static void ila_csum_do_neutral(struct ila_addr *iaddr, struct ila_params *p) { __sum16 *adjust = (__force __sum16 *)&iaddr->ident.v16[3]; __wsum diff, fval; /* Check if checksum adjust value has been cached */ if (p->locator_match.v64) { diff = p->csum_diff; } else { diff = compute_csum_diff8((__be32 *)iaddr, (__be32 *)&p->locator); } fval = (__force __wsum)(ila_csum_neutral_set(iaddr->ident) ? ~CSUM_NEUTRAL_FLAG : CSUM_NEUTRAL_FLAG); diff = csum_add(diff, fval); *adjust = ~csum_fold(csum_add(diff, csum_unfold(*adjust))); /* Flip the csum-neutral bit. Either we are doing a SIR->ILA * translation with ILA_CSUM_NEUTRAL_MAP as the csum_method * and the C-bit is not set, or we are doing an ILA-SIR * tranlsation and the C-bit is set. */ iaddr->ident.csum_neutral ^= 1; }
static int ip6t_npt_checkentry(const struct xt_tgchk_param *par) { struct ip6t_npt_tginfo *npt = par->targinfo; __wsum src_sum = 0, dst_sum = 0; struct in6_addr pfx; unsigned int i; if (npt->src_pfx_len > 64 || npt->dst_pfx_len > 64) return -EINVAL; /* Ensure that LSB of prefix is zero */ ipv6_addr_prefix(&pfx, &npt->src_pfx.in6, npt->src_pfx_len); if (!ipv6_addr_equal(&pfx, &npt->src_pfx.in6)) return -EINVAL; ipv6_addr_prefix(&pfx, &npt->dst_pfx.in6, npt->dst_pfx_len); if (!ipv6_addr_equal(&pfx, &npt->dst_pfx.in6)) return -EINVAL; for (i = 0; i < ARRAY_SIZE(npt->src_pfx.in6.s6_addr16); i++) { src_sum = csum_add(src_sum, (__force __wsum)npt->src_pfx.in6.s6_addr16[i]); dst_sum = csum_add(dst_sum, (__force __wsum)npt->dst_pfx.in6.s6_addr16[i]); } npt->adjustment = ~csum_fold(csum_sub(src_sum, dst_sum)); return 0; }
static int push_mpls(struct sk_buff *skb, const struct ovs_action_push_mpls *mpls) { __be32 *new_mpls_lse; struct ethhdr *hdr; if (skb_cow_head(skb, MPLS_HLEN) < 0) return -ENOMEM; skb_push(skb, MPLS_HLEN); memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), skb->mac_len); skb_reset_mac_header(skb); new_mpls_lse = (__be32 *)mac_header_end(skb); *new_mpls_lse = mpls->mpls_lse; if (skb->ip_summed == CHECKSUM_COMPLETE) skb->csum = csum_add(skb->csum, csum_partial(new_mpls_lse, MPLS_HLEN, 0)); hdr = eth_hdr(skb); hdr->h_proto = mpls->mpls_ethertype; if (!ovs_skb_get_inner_protocol(skb)) ovs_skb_set_inner_protocol(skb, skb->protocol); skb->protocol = mpls->mpls_ethertype; return 0; }
int bpf_push_vlan(struct bpf_context *pctx, u16 proto, u16 vlan) { struct bpf_dp_context *ctx = container_of(pctx, struct bpf_dp_context, context); struct sk_buff *skb = ctx->skb; u16 current_tag; if (unlikely(!skb)) return -EINVAL; if (vlan_tx_tag_present(skb)) { current_tag = vlan_tx_tag_get(skb); if (!__vlan_put_tag(skb, skb->vlan_proto, current_tag)) { ctx->skb = NULL; return -ENOMEM; } if (skb->ip_summed == CHECKSUM_COMPLETE) skb->csum = csum_add(skb->csum, csum_partial(skb->data + (2 * ETH_ALEN), VLAN_HLEN, 0)); ctx->context.length = skb->len; } __vlan_hwaccel_put_tag(skb, proto, vlan); ctx->context.vlan_tag = vlan; return 0; }
static void lro_update_tcp_ip_header(struct net_lro_desc *lro_desc) { struct iphdr *iph = lro_desc->iph; struct tcphdr *tcph = lro_desc->tcph; __be32 *p; __wsum tcp_hdr_csum; tcph->ack_seq = lro_desc->tcp_ack; tcph->window = lro_desc->tcp_window; if (lro_desc->tcp_saw_tstamp) { p = (__be32 *)(tcph + 1); *(p+2) = lro_desc->tcp_rcv_tsecr; } iph->tot_len = htons(lro_desc->ip_tot_len); iph->check = 0; iph->check = ip_fast_csum((u8 *)lro_desc->iph, iph->ihl); tcph->check = 0; tcp_hdr_csum = csum_partial((u8 *)tcph, TCP_HDR_LEN(tcph), 0); lro_desc->data_csum = csum_add(lro_desc->data_csum, tcp_hdr_csum); tcph->check = csum_tcpudp_magic(iph->saddr, iph->daddr, lro_desc->ip_tot_len - IP_HDR_LEN(iph), IPPROTO_TCP, lro_desc->data_csum); }
