static int sn_set_msi_irq_affinity(struct irq_data *data,
				   const struct cpumask *cpu_mask, bool force)
{
	struct msi_msg msg;
	int slice;
	nasid_t nasid;
	u64 bus_addr;
	struct pci_dev *pdev;
	struct pcidev_info *sn_pdev;
	struct sn_irq_info *sn_irq_info;
	struct sn_irq_info *new_irq_info;
	struct sn_pcibus_provider *provider;
	unsigned int cpu, irq = data->irq;

	cpu = cpumask_first_and(cpu_mask, cpu_online_mask);
	sn_irq_info = sn_msi_info[irq].sn_irq_info;
	if (sn_irq_info == NULL || sn_irq_info->irq_int_bit >= 0)
		return -1;

	/*
	 * Release XIO resources for the old MSI PCI address
	 */

	__get_cached_msi_msg(data->msi_desc, &msg);
	sn_pdev = (struct pcidev_info *)sn_irq_info->irq_pciioinfo;
	pdev = sn_pdev->pdi_linux_pcidev;
	provider = SN_PCIDEV_BUSPROVIDER(pdev);

	bus_addr = (u64)(msg.address_hi) << 32 | (u64)(msg.address_lo);
	(*provider->dma_unmap)(pdev, bus_addr, PCI_DMA_FROMDEVICE);
	sn_msi_info[irq].pci_addr = 0;

	nasid = cpuid_to_nasid(cpu);
	slice = cpuid_to_slice(cpu);

	new_irq_info = sn_retarget_vector(sn_irq_info, nasid, slice);
	sn_msi_info[irq].sn_irq_info = new_irq_info;
	if (new_irq_info == NULL)
		return -1;

	/*
	 * Map the xio address into bus space
	 */

	bus_addr = (*provider->dma_map_consistent)(pdev,
					new_irq_info->irq_xtalkaddr,
					sizeof(new_irq_info->irq_xtalkaddr),
					SN_DMA_MSI|SN_DMA_ADDR_XIO);

	sn_msi_info[irq].pci_addr = bus_addr;
	msg.address_hi = (u32)(bus_addr >> 32);
	msg.address_lo = (u32)(bus_addr & 0x00000000ffffffff);

	pci_write_msi_msg(irq, &msg);
	cpumask_copy(data->affinity, cpu_mask);

	return 0;
}
Exemplo n.º 2
0
int
nasid_slice_to_cpuid(int nasid, int slice)
{
	long cpu;

	for (cpu = 0; cpu < NR_CPUS; cpu++)
		if (cpuid_to_nasid(cpu) == nasid &&
					cpuid_to_slice(cpu) == slice)
			return cpu;

	return -1;
}
Exemplo n.º 3
0
static void sn_set_affinity_irq(unsigned int irq, cpumask_t mask)
{
	struct sn_irq_info *sn_irq_info, *sn_irq_info_safe;
	nasid_t nasid;
	int slice;

	nasid = cpuid_to_nasid(first_cpu(mask));
	slice = cpuid_to_slice(first_cpu(mask));

	list_for_each_entry_safe(sn_irq_info, sn_irq_info_safe,
				 sn_irq_lh[irq], list)
		(void)sn_retarget_vector(sn_irq_info, nasid, slice);
}
Exemplo n.º 4
0
static void
sn_msi_target(unsigned int vector, unsigned int cpu,
	      u32 *addr_hi, u32 *addr_lo)
{
	int slice;
	nasid_t nasid;
	u64 bus_addr;
	struct pci_dev *pdev;
	struct pcidev_info *sn_pdev;
	struct sn_irq_info *sn_irq_info;
	struct sn_irq_info *new_irq_info;
	struct sn_pcibus_provider *provider;

	sn_irq_info = sn_msi_info[vector].sn_irq_info;
	if (sn_irq_info == NULL || sn_irq_info->irq_int_bit >= 0)
		return;

