    L2_TABLE_SIZE / PAGE_SIZE);
		} else {
			kernel_pt_table[loop].pv_pa = freemempos +
			    (loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL)) *
			    L2_TABLE_SIZE_REAL;
			kernel_pt_table[loop].pv_va =
			    kernel_pt_table[loop].pv_pa +
				(KERNVIRTADDR - abp->abp_physaddr);
		}
	}
	freemem_pt = freemempos;		/* base of allocated pt's */

	/*
	 * Re-align allocation boundary so we can map the area
	 * write-back instead of write-through for the stacks and
	 * related structures allocated below.
	 */
	freemempos = PHYSADDR + 0x100000;
	/*
	 * Allocate a page for the system page mapped to V0x00000000
	 * This page will just contain the system vectors and can be
	 * shared by all processes.
	 */
	valloc_pages(systempage, 1);

	/* Allocate dynamic per-cpu area. */
	valloc_pages(dpcpu, DPCPU_SIZE / PAGE_SIZE);
	dpcpu_init((void *)dpcpu.pv_va, 0);

	/* Allocate stacks for all modes */
	valloc_pages(irqstack, IRQ_STACK_SIZE);
	valloc_pages(abtstack, ABT_STACK_SIZE);
	valloc_pages(undstack, UND_STACK_SIZE);
	valloc_pages(kernelstack, KSTACK_PAGES);
	alloc_pages(minidataclean.pv_pa, 1);
	valloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE);

	/*
	 * Now construct the L1 page table.  First map the L2
	 * page tables into the L1 so we can replace L1 mappings
	 * later on if necessary
	 */
	l1pagetable = kernel_l1pt.pv_va;

	/* Map the L2 pages tables in the L1 page table */
	pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH & ~(0x00100000 - 1),
	    &kernel_pt_table[KERNEL_PT_SYS]);
	pmap_link_l2pt(l1pagetable, IXP425_IO_VBASE,
	    &kernel_pt_table[KERNEL_PT_IO]);
	pmap_link_l2pt(l1pagetable, IXP425_MCU_VBASE,
	    &kernel_pt_table[KERNEL_PT_IO + 1]);
	pmap_link_l2pt(l1pagetable, IXP425_PCI_MEM_VBASE,
	    &kernel_pt_table[KERNEL_PT_IO + 2]);
	pmap_link_l2pt(l1pagetable, KERNBASE,
	    &kernel_pt_table[KERNEL_PT_BEFOREKERN]);
	pmap_map_chunk(l1pagetable, KERNBASE, PHYSADDR, 0x100000,
	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	pmap_map_chunk(l1pagetable, KERNBASE + 0x100000, PHYSADDR + 0x100000,
	    0x100000, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
	pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE, KERNEL_TEXT_PHYS,
	    next_chunk2(((uint32_t)lastaddr) - KERNEL_TEXT_BASE, L1_S_SIZE),
	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	freemem_after = next_page((int)lastaddr);
	afterkern = round_page(next_chunk2((vm_offset_t)lastaddr, L1_S_SIZE));
	for (i = 0; i < KERNEL_PT_AFKERNEL_NUM; i++) {
		pmap_link_l2pt(l1pagetable, afterkern + i * 0x00100000,
		    &kernel_pt_table[KERNEL_PT_AFKERNEL + i]);
	}
	pmap_map_entry(l1pagetable, afterkern, minidataclean.pv_pa,
	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);


	/* Map the Mini-Data cache clean area. */
	xscale_setup_minidata(l1pagetable, afterkern,
	    minidataclean.pv_pa);

	/* Map the vector page. */
	pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	if (cpu_is_ixp43x())
		arm_devmap_bootstrap(l1pagetable, ixp435_devmap);
	else
		arm_devmap_bootstrap(l1pagetable, ixp425_devmap);
	/*
	 * Give the XScale global cache clean code an appropriately
	 * sized chunk of unmapped VA space starting at 0xff000000
	 * (our device mappings end before this address).
	 */
	xscale_cache_clean_addr = 0xff000000U;

	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
	setttb(kernel_l1pt.pv_pa);
	cpu_tlb_flushID();
	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));

	/*
	 * Pages were allocated during the secondary bootstrap for the
	 * stacks for different CPU modes.
	 * We must now set the r13 registers in the different CPU modes to
	 * point to these stacks.
	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
	 * of the stack memory.
	 */
	set_stackptrs(0);

	/*
	 * We must now clean the cache again....
	 * Cleaning may be done by reading new data to displace any
	 * dirty data in the cache. This will have happened in setttb()
	 * but since we are boot strapping the addresses used for the read
	 * may have just been remapped and thus the cache could be out
	 * of sync. A re-clean after the switch will cure this.
	 * After booting there are no gross relocations of the kernel thus
	 * this problem will not occur after initarm().
	 */
	cpu_idcache_wbinv_all();
	cpu_setup();

	/* ready to setup the console (XXX move earlier if possible) */
	cninit();
	/*
	 * Fetch the RAM size from the MCU registers.  The
	 * expansion bus was mapped above so we can now read 'em.
	 */
	if (cpu_is_ixp43x())
		memsize = ixp435_ddram_size();
	else
		memsize = ixp425_sdram_size();

	undefined_init();

	init_proc0(kernelstack.pv_va);

	arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);

	pmap_curmaxkvaddr = afterkern + PAGE_SIZE;
	vm_max_kernel_address = 0xe0000000;
	pmap_bootstrap(pmap_curmaxkvaddr, &kernel_l1pt);
	msgbufp = (void*)msgbufpv.pv_va;
	msgbufinit(msgbufp, msgbufsize);
	mutex_init();