static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key, const struct ovs_action_push_mpls *mpls) { __be32 *new_mpls_lse; struct ethhdr *hdr; /* Networking stack do not allow simultaneous Tunnel and MPLS GSO. */ if (skb->encapsulation) return -ENOTSUPP; if (skb_cow_head(skb, MPLS_HLEN) < 0) return -ENOMEM; skb_push(skb, MPLS_HLEN); memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), skb->mac_len); skb_reset_mac_header(skb); new_mpls_lse = (__be32 *)skb_mpls_header(skb); *new_mpls_lse = mpls->mpls_lse; if (skb->ip_summed == CHECKSUM_COMPLETE) skb->csum = csum_add(skb->csum, csum_partial(new_mpls_lse, MPLS_HLEN, 0)); hdr = eth_hdr(skb); hdr->h_proto = mpls->mpls_ethertype; if (!skb->inner_protocol) skb_set_inner_protocol(skb, skb->protocol); skb->protocol = mpls->mpls_ethertype; invalidate_flow_key(key); return 0; }
static int push_vlan(struct sk_buff *skb, const struct ovs_action_push_vlan *vlan) { if (unlikely(vlan_tx_tag_present(skb))) { u16 current_tag; /* push down current VLAN tag */ current_tag = vlan_tx_tag_get(skb); if (!__vlan_put_tag(skb, skb->vlan_proto, current_tag)) return -ENOMEM; /* Update mac_len for subsequent MPLS actions */ skb->mac_len += VLAN_HLEN; if (skb->ip_summed == CHECKSUM_COMPLETE) skb->csum = csum_add(skb->csum, csum_partial(skb->data + (2 * ETH_ALEN), VLAN_HLEN, 0)); invalidate_skb_flow_key(skb); } else { flow_key_set_vlan_tci(skb, vlan->vlan_tci); } __vlan_hwaccel_put_tag(skb, vlan->vlan_tpid, ntohs(vlan->vlan_tci) & ~VLAN_TAG_PRESENT); return 0; }
static void udpencap_fix6(struct sk_buff *skb, const struct xt_udpencap_tginfo *info) { struct ipv6hdr *iph = ipv6_hdr(skb); bool fix_csum = (skb->ip_summed == CHECKSUM_COMPLETE && !info->encap); if (fix_csum) skb->csum = csum_sub(skb->csum, csum_partial(&iph->payload_len, 3, 0)); iph->payload_len = htons(ntohs(iph->payload_len) + (info->encap ? 1 : -1) * sizeof(struct udphdr)); iph->nexthdr = info->proto; if (fix_csum) skb->csum = csum_add(skb->csum, csum_partial(&iph->payload_len, 3, 0)); }
static void udpencap_fix4(struct sk_buff *skb, const struct xt_udpencap_tginfo *info) { struct iphdr *iph = ip_hdr(skb); bool fix_csum = (skb->ip_summed == CHECKSUM_COMPLETE && !info->encap); __be16 newlen = htons(ntohs(iph->tot_len) + (info->encap ? 1 : -1) * sizeof(struct udphdr)); if (fix_csum) { skb->csum = csum_sub(skb->csum, csum_partial(&iph->tot_len, 2, 0)); skb->csum = csum_sub(skb->csum, csum_partial(&iph->protocol, 3, 0)); } csum_replace2(&iph->check, iph->tot_len, newlen); iph->tot_len = newlen; if (iph->protocol != info->proto) { csum_replace2(&iph->check, htons(iph->protocol), htons(info->proto)); iph->protocol = info->proto; } if (fix_csum) { skb->csum = csum_add(skb->csum, csum_partial(&iph->tot_len, 2, 0)); skb->csum = csum_add(skb->csum, csum_partial(&iph->protocol, 3, 0)); } }
static int checksum_udp(struct sk_buff *skb, struct udphdr *uh, unsigned short ulen, u32 saddr, u32 daddr) { unsigned int psum; if (uh->check == 0 || skb->ip_summed == CHECKSUM_UNNECESSARY) return 0; psum = csum_tcpudp_nofold(saddr, daddr, ulen, IPPROTO_UDP, 0); if (skb->ip_summed == CHECKSUM_HW && !(u16)csum_fold(csum_add(psum, skb->csum))) return 0; skb->csum = psum; return __skb_checksum_complete(skb); }
static __sum16 checksum_udp(struct sk_buff *skb, struct udphdr *uh, unsigned short ulen, __be32 saddr, __be32 daddr) { __wsum psum; if (uh->check == 0 || skb_csum_unnecessary(skb)) return 0; psum = csum_tcpudp_nofold(saddr, daddr, ulen, IPPROTO_UDP, 0); if (skb->ip_summed == CHECKSUM_COMPLETE && !csum_fold(csum_add(psum, skb->csum))) return 0; skb->csum = psum; return __skb_checksum_complete(skb); }
static int push_vlan(struct sk_buff *skb, const struct ovs_action_push_vlan *vlan) { if (unlikely(vlan_tx_tag_present(skb))) { u16 current_tag; /* push down current VLAN tag */ current_tag = vlan_tx_tag_get(skb); if (!__vlan_put_tag(skb, current_tag)) return -ENOMEM; if (get_ip_summed(skb) == OVS_CSUM_COMPLETE) skb->csum = csum_add(skb->csum, csum_partial(skb->data + ETH_HLEN, VLAN_HLEN, 0)); } __vlan_hwaccel_put_tag(skb, ntohs(vlan->vlan_tci) & ~VLAN_TAG_PRESENT); return 0; }
static int set_eth_addr(struct sk_buff *skb, const struct ovs_key_ethernet *eth_key) { int err; err = make_writable(skb, ETH_HLEN); if (unlikely(err)) return err; if (get_ip_summed(skb) == OVS_CSUM_COMPLETE) skb->csum = csum_sub(skb->csum, csum_partial(eth_hdr(skb), ETH_ALEN * 2, 0)); memcpy(eth_hdr(skb)->h_source, eth_key->eth_src, ETH_ALEN); memcpy(eth_hdr(skb)->h_dest, eth_key->eth_dst, ETH_ALEN); if (get_ip_summed(skb) == OVS_CSUM_COMPLETE) skb->csum = csum_add(skb->csum, csum_partial(eth_hdr(skb), ETH_ALEN * 2, 0)); return 0; }