	/*
	 * Release XIO resources for the old MSI PCI address
	 */

        sn_pdev = (struct pcidev_info *)sn_irq_info->irq_pciioinfo;
	pdev = sn_pdev->pdi_linux_pcidev;
	provider = SN_PCIDEV_BUSPROVIDER(pdev);

	bus_addr = (u64)(*addr_hi) << 32 | (u64)(*addr_lo);
	(*provider->dma_unmap)(pdev, bus_addr, PCI_DMA_FROMDEVICE);
	sn_msi_info[vector].pci_addr = 0;

	nasid = cpuid_to_nasid(cpu);
	slice = cpuid_to_slice(cpu);

	new_irq_info = sn_retarget_vector(sn_irq_info, nasid, slice);
	sn_msi_info[vector].sn_irq_info = new_irq_info;
	if (new_irq_info == NULL)
		return;

	/*
	 * Map the xio address into bus space
	 */

	bus_addr = (*provider->dma_map_consistent)(pdev,
					new_irq_info->irq_xtalkaddr,
					sizeof(new_irq_info->irq_xtalkaddr),
					SN_DMA_MSI|SN_DMA_ADDR_XIO);

	sn_msi_info[vector].pci_addr = bus_addr;
	*addr_hi = (u32)(bus_addr >> 32);
	*addr_lo = (u32)(bus_addr & 0x00000000ffffffff);
}
Exemplo n.º 5
0
static int sn_set_affinity_irq(struct irq_data *data,
			       const struct cpumask *mask, bool force)
{
	struct sn_irq_info *sn_irq_info, *sn_irq_info_safe;
	unsigned int irq = data->irq;
	nasid_t nasid;
	int slice;

	nasid = cpuid_to_nasid(cpumask_first(mask));
	slice = cpuid_to_slice(cpumask_first(mask));

	list_for_each_entry_safe(sn_irq_info, sn_irq_info_safe,
				 sn_irq_lh[irq], list)
		(void)sn_retarget_vector(sn_irq_info, nasid, slice);

	return 0;
}
Exemplo n.º 6
0
int
synergy_intr_connect(int bit, 
		int cpuid)
{
	int irq;
	unsigned is_b;

	irq = bit_pos_to_irq(bit);

	is_b = (cpuid_to_slice(cpuid)) & 1;
	if (is_b) {
		setclear_mask_b(irq,cpuid,1);
		setclear_mask_a(irq,cpuid, 0);
	} else {
		setclear_mask_a(irq, cpuid, 1);
		setclear_mask_b(irq, cpuid, 0);
	}
	return 0;
}
Exemplo n.º 7
0
static void sn_set_affinity_irq(unsigned int irq, cpumask_t mask)
{
	struct sn_irq_info *sn_irq_info, *sn_irq_info_safe;
	int cpuid, cpuphys;

	cpuid = first_cpu(mask);
	cpuphys = cpu_physical_id(cpuid);

	list_for_each_entry_safe(sn_irq_info, sn_irq_info_safe,
				 sn_irq_lh[irq], list) {
		u64 bridge;
		int local_widget, status;
		nasid_t local_nasid;
		struct sn_irq_info *new_irq_info;
		struct sn_pcibus_provider *pci_provider;

		new_irq_info = kmalloc(sizeof(struct sn_irq_info), GFP_ATOMIC);
		if (new_irq_info == NULL)
			break;
		memcpy(new_irq_info, sn_irq_info, sizeof(struct sn_irq_info));

		bridge = (u64) new_irq_info->irq_bridge;
		if (!bridge) {
			kfree(new_irq_info);
			break; /* irq is not a device interrupt */
		}

		local_nasid = NASID_GET(bridge);

		if (local_nasid & 1)
			local_widget = TIO_SWIN_WIDGETNUM(bridge);
		else
			local_widget = SWIN_WIDGETNUM(bridge);

		/* Free the old PROM new_irq_info structure */
		sn_intr_free(local_nasid, local_widget, new_irq_info);
		/* Update kernels new_irq_info with new target info */
		unregister_intr_pda(new_irq_info);