	/*
	 * Add the physical ram we have available.
	 *
	 * Exclude the kernel, and all the things we allocated which immediately
	 * follow the kernel, from the VM allocation pool but not from crash
	 * dumps.  virtual_avail is a global variable which tracks the kva we've
	 * "allocated" while setting up pmaps.
	 *
	 * Prepare the list of physical memory available to the vm subsystem.
	 */
	arm_physmem_hardware_region(PHYSADDR, memsize);
	arm_physmem_exclude_region(freemem_pt, KERNPHYSADDR -
	    freemem_pt, EXFLAG_NOALLOC);
	arm_physmem_exclude_region(freemempos, KERNPHYSADDR - 0x100000 -
	    freemempos, EXFLAG_NOALLOC);
	arm_physmem_exclude_region(abp->abp_physaddr, 
	    virtual_avail - KERNVIRTADDR, EXFLAG_NOALLOC);
	arm_physmem_init_kernel_globals();

	init_param2(physmem);
	kdb_init();

	/* use static kernel environment if so configured */
	if (envmode == 1)
		kern_envp = static_env;

	return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP -
	    sizeof(struct pcb)));
#undef next_page
#undef next_chunk2
}
Exemplo n.º 16
0
static int
ipi_handler(void *arg)
{
	u_int	cpu, ipi;

	cpu = PCPU_GET(cpuid);

	ipi = pic_ipi_read((int)arg);

	while ((ipi != 0x3ff)) {
		switch (ipi) {
		case IPI_RENDEZVOUS:
			CTR0(KTR_SMP, "IPI_RENDEZVOUS");
			smp_rendezvous_action();
			break;

		case IPI_AST:
			CTR0(KTR_SMP, "IPI_AST");
			break;

		case IPI_STOP:
			/*
			 * IPI_STOP_HARD is mapped to IPI_STOP so it is not
			 * necessary to add it in the switch.
			 */
			CTR0(KTR_SMP, "IPI_STOP or IPI_STOP_HARD");

			savectx(&stoppcbs[cpu]);

			/*
			 * CPUs are stopped when entering the debugger and at
			 * system shutdown, both events which can precede a
			 * panic dump.  For the dump to be correct, all caches
			 * must be flushed and invalidated, but on ARM there's
			 * no way to broadcast a wbinv_all to other cores.
			 * Instead, we have each core do the local wbinv_all as
			 * part of stopping the core.  The core requesting the
			 * stop will do the l2 cache flush after all other cores
			 * have done their l1 flushes and stopped.
			 */
			cpu_idcache_wbinv_all();

			/* Indicate we are stopped */
			CPU_SET_ATOMIC(cpu, &stopped_cpus);

			/* Wait for restart */
			while (!CPU_ISSET(cpu, &started_cpus))
				cpu_spinwait();

			CPU_CLR_ATOMIC(cpu, &started_cpus);
			CPU_CLR_ATOMIC(cpu, &stopped_cpus);
			CTR0(KTR_SMP, "IPI_STOP (restart)");
			break;
		case IPI_PREEMPT:
			CTR1(KTR_SMP, "%s: IPI_PREEMPT", __func__);
			sched_preempt(curthread);
			break;
		case IPI_HARDCLOCK:
			CTR1(KTR_SMP, "%s: IPI_HARDCLOCK", __func__);
			hardclockintr();
			break;
		case IPI_TLB:
			CTR1(KTR_SMP, "%s: IPI_TLB", __func__);
			cpufuncs.cf_tlb_flushID();
			break;
		default:
			panic("Unknown IPI 0x%0x on cpu %d", ipi, curcpu);
		}

		pic_ipi_clear(ipi);
		ipi = pic_ipi_read(-1);
	}

	return (FILTER_HANDLED);
}
Exemplo n.º 17
0
void    
platform_mp_start_ap(void)
{
	bus_space_handle_t scu;
	bus_space_handle_t src;

	uint32_t val;
	int i;

	if (bus_space_map(fdtbus_bs_tag, SCU_PHYSBASE, SCU_SIZE, 0, &scu) != 0)
		panic("Couldn't map the SCU\n");
	if (bus_space_map(fdtbus_bs_tag, SRC_PHYSBASE, SRC_SIZE, 0, &src) != 0)
		panic("Couldn't map the system reset controller (SRC)\n");

	/*
	 * Invalidate SCU cache tags.  The 0x0000ffff constant invalidates all
	 * ways on all cores 0-3.  Per the ARM docs, it's harmless to write to
	 * the bits for cores that are not present.
	 */
	bus_space_write_4(fdtbus_bs_tag, scu, SCU_INV_TAGS_REG, 0x0000ffff);

	/*
	 * Erratum ARM/MP: 764369 (problems with cache maintenance).
	 * Setting the "disable-migratory bit" in the undocumented SCU
	 * Diagnostic Control Register helps work around the problem.
	 */
	val = bus_space_read_4(fdtbus_bs_tag, scu, SCU_DIAG_CONTROL);
	bus_space_write_4(fdtbus_bs_tag, scu, SCU_DIAG_CONTROL, 
	    val | SCU_DIAG_DISABLE_MIGBIT);

	/*
	 * Enable the SCU, then clean the cache on this core.  After these two
	 * operations the cache tag ram in the SCU is coherent with the contents
	 * of the cache on this core.  The other cores aren't running yet so
	 * their caches can't contain valid data yet, but we've initialized
	 * their SCU tag ram above, so they will be coherent from startup.
	 */
	val = bus_space_read_4(fdtbus_bs_tag, scu, SCU_CONTROL_REG);
	bus_space_write_4(fdtbus_bs_tag, scu, SCU_CONTROL_REG, 
	    val | SCU_CONTROL_ENABLE);
	cpu_idcache_wbinv_all();