static int push_vlan(struct sk_buff *skb, const struct ovs_action_push_vlan *vlan) { if (unlikely(vlan_tx_tag_present(skb))) { u16 current_tag; /* push down current VLAN tag */ current_tag = vlan_tx_tag_get(skb); skb = vlan_insert_tag_set_proto(skb, skb->vlan_proto, current_tag); if (!skb) return -ENOMEM; if (skb->ip_summed == CHECKSUM_COMPLETE) skb->csum = csum_add(skb->csum, csum_partial(skb->data + (2 * ETH_ALEN), VLAN_HLEN, 0)); } __vlan_hwaccel_put_tag(skb, vlan->vlan_tpid, ntohs(vlan->vlan_tci) & ~VLAN_TAG_PRESENT); return 0; }
static bool ip6t_npt_map_pfx(const struct ip6t_npt_tginfo *npt, struct in6_addr *addr) { unsigned int pfx_len; unsigned int i, idx; __be32 mask; __sum16 sum; pfx_len = max(npt->src_pfx_len, npt->dst_pfx_len); for (i = 0; i < pfx_len; i += 32) { if (pfx_len - i >= 32) mask = 0; else mask = htonl((1 << (i - pfx_len + 32)) - 1); idx = i / 32; addr->s6_addr32[idx] &= mask; addr->s6_addr32[idx] |= ~mask & npt->dst_pfx.in6.s6_addr32[idx]; } if (pfx_len <= 48) idx = 3; else { for (idx = 4; idx < ARRAY_SIZE(addr->s6_addr16); idx++) { if ((__force __sum16)addr->s6_addr16[idx] != CSUM_MANGLED_0) break; } if (idx == ARRAY_SIZE(addr->s6_addr16)) return false; } sum = ~csum_fold(csum_add(csum_unfold((__force __sum16)addr->s6_addr16[idx]), csum_unfold(npt->adjustment))); if (sum == CSUM_MANGLED_0) sum = 0; *(__force __sum16 *)&addr->s6_addr16[idx] = sum; return true; }
void bpf_store_bits(struct bpf_context *pctx, u32 off, const void *from, u32 len) { struct bpf_dp_context *ctx = container_of(pctx, struct bpf_dp_context, context); struct sk_buff *skb = ctx->skb; if (unlikely(!skb)) return; if (!pskb_may_pull(skb, off + len)) return; if (skb->ip_summed == CHECKSUM_COMPLETE) skb->csum = csum_sub(skb->csum, csum_partial(skb->data + off, len, 0)); memcpy(skb->data + off, from, len); if (skb->ip_summed == CHECKSUM_COMPLETE) skb->csum = csum_add(skb->csum, csum_partial(skb->data + off, len, 0)); }
static int internal_dev_recv(struct vport *vport, struct sk_buff *skb) { struct net_device *netdev = netdev_vport_priv(vport)->dev; int len; #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,37) if (vlan_tx_tag_present(skb)) { if (unlikely(!__vlan_put_tag(skb, skb->vlan_proto, vlan_tx_tag_get(skb)))) return 0; if (skb->ip_summed == CHECKSUM_COMPLETE) skb->csum = csum_add(skb->csum, csum_partial(skb->data + (2 * ETH_ALEN), VLAN_HLEN, 0)); vlan_set_tci(skb, 0); } #endif len = skb->len; skb_dst_drop(skb); nf_reset(skb); secpath_reset(skb); skb->dev = netdev; skb->pkt_type = PACKET_HOST; skb->protocol = eth_type_trans(skb, netdev); skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); netif_rx(skb); return len; }
static int push_vlan(struct sk_buff *skb, const struct ovs_action_push_vlan *vlan) { /* * Push an eventual existing hardware accel VLAN tag to the skb first * to maintain correct order. */ if (unlikely(vlan_tx_tag_present(skb))) { u16 current_tag; /* push down current VLAN tag */ current_tag = vlan_tx_tag_get(skb); if (!__vlan_put_tag(skb, current_tag)) return -ENOMEM; if (skb->ip_summed == CHECKSUM_COMPLETE) skb->csum = csum_add(skb->csum, csum_partial(skb->data + ETH_HLEN, VLAN_HLEN, 0)); } __vlan_put_tag(skb, ntohs(vlan->vlan_tci) & ~VLAN_TAG_PRESENT); return 0; }