		/* allocate a new PROM new_irq_info struct */
		status = sn_intr_alloc(local_nasid, local_widget,
				       __pa(new_irq_info), irq,
				       cpuid_to_nasid(cpuid),
				       cpuid_to_slice(cpuid));

		/* SAL call failed */
		if (status) {
			kfree(new_irq_info);
			break;
		}

		new_irq_info->irq_cpuid = cpuid;
		register_intr_pda(new_irq_info);

		pci_provider = sn_pci_provider[new_irq_info->irq_bridge_type];
		if (pci_provider && pci_provider->target_interrupt)
			(pci_provider->target_interrupt)(new_irq_info);

		spin_lock(&sn_irq_info_lock);
		list_replace_rcu(&sn_irq_info->list, &new_irq_info->list);
		spin_unlock(&sn_irq_info_lock);
		call_rcu(&sn_irq_info->rcu, sn_irq_info_free);

#ifdef CONFIG_SMP
		set_irq_affinity_info((irq & 0xff), cpuphys, 0);
#endif
	}
Exemplo n.º 8
0
/*
 * ioctl for "sn_hwperf" misc device
 */
static int
sn_hwperf_ioctl(struct inode *in, struct file *fp, u32 op, u64 arg)
{
	struct sn_hwperf_ioctl_args a;
	struct cpuinfo_ia64 *cdata;
	struct sn_hwperf_object_info *objs;
	struct sn_hwperf_object_info *cpuobj;
	struct sn_hwperf_op_info op_info;
	void *p = NULL;
	int nobj;
	char slice;
	int node;
	int r;
	int v0;
	int i;
	int j;

	unlock_kernel();

	/* only user requests are allowed here */
	if ((op & SN_HWPERF_OP_MASK) < 10) {
		r = -EINVAL;
		goto error;
	}
	r = copy_from_user(&a, (const void __user *)arg,
		sizeof(struct sn_hwperf_ioctl_args));
	if (r != 0) {
		r = -EFAULT;
		goto error;
	}

	/*
	 * Allocate memory to hold a kernel copy of the user buffer. The
	 * buffer contents are either copied in or out (or both) of user
	 * space depending on the flags encoded in the requested operation.
	 */
	if (a.ptr) {
		p = vmalloc(a.sz);
		if (!p) {
			r = -ENOMEM;
			goto error;
		}
	}

	if (op & SN_HWPERF_OP_MEM_COPYIN) {
		r = copy_from_user(p, (const void __user *)a.ptr, a.sz);
		if (r != 0) {
			r = -EFAULT;
			goto error;
		}
	}

	switch (op) {
	case SN_HWPERF_GET_CPU_INFO:
		if (a.sz == sizeof(u64)) {
			/* special case to get size needed */
			*(u64 *) p = (u64) num_online_cpus() *
				sizeof(struct sn_hwperf_object_info);
		} else
		if (a.sz < num_online_cpus() * sizeof(struct sn_hwperf_object_info)) {
			r = -ENOMEM;
			goto error;
		} else
		if ((r = sn_hwperf_enum_objects(&nobj, &objs)) == 0) {
			memset(p, 0, a.sz);
			for (i = 0; i < nobj; i++) {
				node = sn_hwperf_obj_to_cnode(objs + i);
				for_each_online_cpu(j) {
					if (node != cpu_to_node(j))
						continue;
					cpuobj = (struct sn_hwperf_object_info *) p + j;
					slice = 'a' + cpuid_to_slice(j);
					cdata = cpu_data(j);
					cpuobj->id = j;
					snprintf(cpuobj->name,
						 sizeof(cpuobj->name),
						 "CPU %luMHz %s",
						 cdata->proc_freq / 1000000,
						 cdata->vendor);
					snprintf(cpuobj->location,
						 sizeof(cpuobj->location),
						 "%s%c", objs[i].location,
						 slice);
				}
			}

			vfree(objs);
		}
		break;