	/*
	 * For each AP core, set the entry point address and argument registers,
	 * and set the core-enable and core-reset bits in the control register.
	 */
	val = bus_space_read_4(fdtbus_bs_tag, src, SRC_CONTROL_REG);
	for (i=1; i < mp_ncpus; i++) {
		bus_space_write_4(fdtbus_bs_tag, src, SRC_GPR0_C1FUNC + 8*i,
		    pmap_kextract((vm_offset_t)mpentry));
		bus_space_write_4(fdtbus_bs_tag, src, SRC_GPR1_C1ARG  + 8*i, 0);

		val |= ((1 << (SRC_CONTROL_C1ENA_SHIFT - 1 + i )) |
		    ( 1 << (SRC_CONTROL_C1RST_SHIFT - 1 + i)));

	}
	bus_space_write_4(fdtbus_bs_tag, src, 0, val);

	armv7_sev();

	bus_space_unmap(fdtbus_bs_tag, scu, SCU_SIZE);
	bus_space_unmap(fdtbus_bs_tag, src, SRC_SIZE);
}
Exemplo n.º 18
0
/*
 * void cpu_reboot(int howto, char *bootstr)
 *
 * Reboots the system
 *
 * Deal with any syncing, unmounting, dumping and shutdown hooks,
 * then reset the CPU.
 */
void
cpu_reboot(int howto, char *bootstr)
{

	/*
	 * If we are still cold then hit the air brakes
	 * and crash to earth fast
	 */
	if (cold) {
		*(volatile uint8_t *)HDLG_LEDCTRL |= LEDCTRL_STAT_RED;
		howto |= RB_HALT;
		goto haltsys;
	}

	/* Disable console buffering */

	/*
	 * If RB_NOSYNC was not specified sync the discs.
	 * Note: Unless cold is set to 1 here, syslogd will die during the
	 * unmount.  It looks like syslogd is getting woken up only to find
	 * that it cannot page part of the binary in as the filesystem has
	 * been unmounted.
	 */
	if ((howto & RB_NOSYNC) == 0) {
		bootsync();
		/*resettodr();*/
	}

	/* wait 1s */
	delay(1 * 1000 * 1000);

	/* Say NO to interrupts */
	splhigh();

	/* Do a dump if requested. */
	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP) {
		dumpsys();
	}

haltsys:
	/* Run any shutdown hooks */
	doshutdownhooks();

	/* Make sure IRQ's are disabled */
	IRQdisable;

	if (howto & RB_HALT) {
		*(volatile uint8_t *)HDLG_PWRMNG = PWRMNG_POWOFF;
		delay(3 * 1000 * 1000);	/* wait 3s */

		printf("SHUTDOWN FAILED!\n");
		printf("The operating system has halted.\n");
		printf("Please press any key to reboot.\n\n");
		cngetc();
	}

	printf("rebooting...\n\r");

	(void)disable_interrupts(I32_bit|F32_bit);
	cpu_idcache_wbinv_all();
	cpu_drain_writebuf();

	*(volatile uint8_t *)HDLG_PWRMNG = PWRMNG_RESET;
	delay(1 * 1000 * 1000);	/* wait 1s */

	/* ...and if that didn't work, just croak. */
	printf("RESET FAILED!\n");
	for (;;) {
		continue;
	}
}
Exemplo n.º 19
0
void
platform_mp_start_ap(void)
{
	uint32_t reg, *src, *dst, cpu_num, div_val, cputype;
	vm_offset_t pmu_boot_off;
	/*
	 * Initialization procedure depends on core revision,
	 * in this step CHIP ID is checked to choose proper procedure
	 */
	cputype = cpufunc_id();
	cputype &= CPU_ID_CPU_MASK;

	/*
	 * Set the PA of CPU0 Boot Address Redirect register used in
	 * mptramp according to the actual SoC registers' base address.
	 */
	pmu_boot_off = (CPU_PMU(0) - MV_BASE) + CPU_PMU_BOOT;
	mptramp_pmu_boot = fdt_immr_pa + pmu_boot_off;
	dst = pmap_mapdev(0xffff0000, PAGE_SIZE);
	for (src = (uint32_t *)mptramp; src < (uint32_t *)mptramp_end;
	    src++, dst++) {
		*dst = *src;
	}
	pmap_unmapdev((vm_offset_t)dst, PAGE_SIZE);
	if (cputype == CPU_ID_MV88SV584X_V7) {
		/* Core rev A0 */
		div_val = read_cpu_clkdiv(CPU_DIVCLK_CTRL2_RATIO_FULL1);
		div_val &= 0x3f;

		for (cpu_num = 1; cpu_num < mp_ncpus; cpu_num++ ) {
			reg = read_cpu_clkdiv(CPU_DIVCLK_CTRL2_RATIO_FULL1);
			reg &= CPU_DIVCLK_MASK(cpu_num);
			reg |= div_val << (cpu_num * 8);
			write_cpu_clkdiv(CPU_DIVCLK_CTRL2_RATIO_FULL1, reg);
		}
	} else {
		/* Core rev Z1 */
		div_val = 0x01;

		if (mp_ncpus > 1) {
			reg = read_cpu_clkdiv(CPU_DIVCLK_CTRL2_RATIO_FULL0);
			reg &= CPU_DIVCLK_MASK(3);
			reg |= div_val << 24;
			write_cpu_clkdiv(CPU_DIVCLK_CTRL2_RATIO_FULL0, reg);
		}

		for (cpu_num = 2; cpu_num < mp_ncpus; cpu_num++ ) {
			reg = read_cpu_clkdiv(CPU_DIVCLK_CTRL2_RATIO_FULL1);
			reg &= CPU_DIVCLK_MASK(cpu_num);
			reg |= div_val << (cpu_num * 8);
			write_cpu_clkdiv(CPU_DIVCLK_CTRL2_RATIO_FULL1, reg);
		}
	}

	reg = read_cpu_clkdiv(CPU_DIVCLK_CTRL0);
	reg |= ((0x1 << (mp_ncpus - 1)) - 1) << 21;
	write_cpu_clkdiv(CPU_DIVCLK_CTRL0, reg);
	reg = read_cpu_clkdiv(CPU_DIVCLK_CTRL0);
	reg |= 0x01000000;
	write_cpu_clkdiv(CPU_DIVCLK_CTRL0, reg);