/* Build a new IP datagram from all its fragments. */ static int ip_frag_reasm(struct ipq *qp, struct sk_buff *skb, struct sk_buff *prev_tail, struct net_device *dev) { struct net *net = container_of(qp->q.net, struct net, ipv4.frags); struct iphdr *iph; struct sk_buff *fp, *head = skb_rb_first(&qp->q.rb_fragments); struct sk_buff **nextp; /* To build frag_list. */ struct rb_node *rbn; int len; int ihlen; int err; u8 ecn; ipq_kill(qp); ecn = ip_frag_ecn_table[qp->ecn]; if (unlikely(ecn == 0xff)) { err = -EINVAL; goto out_fail; } /* Make the one we just received the head. */ if (head != skb) { fp = skb_clone(skb, GFP_ATOMIC); if (!fp) goto out_nomem; FRAG_CB(fp)->next_frag = FRAG_CB(skb)->next_frag; if (RB_EMPTY_NODE(&skb->rbnode)) FRAG_CB(prev_tail)->next_frag = fp; else rb_replace_node(&skb->rbnode, &fp->rbnode, &qp->q.rb_fragments); if (qp->q.fragments_tail == skb) qp->q.fragments_tail = fp; skb_morph(skb, head); FRAG_CB(skb)->next_frag = FRAG_CB(head)->next_frag; rb_replace_node(&head->rbnode, &skb->rbnode, &qp->q.rb_fragments); consume_skb(head); head = skb; } WARN_ON(head->ip_defrag_offset != 0); /* Allocate a new buffer for the datagram. */ ihlen = ip_hdrlen(head); len = ihlen + qp->q.len; err = -E2BIG; if (len > 65535) goto out_oversize; /* Head of list must not be cloned. */ if (skb_unclone(head, GFP_ATOMIC)) goto out_nomem; /* If the first fragment is fragmented itself, we split * it to two chunks: the first with data and paged part * and the second, holding only fragments. */ if (skb_has_frag_list(head)) { struct sk_buff *clone; int i, plen = 0; clone = alloc_skb(0, GFP_ATOMIC); if (!clone) goto out_nomem; skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list; skb_frag_list_init(head); for (i = 0; i < skb_shinfo(head)->nr_frags; i++) plen += skb_frag_size(&skb_shinfo(head)->frags[i]); clone->len = clone->data_len = head->data_len - plen; head->truesize += clone->truesize; clone->csum = 0; clone->ip_summed = head->ip_summed; add_frag_mem_limit(qp->q.net, clone->truesize); skb_shinfo(head)->frag_list = clone; nextp = &clone->next; } else { nextp = &skb_shinfo(head)->frag_list; } skb_push(head, head->data - skb_network_header(head)); /* Traverse the tree in order, to build frag_list. */ fp = FRAG_CB(head)->next_frag; rbn = rb_next(&head->rbnode); rb_erase(&head->rbnode, &qp->q.rb_fragments); while (rbn || fp) { /* fp points to the next sk_buff in the current run; * rbn points to the next run. */ /* Go through the current run. */ while (fp) { *nextp = fp; nextp = &fp->next; fp->prev = NULL; memset(&fp->rbnode, 0, sizeof(fp->rbnode)); head->data_len += fp->len; head->len += fp->len; if (head->ip_summed != fp->ip_summed) head->ip_summed = CHECKSUM_NONE; else if (head->ip_summed == CHECKSUM_COMPLETE) head->csum = csum_add(head->csum, fp->csum); head->truesize += fp->truesize; fp = FRAG_CB(fp)->next_frag; } /* Move to the next run. */ if (rbn) { struct rb_node *rbnext = rb_next(rbn); fp = rb_to_skb(rbn); rb_erase(rbn, &qp->q.rb_fragments); rbn = rbnext; } } sub_frag_mem_limit(qp->q.net, head->truesize); *nextp = NULL; head->next = NULL; head->prev = NULL; head->dev = dev; head->tstamp = qp->q.stamp; IPCB(head)->frag_max_size = max(qp->max_df_size, qp->q.max_size); iph = ip_hdr(head); iph->tot_len = htons(len); iph->tos |= ecn; /* When we set IP_DF on a refragmented skb we must also force a * call to ip_fragment to avoid forwarding a DF-skb of size s while * original sender only sent fragments of size f (where f < s). * * We only set DF/IPSKB_FRAG_PMTU if such DF fragment was the largest * frag seen to avoid sending tiny DF-fragments in case skb was built * from one very small df-fragment and one large non-df frag. */ if (qp->max_df_size == qp->q.max_size) { IPCB(head)->flags |= IPSKB_FRAG_PMTU; iph->frag_off = htons(IP_DF); } else { iph->frag_off = 0; } ip_send_check(iph); __IP_INC_STATS(net, IPSTATS_MIB_REASMOKS); qp->q.fragments = NULL; qp->q.rb_fragments = RB_ROOT; qp->q.fragments_tail = NULL; qp->q.last_run_head = NULL; return 0; out_nomem: net_dbg_ratelimited("queue_glue: no memory for gluing queue %p\n", qp); err = -ENOMEM; goto out_fail; out_oversize: net_info_ratelimited("Oversized IP packet from %pI4\n", &qp->q.key.v4.saddr); out_fail: __IP_INC_STATS(net, IPSTATS_MIB_REASMFAILS); return err; }