	case SN_HWPERF_GET_NODE_NASID:
		if (a.sz != sizeof(u64) ||
		   (node = a.arg) < 0 || node >= numionodes) {
			r = -EINVAL;
			goto error;
		}
		*(u64 *)p = (u64)cnodeid_to_nasid(node);
		break;

	case SN_HWPERF_GET_OBJ_NODE:
		if (a.sz != sizeof(u64) || a.arg < 0) {
			r = -EINVAL;
			goto error;
		}
		if ((r = sn_hwperf_enum_objects(&nobj, &objs)) == 0) {
			if (a.arg >= nobj) {
				r = -EINVAL;
				vfree(objs);
				goto error;
			}
			if (objs[(i = a.arg)].id != a.arg) {
				for (i = 0; i < nobj; i++) {
					if (objs[i].id == a.arg)
						break;
				}
			}
			if (i == nobj) {
				r = -EINVAL;
				vfree(objs);
				goto error;
			}
			*(u64 *)p = (u64)sn_hwperf_obj_to_cnode(objs + i);
			vfree(objs);
		}
		break;

	case SN_HWPERF_GET_MMRS:
	case SN_HWPERF_SET_MMRS:
	case SN_HWPERF_OBJECT_DISTANCE:
		op_info.p = p;
		op_info.a = &a;
		op_info.v0 = &v0;
		op_info.op = op;
		r = sn_hwperf_op_cpu(&op_info);
		if (r) {
			r = sn_hwperf_map_err(r);
			a.v0 = v0;
			goto error;
		}
		break;

	default:
		/* all other ops are a direct SAL call */
		r = ia64_sn_hwperf_op(sn_hwperf_master_nasid, op,
			      a.arg, a.sz, (u64) p, 0, 0, &v0);
		if (r) {
			r = sn_hwperf_map_err(r);
			goto error;
		}
		a.v0 = v0;
		break;
	}
Exemplo n.º 9
0
static int sn_topology_show(struct seq_file *s, void *d)
{
	int sz;
	int pt;
	int e = 0;
	int i;
	int j;
	const char *slabname;
	int ordinal;
	cpumask_t cpumask;
	char slice;
	struct cpuinfo_ia64 *c;
	struct sn_hwperf_port_info *ptdata;
	struct sn_hwperf_object_info *p;
	struct sn_hwperf_object_info *obj = d;	/* this object */
	struct sn_hwperf_object_info *objs = s->private; /* all objects */
	int rack, bay, slot, slab;
	u8 shubtype;
	u8 system_size;
	u8 sharing_size;
	u8 partid;
	u8 coher;
	u8 nasid_shift;
	u8 region_size;
	u16 nasid_mask;
	int nasid_msb;
	int pci_bus_ordinal = 0;

	if (obj == objs) {
		seq_printf(s, "# sn_topology version 2\n");
		seq_printf(s, "# objtype ordinal location partition"
			" [attribute value [, ...]]\n");

		if (ia64_sn_get_sn_info(0,
			&shubtype, &nasid_mask, &nasid_shift, &system_size,
			&sharing_size, &partid, &coher, &region_size))
			BUG();
		for (nasid_msb=63; nasid_msb > 0; nasid_msb--) {
			if (((u64)nasid_mask << nasid_shift) & (1ULL << nasid_msb))
				break;
		}
		seq_printf(s, "partition %u %s local "
			"shubtype %s, "
			"nasid_mask 0x%016lx, "
			"nasid_bits %d:%d, "
			"system_size %d, "
			"sharing_size %d, "
			"coherency_domain %d, "
			"region_size %d\n",

			partid, system_utsname.nodename,
			shubtype ? "shub2" : "shub1", 
			(u64)nasid_mask << nasid_shift, nasid_msb, nasid_shift,
			system_size, sharing_size, coher, region_size);
	}

	if (SN_HWPERF_FOREIGN(obj)) {
		/* private in another partition: not interesting */
		return 0;
	}

	for (i = 0; i < SN_HWPERF_MAXSTRING && obj->name[i]; i++) {
		if (obj->name[i] == ' ')
			obj->name[i] = '_';
	}