	DELAY(100);
	reg &= ~(0xf << 21);
	write_cpu_clkdiv(CPU_DIVCLK_CTRL0, reg);
	DELAY(100);

	bus_space_write_4(fdtbus_bs_tag, MV_BASE, CPU_RESUME_CONTROL, 0);

	for (cpu_num = 1; cpu_num < mp_ncpus; cpu_num++ )
		bus_space_write_4(fdtbus_bs_tag, CPU_PMU(cpu_num), CPU_PMU_BOOT,
		    pmap_kextract((vm_offset_t)mpentry));

	cpu_idcache_wbinv_all();

	for (cpu_num = 1; cpu_num < mp_ncpus; cpu_num++ )
		bus_space_write_4(fdtbus_bs_tag, MP, MP_SW_RESET(cpu_num), 0);

	/* XXX: Temporary workaround for hangup after releasing AP's */
	wmb();
	DELAY(10);

	armadaxp_init_coher_fabric();
}
Exemplo n.º 20
0
void *
initarm(struct arm_boot_params *abp)
{
    struct pv_addr  kernel_l1pt;
    struct pv_addr  dpcpu;
    int loop;
    u_int l1pagetable;
    vm_offset_t freemempos;
    vm_offset_t freemem_pt;
    vm_offset_t afterkern;
    vm_offset_t freemem_after;
    vm_offset_t lastaddr;
    int i, j;
    uint32_t memsize[PXA2X0_SDRAM_BANKS], memstart[PXA2X0_SDRAM_BANKS];

    lastaddr = parse_boot_param(abp);
    set_cpufuncs();
    pcpu_init(pcpup, 0, sizeof(struct pcpu));
    PCPU_SET(curthread, &thread0);

    /* Do basic tuning, hz etc */
    init_param1();

    freemempos = 0xa0200000;
    /* Define a macro to simplify memory allocation */
#define	valloc_pages(var, np)			\
	alloc_pages((var).pv_pa, (np));		\
	(var).pv_va = (var).pv_pa + 0x20000000;

#define alloc_pages(var, np)			\
	freemempos -= (np * PAGE_SIZE);		\
	(var) = freemempos;		\
	memset((char *)(var), 0, ((np) * PAGE_SIZE));

    while (((freemempos - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) != 0)
        freemempos -= PAGE_SIZE;
    valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
    for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
        if (!(loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) {
            valloc_pages(kernel_pt_table[loop],
                         L2_TABLE_SIZE / PAGE_SIZE);
        } else {
            kernel_pt_table[loop].pv_pa = freemempos +
                                          (loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL)) *
                                          L2_TABLE_SIZE_REAL;
            kernel_pt_table[loop].pv_va =
                kernel_pt_table[loop].pv_pa + 0x20000000;
        }
    }
    freemem_pt = freemempos;
    freemempos = 0xa0100000;
    /*
     * Allocate a page for the system page mapped to V0x00000000
     * This page will just contain the system vectors and can be
     * shared by all processes.
     */
    valloc_pages(systempage, 1);

    /* Allocate dynamic per-cpu area. */
    valloc_pages(dpcpu, DPCPU_SIZE / PAGE_SIZE);
    dpcpu_init((void *)dpcpu.pv_va, 0);

    /* Allocate stacks for all modes */
    valloc_pages(irqstack, IRQ_STACK_SIZE);
    valloc_pages(abtstack, ABT_STACK_SIZE);
    valloc_pages(undstack, UND_STACK_SIZE);
    valloc_pages(kernelstack, KSTACK_PAGES);
    alloc_pages(minidataclean.pv_pa, 1);
    valloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE);
#ifdef ARM_USE_SMALL_ALLOC
    freemempos -= PAGE_SIZE;
    freemem_pt = trunc_page(freemem_pt);
    freemem_after = freemempos - ((freemem_pt - 0xa0100000) /
                                  PAGE_SIZE) * sizeof(struct arm_small_page);
    arm_add_smallalloc_pages((void *)(freemem_after + 0x20000000)
                             , (void *)0xc0100000, freemem_pt - 0xa0100000, 1);
    freemem_after -= ((freemem_after - 0xa0001000) / PAGE_SIZE) *
                     sizeof(struct arm_small_page);
    arm_add_smallalloc_pages((void *)(freemem_after + 0x20000000)
                             , (void *)0xc0001000, trunc_page(freemem_after) - 0xa0001000, 0);
    freemempos = trunc_page(freemem_after);
    freemempos -= PAGE_SIZE;
#endif
    /*
     * Allocate memory for the l1 and l2 page tables. The scheme to avoid
     * wasting memory by allocating the l1pt on the first 16k memory was
     * taken from NetBSD rpc_machdep.c. NKPT should be greater than 12 for
     * this to work (which is supposed to be the case).
     */