static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev, struct net_device *dev) { struct net *net = container_of(qp->q.net, struct net, ipv4.frags); struct iphdr *iph; struct sk_buff *fp, *head = qp->q.fragments; int len; int ihlen; int err; int sum_truesize; u8 ecn; ipq_kill(qp); ecn = ip_frag_ecn_table[qp->ecn]; if (unlikely(ecn == 0xff)) { err = -EINVAL; goto out_fail; } /* Make the one we just received the head. */ if (prev) { head = prev->next; fp = skb_clone(head, GFP_ATOMIC); if (!fp) goto out_nomem; fp->next = head->next; if (!fp->next) qp->q.fragments_tail = fp; prev->next = fp; skb_morph(head, qp->q.fragments); head->next = qp->q.fragments->next; consume_skb(qp->q.fragments); qp->q.fragments = head; } WARN_ON(head == NULL); WARN_ON(FRAG_CB(head)->offset != 0); /* Allocate a new buffer for the datagram. */ ihlen = ip_hdrlen(head); len = ihlen + qp->q.len; err = -E2BIG; if (len > 65535) goto out_oversize; /* Head of list must not be cloned. */ if (skb_unclone(head, GFP_ATOMIC)) goto out_nomem; /* If the first fragment is fragmented itself, we split * it to two chunks: the first with data and paged part * and the second, holding only fragments. */ if (skb_has_frag_list(head)) { struct sk_buff *clone; int i, plen = 0; if ((clone = alloc_skb(0, GFP_ATOMIC)) == NULL) goto out_nomem; clone->next = head->next; head->next = clone; skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list; skb_frag_list_init(head); for (i = 0; i < skb_shinfo(head)->nr_frags; i++) plen += skb_frag_size(&skb_shinfo(head)->frags[i]); clone->len = clone->data_len = head->data_len - plen; head->data_len -= clone->len; head->len -= clone->len; clone->csum = 0; clone->ip_summed = head->ip_summed; add_frag_mem_limit(&qp->q, clone->truesize); } skb_push(head, head->data - skb_network_header(head)); sum_truesize = head->truesize; for (fp = head->next; fp;) { bool headstolen; int delta; struct sk_buff *next = fp->next; sum_truesize += fp->truesize; if (head->ip_summed != fp->ip_summed) head->ip_summed = CHECKSUM_NONE; else if (head->ip_summed == CHECKSUM_COMPLETE) head->csum = csum_add(head->csum, fp->csum); if (skb_try_coalesce(head, fp, &headstolen, &delta)) { kfree_skb_partial(fp, headstolen); } else { if (!skb_shinfo(head)->frag_list) skb_shinfo(head)->frag_list = fp; head->data_len += fp->len; head->len += fp->len; head->truesize += fp->truesize; } fp = next; } sub_frag_mem_limit(&qp->q, sum_truesize); head->next = NULL; head->dev = dev; head->tstamp = qp->q.stamp; IPCB(head)->frag_max_size = qp->q.max_size; iph = ip_hdr(head); /* max_size != 0 implies at least one fragment had IP_DF set */ iph->frag_off = qp->q.max_size ? htons(IP_DF) : 0; iph->tot_len = htons(len); iph->tos |= ecn; ip_send_check(iph); IP_INC_STATS_BH(net, IPSTATS_MIB_REASMOKS); qp->q.fragments = NULL; qp->q.fragments_tail = NULL; return 0; out_nomem: LIMIT_NETDEBUG(KERN_ERR pr_fmt("queue_glue: no memory for gluing queue %p\n"), qp); err = -ENOMEM; goto out_fail; out_oversize: net_info_ratelimited("Oversized IP packet from %pI4\n", &qp->saddr); out_fail: IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS); return err; }
static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev, struct net_device *dev) { struct net *net = container_of(qp->q.net, struct net, ipv4.frags); struct iphdr *iph; struct sk_buff *fp, *head = qp->q.fragments; int len; int ihlen; int err; u8 ecn; ipq_kill(qp); ecn = ip_frag_ecn_table[qp->ecn]; if (unlikely(ecn == 0xff)) { err = -EINVAL; goto out_fail; } /* Make the one we just received the head. */ if (prev) { head = prev->next; fp = skb_clone(head, GFP_ATOMIC); if (!fp) goto out_nomem; fp->next = head->next; if (!fp->next) qp->q.fragments_tail = fp; prev->next = fp; skb_morph(head, qp->q.fragments); head->next = qp->q.fragments->next; consume_skb(qp->q.fragments); qp->q.fragments = head; } WARN_ON(!head); WARN_ON(FRAG_CB(head)->offset != 0); /* Allocate a new buffer for the datagram. */ ihlen = ip_hdrlen(head); len = ihlen + qp->q.len; err = -E2BIG; if (len > 65535) goto out_oversize; /* Head of list must not be cloned. */ if (skb_unclone(head, GFP_ATOMIC)) goto out_nomem; /* If the first fragment is fragmented itself, we split * it to two chunks: the first with data and paged part * and the second, holding only fragments. */ if (skb_has_frag_list(head)) { struct sk_buff *clone; int