	slabname = sn_hwperf_get_slabname(obj, objs, &ordinal);
	seq_printf(s, "%s %d %s %s asic %s", slabname, ordinal, obj->location,
		obj->sn_hwp_this_part ? "local" : "shared", obj->name);

	if (!SN_HWPERF_IS_NODE(obj) && !SN_HWPERF_IS_IONODE(obj))
		seq_putc(s, '\n');
	else {
		seq_printf(s, ", nasid 0x%x", cnodeid_to_nasid(ordinal));
		for (i=0; i < numionodes; i++) {
			seq_printf(s, i ? ":%d" : ", dist %d",
				node_distance(ordinal, i));
		}
		seq_putc(s, '\n');

		/*
		 * CPUs on this node, if any
		 */
		cpumask = node_to_cpumask(ordinal);
		for_each_online_cpu(i) {
			if (cpu_isset(i, cpumask)) {
				slice = 'a' + cpuid_to_slice(i);
				c = cpu_data(i);
				seq_printf(s, "cpu %d %s%c local"
					" freq %luMHz, arch ia64",
					i, obj->location, slice,
					c->proc_freq / 1000000);
				for_each_online_cpu(j) {
					seq_printf(s, j ? ":%d" : ", dist %d",
						node_distance(
						    cpuid_to_cnodeid(i),
						    cpuid_to_cnodeid(j)));
				}
				seq_putc(s, '\n');
			}
		}

		/*
		 * PCI busses attached to this node, if any
		 */
		if (sn_hwperf_location_to_bpos(obj->location,
			&rack, &bay, &slot, &slab)) {
			/* export pci bus info */
			print_pci_topology(s, obj, &pci_bus_ordinal,
				rack, bay, slot, slab);

		}
	}

	if (obj->ports) {
		/*
		 * numalink ports
		 */
		sz = obj->ports * sizeof(struct sn_hwperf_port_info);
		if ((ptdata = vmalloc(sz)) == NULL)
			return -ENOMEM;
		e = ia64_sn_hwperf_op(sn_hwperf_master_nasid,
				      SN_HWPERF_ENUM_PORTS, obj->id, sz,
				      (u64) ptdata, 0, 0, NULL);
		if (e != SN_HWPERF_OP_OK)
			return -EINVAL;
		for (ordinal=0, p=objs; p != obj; p++) {
			if (!SN_HWPERF_FOREIGN(p))
				ordinal += p->ports;
		}
		for (pt = 0; pt < obj->ports; pt++) {
			for (p = objs, i = 0; i < sn_hwperf_obj_cnt; i++, p++) {
				if (ptdata[pt].conn_id == p->id) {
					break;
				}
			}
			seq_printf(s, "numalink %d %s-%d",
			    ordinal+pt, obj->location, ptdata[pt].port);

			if (i >= sn_hwperf_obj_cnt) {
				/* no connection */
				seq_puts(s, " local endpoint disconnected"
					    ", protocol unknown\n");
				continue;
			}

			if (obj->sn_hwp_this_part && p->sn_hwp_this_part)
				/* both ends local to this partition */
				seq_puts(s, " local");
			else if (!obj->sn_hwp_this_part && !p->sn_hwp_this_part)
				/* both ends of the link in foreign partiton */
				seq_puts(s, " foreign");
			else
				/* link straddles a partition */
				seq_puts(s, " shared");

			/*
			 * Unlikely, but strictly should query the LLP config
			 * registers because an NL4R can be configured to run
			 * NL3 protocol, even when not talking to an NL3 router.
			 * Ditto for node-node.
			 */
			seq_printf(s, " endpoint %s-%d, protocol %s\n",
				p->location, ptdata[pt].conn_port,
				(SN_HWPERF_IS_NL3ROUTER(obj) ||
				SN_HWPERF_IS_NL3ROUTER(p)) ?  "LLP3" : "LLP4");
		}
		vfree(ptdata);
	}

	return 0;
}