    /*
     * Now we start construction of the L1 page table
     * We start by mapping the L2 page tables into the L1.
     * This means that we can replace L1 mappings later on if necessary
     */
    l1pagetable = kernel_l1pt.pv_va;

    /* Map the L2 pages tables in the L1 page table */
    pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH & ~(0x00100000 - 1),
                   &kernel_pt_table[KERNEL_PT_SYS]);
#if 0 /* XXXBJR: What is this?  Don't know if there's an analogue. */
    pmap_link_l2pt(l1pagetable, IQ80321_IOPXS_VBASE,
                   &kernel_pt_table[KERNEL_PT_IOPXS]);
#endif
    pmap_link_l2pt(l1pagetable, KERNBASE,
                   &kernel_pt_table[KERNEL_PT_BEFOREKERN]);
    pmap_map_chunk(l1pagetable, KERNBASE, SDRAM_START, 0x100000,
                   VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    pmap_map_chunk(l1pagetable, KERNBASE + 0x100000, SDRAM_START + 0x100000,
                   0x100000, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
    pmap_map_chunk(l1pagetable, KERNBASE + 0x200000, SDRAM_START + 0x200000,
                   (((uint32_t)(lastaddr) - KERNBASE - 0x200000) + L1_S_SIZE) & ~(L1_S_SIZE - 1),
                   VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    freemem_after = ((int)lastaddr + PAGE_SIZE) & ~(PAGE_SIZE - 1);
    afterkern = round_page(((vm_offset_t)lastaddr + L1_S_SIZE) &
                           ~(L1_S_SIZE - 1));
    for (i = 0; i < KERNEL_PT_AFKERNEL_NUM; i++) {
        pmap_link_l2pt(l1pagetable, afterkern + i * 0x00100000,
                       &kernel_pt_table[KERNEL_PT_AFKERNEL + i]);
    }
    pmap_map_entry(l1pagetable, afterkern, minidataclean.pv_pa,
                   VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);

#ifdef ARM_USE_SMALL_ALLOC
    if ((freemem_after + 2 * PAGE_SIZE) <= afterkern) {
        arm_add_smallalloc_pages((void *)(freemem_after),
                                 (void*)(freemem_after + PAGE_SIZE),
                                 afterkern - (freemem_after + PAGE_SIZE), 0);
    }
#endif

    /* Map the Mini-Data cache clean area. */
    xscale_setup_minidata(l1pagetable, afterkern,
                          minidataclean.pv_pa);

    /* Map the vector page. */
    pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
                   VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    pmap_devmap_bootstrap(l1pagetable, pxa_devmap);

    /*
     * Give the XScale global cache clean code an appropriately
     * sized chunk of unmapped VA space starting at 0xff000000
     * (our device mappings end before this address).
     */
    xscale_cache_clean_addr = 0xff000000U;

    cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
    setttb(kernel_l1pt.pv_pa);
    cpu_tlb_flushID();
    cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));

    /*
     * Pages were allocated during the secondary bootstrap for the
     * stacks for different CPU modes.
     * We must now set the r13 registers in the different CPU modes to
     * point to these stacks.
     * Since the ARM stacks use STMFD etc. we must set r13 to the top end
     * of the stack memory.
     */
    set_stackptrs(0);

    /*
     * We must now clean the cache again....
     * Cleaning may be done by reading new data to displace any
     * dirty data in the cache. This will have happened in setttb()
     * but since we are boot strapping the addresses used for the read
     * may have just been remapped and thus the cache could be out
     * of sync. A re-clean after the switch will cure this.
     * After booting there are no gross relocations of the kernel thus
     * this problem will not occur after initarm().
     */
    cpu_idcache_wbinv_all();

    /*
     * Sort out bus_space for on-board devices.
     */
    pxa_obio_tag_init();

    /*
     * Fetch the SDRAM start/size from the PXA2X0 SDRAM configration
     * registers.
     */
    pxa_probe_sdram(obio_tag, PXA2X0_MEMCTL_BASE, memstart, memsize);

    physmem = 0;
    for (i = 0; i < PXA2X0_SDRAM_BANKS; i++) {
        physmem += memsize[i] / PAGE_SIZE;
    }

    /* Fire up consoles. */
    cninit();

    /* Set stack for exception handlers */
    data_abort_handler_address = (u_int)data_abort_handler;
    prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
    undefined_handler_address = (u_int)undefinedinstruction_bounce;
    undefined_init();

    init_proc0(kernelstack.pv_va);

    /* Enable MMU, I-cache, D-cache, write buffer. */
    arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);

    pmap_curmaxkvaddr = afterkern + PAGE_SIZE;
    /*
     * ARM USE_SMALL_ALLOC uses dump_avail, so it must be filled before
     * calling pmap_bootstrap.
     */
    i = 0;
    for (j = 0; j < PXA2X0_SDRAM_BANKS; j++) {
        if (memsize[j] > 0) {
            dump_avail[i++] = round_page(memstart[j]);
            dump_avail[i++] =
                trunc_page(memstart[j] + memsize[j]);
        }
    }
    dump_avail[i] = 0;
    dump_avail[i] = 0;
    vm_max_kernel_address = 0xd0000000;
    pmap_bootstrap(pmap_curmaxkvaddr, &kernel_l1pt);
    msgbufp = (void*)msgbufpv.pv_va;
    msgbufinit(msgbufp, msgbufsize);
    mutex_init();