i, plen = 0; clone = alloc_skb(0, GFP_ATOMIC); if (!clone) goto out_nomem; clone->next = head->next; head->next = clone; skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list; skb_frag_list_init(head); for (i = 0; i < skb_shinfo(head)->nr_frags; i++) plen += skb_frag_size(&skb_shinfo(head)->frags[i]); clone->len = clone->data_len = head->data_len - plen; head->data_len -= clone->len; head->len -= clone->len; clone->csum = 0; clone->ip_summed = head->ip_summed; add_frag_mem_limit(qp->q.net, clone->truesize); } skb_shinfo(head)->frag_list = head->next; skb_push(head, head->data - skb_network_header(head)); for (fp=head->next; fp; fp = fp->next) { head->data_len += fp->len; head->len += fp->len; if (head->ip_summed != fp->ip_summed) head->ip_summed = CHECKSUM_NONE; else if (head->ip_summed == CHECKSUM_COMPLETE) head->csum = csum_add(head->csum, fp->csum); head->truesize += fp->truesize; } sub_frag_mem_limit(qp->q.net, head->truesize); head->next = NULL; head->dev = dev; head->tstamp = qp->q.stamp; IPCB(head)->frag_max_size = max(qp->max_df_size, qp->q.max_size); iph = ip_hdr(head); iph->tot_len = htons(len); iph->tos |= ecn; /* When we set IP_DF on a refragmented skb we must also force a * call to ip_fragment to avoid forwarding a DF-skb of size s while * original sender only sent fragments of size f (where f < s). * * We only set DF/IPSKB_FRAG_PMTU if such DF fragment was the largest * frag seen to avoid sending tiny DF-fragments in case skb was built * from one very small df-fragment and one large non-df frag. */ if (qp->max_df_size == qp->q.max_size) { IPCB(head)->flags |= IPSKB_FRAG_PMTU; iph->frag_off = htons(IP_DF); } else { iph->frag_off = 0; } ip_send_check(iph); IP_INC_STATS_BH(net, IPSTATS_MIB_REASMOKS); qp->q.fragments = NULL; qp->q.fragments_tail = NULL; return 0; out_nomem: net_dbg_ratelimited("queue_glue: no memory for gluing queue %p\n", qp); err = -ENOMEM; goto out_fail; out_oversize: net_info_ratelimited("Oversized IP packet from %pI4\n", &qp->saddr); out_fail: IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS); return err; }
static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev, struct net_device *dev) { struct net *net = container_of(qp->q.net, struct net, ipv4.frags); struct iphdr *iph; struct sk_buff *fp, *head = qp->q.fragments; int len; int ihlen; int err; ipq_kill(qp); /* Make the one we just received the head. */ if (prev) { head = prev->next; fp = skb_clone(head, GFP_ATOMIC); if (!fp) goto out_nomem; fp->next = head->next; prev->next = fp; skb_morph(head, qp->q.fragments); head->next = qp->q.fragments->next; kfree_skb(qp->q.fragments); qp->q.fragments = head; } WARN_ON(head == NULL); WARN_ON(FRAG_CB(head)->offset != 0); /* Allocate a new buffer for the datagram. */ ihlen = ip_hdrlen(head); len = ihlen + qp->q.len; err = -E2BIG; if (len > 65535) goto out_oversize; /* Head of list must not be cloned. */ if (skb_cloned(head) && pskb_expand_head(head, 0, 0, GFP_ATOMIC)) goto out_nomem; /* If the first fragment is fragmented itself, we split * it to two chunks: the first with data and paged part * and the second, holding only fragments. */ if (skb_has_frags(head)) { struct sk_buff *clone; int i, plen = 0; if ((clone = alloc_skb(0, GFP_ATOMIC)) == NULL) goto out_nomem; clone->next = head->next; head->next = clone; skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list; skb_frag_list_init(head); for (i=0; i<skb_shinfo(head)->nr_frags; i++) plen += skb_shinfo(head)->frags[i].size; clone->len = clone->data_len = head->data_len - plen; head->data_len -= clone->len; head->len -= clone->len; clone->csum = 0; clone->ip_summed = head->ip_summed; atomic_add(clone->truesize, &qp->q.net->mem); } skb_shinfo(head)->frag_list = head->next; skb_push(head, head->data - skb_network_header(head)); atomic_sub(head->truesize, &qp->q.net->mem); for (fp=head->next; fp; fp = fp->next) { head->data_len += fp->len; head->len += fp->len; if (head->ip_summed != fp->ip_summed) head->ip_summed = CHECKSUM_NONE; else if (head->ip_summed == CHECKSUM_COMPLETE) head->csum = csum_add(head->csum, fp->csum); head->truesize += fp->truesize; atomic_sub(fp->truesize, &qp->q.net->mem); } head->next = NULL; head->dev = dev; head->tstamp = qp->q.stamp; iph = ip_hdr(head); iph->frag_off = 0; iph->tot_len = htons(len); IP_INC_STATS_BH(net, IPSTATS_MIB_REASMOKS); qp->q.fragments = NULL; return 0; out_nomem: LIMIT_NETDEBUG(KERN_ERR "IP: queue_glue: no memory for gluing " "queue %p\n", qp); err = -ENOMEM; goto out_fail; out_oversize: if (net_ratelimit()) printk(KERN_INFO "Oversized IP packet from %pI4.