    i = 0;
#ifdef ARM_USE_SMALL_ALLOC
    phys_avail[i++] = 0xa0000000;
    phys_avail[i++] = 0xa0001000; 	/*
					 *XXX: Gross hack to get our
					 * pages in the vm_page_array
					 . */
#endif
    for (j = 0; j < PXA2X0_SDRAM_BANKS; j++) {
        if (memsize[j] > 0) {
            phys_avail[i] = round_page(memstart[j]);
            dump_avail[i++] = round_page(memstart[j]);
            phys_avail[i] =
                trunc_page(memstart[j] + memsize[j]);
            dump_avail[i++] =
                trunc_page(memstart[j] + memsize[j]);
        }
    }

    dump_avail[i] = 0;
    phys_avail[i++] = 0;
    dump_avail[i] = 0;
    phys_avail[i] = 0;
#ifdef ARM_USE_SMALL_ALLOC
    phys_avail[2] = round_page(virtual_avail - KERNBASE + phys_avail[2]);
#else
    phys_avail[0] = round_page(virtual_avail - KERNBASE + phys_avail[0]);
#endif

    init_param2(physmem);
    kdb_init();
    return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP -
                     sizeof(struct pcb)));
}
Exemplo n.º 21
0
/*
 * Initial entry point on startup. This gets called before main() is
 * entered.
 * It should be responsible for setting up everything that must be
 * in place when main is called.
 * This includes
 *   Taking a copy of the boot configuration structure.
 *   Initialising the physical console so characters can be printed.
 *   Setting up page tables for the kernel
 *   Relocating the kernel to the bottom of physical memory
 */
u_int
initarm(void *arg)
{
        int loop;
	int loop1;
	u_int kerneldatasize, symbolsize;
	vaddr_t l1pagetable;
	vaddr_t freemempos;
#if NKSYMS || defined(DDB) || defined(MODULAR)
        Elf_Shdr *sh;
#endif

	cpu_reset_address = ixp12x0_reset;

        /*
         * Since we map v0xf0000000 == p0x90000000, it's possible for
         * us to initialize the console now.
         */
	consinit();

#ifdef VERBOSE_INIT_ARM
	/* Talk to the user */
	printf("\nNetBSD/evbarm (IXM1200) booting ...\n");
#endif

	/*
	 * Heads up ... Setup the CPU / MMU / TLB functions
	 */
	if (set_cpufuncs())
		panic("CPU not recognized!");

	/* XXX overwrite bootconfig to hardcoded values */
	bootconfig.dram[0].address = 0xc0000000;
	bootconfig.dram[0].pages   = 0x10000000 / PAGE_SIZE; /* SDRAM 256MB */
	bootconfig.dramblocks = 1;

	kerneldatasize = (uint32_t)&end - (uint32_t)KERNEL_TEXT_BASE;

	symbolsize = 0;

#ifdef PMAP_DEBUG
	pmap_debug(-1);
#endif

#if NKSYMS || defined(DDB) || defined(MODULAR)
        if (! memcmp(&end, "\177ELF", 4)) {
                sh = (Elf_Shdr *)((char *)&end + ((Elf_Ehdr *)&end)->e_shoff);
                loop = ((Elf_Ehdr *)&end)->e_shnum;
                for(; loop; loop--, sh++)
                        if (sh->sh_offset > 0 &&
                            (sh->sh_offset + sh->sh_size) > symbolsize)
                                symbolsize = sh->sh_offset + sh->sh_size;
        }
#endif
#ifdef VERBOSE_INIT_ARM
	printf("kernsize=0x%x\n", kerneldatasize);
#endif
	kerneldatasize += symbolsize;
	kerneldatasize = ((kerneldatasize - 1) & ~(PAGE_SIZE * 4 - 1)) + PAGE_SIZE * 8;

	/*
	 * Set up the variables that define the availablilty of physcial
	 * memory
	 */
	physical_start = bootconfig.dram[0].address;
	physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);

	physical_freestart = physical_start
		+ (KERNEL_TEXT_BASE - KERNEL_BASE) + kerneldatasize;
	physical_freeend = physical_end;

	physmem = (physical_end - physical_start) / PAGE_SIZE;

	freemempos = 0xc0000000;

#ifdef VERBOSE_INIT_ARM
	printf("Allocating page tables\n");
#endif
	free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;

#ifdef VERBOSE_INIT_ARM
	printf("CP15 Register1 = 0x%08x\n", cpu_get_control());
	printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
		physical_freestart, free_pages, free_pages);
	printf("physical_start = 0x%08lx, physical_end = 0x%08lx\n",
		physical_start, physical_end);
#endif

	/* Define a macro to simplify memory allocation */
#define valloc_pages(var, np)			\
	alloc_pages((var).pv_pa, (np));		\
	(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
#define alloc_pages(var, np)				\
	(var) = freemempos;				\
	memset((char *)(var), 0, ((np) * PAGE_SIZE));	\
	freemempos += (np) * PAGE_SIZE;

	loop1 = 0;
	for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
		/* Are we 16KB aligned for an L1 ? */
		if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
		    && kernel_l1pt.pv_pa == 0) {
			valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
		} else {
			valloc_pages(kernel_pt_table[loop1],
			    L2_TABLE_SIZE / PAGE_SIZE);
			++loop1;
		}
	}

#ifdef DIAGNOSTIC
	/* This should never be able to happen but better confirm that. */
	if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
		panic("initarm: Failed to align the kernel page directory");
#endif

	/*
	 * Allocate a page for the system page mapped to V0x00000000
	 * This page will just contain the system vectors and can be
	 * shared by all processes.
	 */
	alloc_pages(systempage.pv_pa, 1);

	/* Allocate stacks for all modes */
	valloc_pages(irqstack, IRQ_STACK_SIZE);
	valloc_pages(abtstack, ABT_STACK_SIZE);
	valloc_pages(undstack, UND_STACK_SIZE);
	valloc_pages(kernelstack, UPAGES);

#ifdef VERBOSE_INIT_ARM
	printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa, irqstack.pv_va); 
	printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa, abtstack.pv_va); 
	printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa, undstack.pv_va); 
	printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa, kernelstack.pv_va); 
#endif

	alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);

#ifdef CPU_IXP12X0
        /*
         * XXX totally stuffed hack to work round problems introduced
         * in recent versions of the pmap code. Due to the calls used there
         * we cannot allocate virtual memory during bootstrap.
         */
	for(;;) {
		alloc_pages(ixp12x0_cc_base, 1);
		if (! (ixp12x0_cc_base & (CPU_IXP12X0_CACHE_CLEAN_SIZE - 1)))
			break;
	}
	{
		vaddr_t dummy;
		alloc_pages(dummy, CPU_IXP12X0_CACHE_CLEAN_SIZE / PAGE_SIZE - 1);
	}
	ixp12x0_cache_clean_addr = ixp12x0_cc_base;
	ixp12x0_cache_clean_size = CPU_IXP12X0_CACHE_CLEAN_SIZE / 2;
#endif /* CPU_IXP12X0 */

#ifdef VERBOSE_INIT_ARM
	printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
#endif

	/*
	 * Now we start construction of the L1 page table
	 * We start by mapping the L2 page tables into the L1.
	 * This means that we can replace L1 mappings later on if necessary
	 */
	l1pagetable = kernel_l1pt.pv_pa;

	/* Map the L2 pages tables in the L1 page table */
	pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH & ~(0x00400000 - 1),
	    &kernel_pt_table[KERNEL_PT_SYS]);

	for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
		pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
		    &kernel_pt_table[KERNEL_PT_KERNEL + loop]);

	for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
		pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
		    &kernel_pt_table[KERNEL_PT_VMDATA + loop]);

	/* update the top of the kernel VM */
	pmap_curmaxkvaddr =
	    KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);

	pmap_link_l2pt(l1pagetable, IXP12X0_IO_VBASE,
	    &kernel_pt_table[KERNEL_PT_IO]);

#ifdef VERBOSE_INIT_ARM
	printf("Mapping kernel\n");
#endif

#if XXX
	/* Now we fill in the L2 pagetable for the kernel code/data */
	{
		extern char etext[], _end[];
		size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
		size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
		u_int logical;

		textsize = (textsize + PGOFSET) & ~PGOFSET;
		totalsize = (totalsize + PGOFSET) & ~PGOFSET;
                
		logical = 0x00200000;   /* offset of kernel in RAM */

		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
		    physical_start + logical, textsize,
		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
		    physical_start + logical, totalsize - textsize,
		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	}
#else
	{
		pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE,
                    KERNEL_TEXT_BASE, kerneldatasize,
                    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	}
#endif

#ifdef VERBOSE_INIT_ARM
        printf("Constructing L2 page tables\n");
#endif

	/* Map the stack pages */
	pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
	    IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
	    ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
	    UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
	    UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);

	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
	    L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);

	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
		pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
		    kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
	}

	/* Map the vector page. */
	pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);

#ifdef VERBOSE_INIT_ARM
	printf("systempage (vector page): p0x%08lx v0x%08lx\n",
	       systempage.pv_pa, vector_page);
#endif

	/* Map the statically mapped devices. */
	pmap_devmap_bootstrap(l1pagetable, ixm1200_devmap);

#ifdef VERBOSE_INIT_ARM
	printf("done.\n");
#endif

	/*
	 * Map the Dcache Flush page.
	 * Hw Ref Manual 3.2.4.5 Software Dcache Flush 
	 */
	pmap_map_chunk(l1pagetable, ixp12x0_cache_clean_addr, 0xe0000000,
	    CPU_IXP12X0_CACHE_CLEAN_SIZE, VM_PROT_READ, PTE_CACHE);

	/*
	 * Now we have the real page tables in place so we can switch to them.
	 * Once this is done we will be running with the REAL kernel page
	 * tables.
	 */

	/* Switch tables */
	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
	cpu_setttb(kernel_l1pt.pv_pa, true);
	cpu_tlb_flushID();
	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));

	/*
	 * Moved here from cpu_startup() as data_abort_handler() references
	 * this during init
	 */
	uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);

	/*
	 * We must now clean the cache again....
	 * Cleaning may be done by reading new data to displace any
	 * dirty data in the cache. This will have happened in cpu_setttb()
	 * but since we are boot strapping the addresses used for the read
	 * may have just been remapped and thus the cache could be out
	 * of sync. A re-clean after the switch will cure this.
	 * After booting there are no gross reloations of the kernel thus
	 * this problem will not occur after initarm().
	 */
	cpu_idcache_wbinv_all();

	arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);

	/*
	 * Pages were allocated during the secondary bootstrap for the
	 * stacks for different CPU modes.
	 * We must now set the r13 registers in the different CPU modes to
	 * point to these stacks.
	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
	 * of the stack memory.
	 */
#ifdef VERBOSE_INIT_ARM
	printf("init subsystems: stacks ");
#endif

	set_stackptr(PSR_IRQ32_MODE,
	    irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
	set_stackptr(PSR_ABT32_MODE,
	    abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
	set_stackptr(PSR_UND32_MODE,
	    undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
#ifdef PMAP_DEBUG
	if (pmap_debug_level >= 0)
		printf("kstack V%08lx P%08lx\n", kernelstack.pv_va,
		    kernelstack.pv_pa);
#endif  /* PMAP_DEBUG */

	/*
	 * Well we should set a data abort handler.
	 * Once things get going this will change as we will need a proper
	 * handler. Until then we will use a handler that just panics but
	 * tells us why.
	 * Initialisation of the vetcors will just panic on a data abort.
	 * This just fills in a slightly better one.
	 */
#ifdef VERBOSE_INIT_ARM
	printf("vectors ");
#endif
	data_abort_handler_address = (u_int)data_abort_handler;
	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
	undefined_handler_address = (u_int)undefinedinstruction_bounce;
#ifdef VERBOSE_INIT_ARM
	printf("\ndata_abort_handler_address = %08x\n", data_abort_handler_address);
	printf("prefetch_abort_handler_address = %08x\n", prefetch_abort_handler_address);
	printf("undefined_handler_address = %08x\n", undefined_handler_address);
#endif

	/* Initialise the undefined instruction handlers */
#ifdef VERBOSE_INIT_ARM
	printf("undefined ");
#endif
	undefined_init();

	/* Load memory into UVM. */
#ifdef VERBOSE_INIT_ARM
	printf("page ");
#endif
	uvm_setpagesize();	/* initialize PAGE_SIZE-dependent variables */
	uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
	    atop(physical_freestart), atop(physical_freeend),
	    VM_FREELIST_DEFAULT);

	/* Boot strap pmap telling it where the kernel page table is */
#ifdef VERBOSE_INIT_ARM
	printf("pmap ");
#endif
	pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);

	/* Setup the IRQ system */
#ifdef VERBOSE_INIT_ARM
	printf("irq ");
#endif
	ixp12x0_intr_init();

#ifdef VERBOSE_INIT_ARM
	printf("done.\n");
#endif

#ifdef VERBOSE_INIT_ARM
	printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
		physical_freestart, free_pages, free_pages);
	printf("freemempos=%08lx\n", freemempos);
	printf("switching to new L1 page table  @%#lx... \n", kernel_l1pt.pv_pa);
#endif

	consinit();
#ifdef VERBOSE_INIT_ARM
	printf("consinit \n");
#endif

	ixdp_ixp12x0_cc_setup();

#ifdef VERBOSE_INIT_ARM
	printf("bootstrap done.\n");
#endif

#if NKSYMS || defined(DDB) || defined(MODULAR)
	ksyms_addsyms_elf(symbolsize, ((int *)&end), ((char *)&end) + symbolsize);
#endif

#ifdef DDB
	db_machine_init();
	if (boothowto & RB_KDB)
		Debugger();
#endif

	/* We return the new stack pointer address */
	return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
}
Exemplo n.º 22
0
void
platform_mp_start_ap(void)
{
	bus_space_handle_t scu;
	bus_space_handle_t imem;
	bus_space_handle_t pmu;
	uint32_t val;
	int i;

	if (bus_space_map(fdtbus_bs_tag, SCU_PHYSBASE, SCU_SIZE, 0, &scu) != 0)
		panic("Could not map the SCU");
	if (bus_space_map(fdtbus_bs_tag, IMEM_PHYSBASE,
	    IMEM_SIZE, 0, &imem) != 0)
		panic("Could not map the IMEM");
	if (bus_space_map(fdtbus_bs_tag, PMU_PHYSBASE, PMU_SIZE, 0, &pmu) != 0)
		panic("Could not map the PMU");

	/*
	 * Invalidate SCU cache tags.  The 0x0000ffff constant invalidates all
	 * ways on all cores 0-3. Per the ARM docs, it's harmless to write to
	 * the bits for cores that are not present.
	 */
	bus_space_write_4(fdtbus_bs_tag, scu, SCU_INV_TAGS_REG, 0x0000ffff);

	/* Make sure all cores except the first are off */
	val = bus_space_read_4(fdtbus_bs_tag, pmu, PMU_PWRDN_CON);
	for (i = 1; i < mp_ncpus; i++)
		val |= 1 << i;
	bus_space_write_4(fdtbus_bs_tag, pmu, PMU_PWRDN_CON, val);

	/* Enable SCU power domain */
	val = bus_space_read_4(fdtbus_bs_tag, pmu, PMU_PWRDN_CON);
	val &= ~PMU_PWRDN_SCU;
	bus_space_write_4(fdtbus_bs_tag, pmu, PMU_PWRDN_CON, val);

	/* Enable SCU */
	val = bus_space_read_4(fdtbus_bs_tag, scu, SCU_CONTROL_REG);
	bus_space_write_4(fdtbus_bs_tag, scu, SCU_CONTROL_REG,
	    val | SCU_CONTROL_ENABLE);

	/*
	 * Cores will execute the code which resides at the start of
	 * the on-chip bootram/sram after power-on. This sram region
	 * should be reserved and the trampoline code that directs
	 * the core to the real startup code in ram should be copied
	 * into this sram region.
	 *
	 * First set boot function for the sram code.
	 */
	mpentry_addr = (char *)pmap_kextract((vm_offset_t)mpentry);

	/* Copy trampoline to sram, that runs during startup of the core */
	bus_space_write_region_4(fdtbus_bs_tag, imem, 0,
	    (uint32_t *)&rk30xx_boot2, 8);

	cpu_idcache_wbinv_all();
	cpu_l2cache_wbinv_all();

	/* Start all cores */
	val = bus_space_read_4(fdtbus_bs_tag, pmu, PMU_PWRDN_CON);
	for (i = 1; i < mp_ncpus; i++)
		val &= ~(1 << i);
	bus_space_write_4(fdtbus_bs_tag, pmu, PMU_PWRDN_CON, val);

	armv7_sev();

	bus_space_unmap(fdtbus_bs_tag, scu, SCU_SIZE);
	bus_space_unmap(fdtbus_bs_tag, imem, IMEM_SIZE);
	bus_space_unmap(fdtbus_bs_tag, pmu, PMU_SIZE);
}