\n", &qp->saddr); out_fail: IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS); return err; }
static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev, struct net_device *dev) { struct net *net = container_of(qp->q.net, struct net, ipv4.frags); struct iphdr *iph; struct sk_buff *fp, *head = qp->q.fragments; int len; int ihlen; int err; u8 ecn; ipq_kill(qp); ecn = ip4_frag_ecn_table[qp->ecn]; if (unlikely(ecn == 0xff)) { err = -EINVAL; goto out_fail; } if (prev) { head = prev->next; fp = skb_clone(head, GFP_ATOMIC); if (!fp) goto out_nomem; fp->next = head->next; if (!fp->next) qp->q.fragments_tail = fp; prev->next = fp; skb_morph(head, qp->q.fragments); head->next = qp->q.fragments->next; kfree_skb(qp->q.fragments); qp->q.fragments = head; } WARN_ON(head == NULL); WARN_ON(FRAG_CB(head)->offset != 0); ihlen = ip_hdrlen(head); len = ihlen + qp->q.len; err = -E2BIG; if (len > 65535) goto out_oversize; if (skb_cloned(head) && pskb_expand_head(head, 0, 0, GFP_ATOMIC)) goto out_nomem; if (skb_has_frag_list(head)) { struct sk_buff *clone; int i, plen = 0; if ((clone = alloc_skb(0, GFP_ATOMIC)) == NULL) goto out_nomem; clone->next = head->next; head->next = clone; skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list; skb_frag_list_init(head); for (i = 0; i < skb_shinfo(head)->nr_frags; i++) plen += skb_frag_size(&skb_shinfo(head)->frags[i]); clone->len = clone->data_len = head->data_len - plen; head->data_len -= clone->len; head->len -= clone->len; clone->csum = 0; clone->ip_summed = head->ip_summed; atomic_add(clone->truesize, &qp->q.net->mem); } skb_shinfo(head)->frag_list = head->next; skb_push(head, head->data - skb_network_header(head)); for (fp=head->next; fp; fp = fp->next) { head->data_len += fp->len; head->len += fp->len; if (head->ip_summed != fp->ip_summed) head->ip_summed = CHECKSUM_NONE; else if (head->ip_summed == CHECKSUM_COMPLETE) head->csum = csum_add(head->csum, fp->csum); head->truesize += fp->truesize; } atomic_sub(head->truesize, &qp->q.net->mem); head->next = NULL; head->dev = dev; head->tstamp = qp->q.stamp; iph = ip_hdr(head); iph->frag_off = 0; iph->tot_len = htons(len); iph->tos |= ecn; IP_INC_STATS_BH(net, IPSTATS_MIB_REASMOKS); qp->q.fragments = NULL; qp->q.fragments_tail = NULL; return 0; out_nomem: LIMIT_NETDEBUG(KERN_ERR pr_fmt("queue_glue: no memory for gluing queue %p\n"), qp); err = -ENOMEM; goto out_fail; out_oversize: if (net_ratelimit()) pr_info("Oversized IP packet from %pI4\n", &qp->saddr); out_fail: IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS); return err; }
/* * Check if this packet is complete. * Returns NULL on failure by any reason, and pointer * to current nexthdr field in reassembled frame. * * It is called with locked fq, and caller must check that * queue is eligible for reassembly i.e. it is not COMPLETE, * the last and the first frames arrived and all the bits are here. */ static int ip6_frag_reasm(struct frag_queue *fq, struct sk_buff *prev, struct net_device *dev) { struct net *net = container_of(fq->q.net, struct net, ipv6.frags); struct sk_buff *fp, *head = fq->q.fragments; int payload_len; unsigned int nhoff; fq_kill(fq); /* Make the one we just received the head. */ if (prev) { head = prev->next; fp = skb_clone(head, GFP_ATOMIC); if (!fp) goto out_oom; fp->next = head->next; if (!fp->next) fq->q.fragments_tail = fp; prev->next = fp; skb_morph(head, fq->q.fragments); head->next = fq->q.fragments->next; kfree_skb(fq->q.fragments); fq->q.fragments = head; } WARN_ON(head == NULL); WARN_ON(FRAG6_CB(head)->offset != 0); /* Unfragmented part is taken from the first segment. */ payload_len = ((head->data - skb_network_header(head)) - sizeof(struct ipv6hdr) + fq->q.len - sizeof(struct frag_hdr)); if (payload_len > IPV6_MAXPLEN) goto out_oversize; /* Head of list must not be cloned. */ if (skb_cloned(head) && pskb_expand_head(head, 0, 0, GFP_ATOMIC)) goto out_oom; /* If the first fragment is fragmented itself, we split * it to two chunks: the first with data and paged part * and the second, holding only fragments. */ if (skb_has_frag_list(head)) { struct sk_buff *clone; int i, plen = 0; if ((clone = alloc_skb(0, GFP_ATOMIC)) == NULL) goto out_oom; clone->next = head->next; head->next = clone; skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list; skb_frag_list_init(head); for (i=0; i<skb_shinfo(head)->nr_frags; i++) plen += skb_shinfo(head)->frags[i].size; clone->len = clone->data_len = head->data_len - plen; head->data_len -= clone->len; head->len -= clone->len; clone->csum = 0; clone->ip_summed = head->ip_summed; atomic_add(clone->truesize, &fq->q.net->mem); } /* We have to remove fragment header from datagram and to relocate * header in order to calculate ICV correctly. */ nhoff = fq->nhoffset; skb_network_header(head)[nhoff] = skb_transport_header(head)[0]; memmove(head->head + sizeof(struct frag_hdr), head->head, (head->data - head->head) - sizeof(struct frag_hdr)); head->mac_header += sizeof(struct frag_hdr); head->network_header += sizeof(struct frag_hdr); skb_shinfo(head)->frag_list = head->next; skb_reset_transport_header(head); skb_push(head, head->data - skb_network_header(head)); for (fp=head->next; fp; fp = fp->next) { head->data_len += fp->len; head->len += fp->len; if (head->ip_summed != fp->ip_summed) head->ip_summed = CHECKSUM_NONE; else if (head->ip_summed == CHECKSUM_COMPLETE) head->csum = csum_add(head->csum, fp->csum); head->truesize += fp->truesize; } atomic_sub(head->truesize, &fq->q.net->mem); head->next = NULL; head->dev = dev; head->tstamp = fq->q.stamp; ipv6_hdr(head)->payload_len = htons(payload_len); IP6CB(head)->nhoff = nhoff; /* Yes, and fold redundant checksum back. 8) */ if (head->ip_summed == CHECKSUM_COMPLETE) head->csum = csum_partial(skb_network_header(head), skb_network_header_len(head), head->csum); rcu_read_lock(); IP6_INC_STATS_BH(net, __in6_dev_get(dev), IPSTATS_MIB_REASMOKS); rcu_read_unlock(); fq->q.fragments = NULL; fq->q.fragments_tail = NULL; return 1; out_oversize: if (net_ratelimit()) printk(KERN_DEBUG "ip6_frag_reasm: payload len = %d\n", payload_len); goto out_fail; out_oom: if (net_ratelimit()) printk(KERN_DEBUG "ip6_frag_reasm: no memory for reassembly\n"); out_fail: rcu_read_lock(); IP6_INC_STATS_BH(net, __in6_dev_get(dev), IPSTATS_MIB_REASMFAILS); rcu_read_unlock(); return -1; }
static int ip6_frag_reasm(struct frag_queue *fq, struct sk_buff *prev, struct net_device *dev) { struct net *net = container_of(fq->q.net, struct net, ipv6.frags); struct sk_buff *fp, *head = fq->q.fragments; int payload_len; unsigned int nhoff; fq_kill(fq); if (prev) { head = prev->next; fp = skb_clone(head, GFP_ATOMIC); if (!fp) goto out_oom; fp->next = head->next; if (!fp->next) fq->q.fragments_tail = fp; prev->next = fp; skb_morph(head, fq->q.fragments); head->next = fq->q.fragments->next; kfree_skb(fq->q.fragments); fq->q.fragments = head; } WARN_ON(head == NULL); WARN_ON(FRAG6_CB(head)->offset != 0); payload_len = ((head->data - skb_network_header(head)) - sizeof(struct ipv6hdr) + fq->q.len - sizeof(struct frag_hdr)); if (payload_len > IPV6_MAXPLEN) goto out_oversize; if (skb_cloned(head) && pskb_expand_head(head, 0, 0, GFP_ATOMIC)) goto out_oom; if (skb_has_frag_list(head)) { struct sk_buff *clone; int i, plen = 0; if ((clone = alloc_skb(0, GFP_ATOMIC)) == NULL) goto out_oom; clone->next = head->next; head->next = clone; skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list; skb_frag_list_init(head); for (i = 0; i < skb_shinfo(head)->nr_frags; i++) plen += skb_frag_size(&skb_shinfo(head)->frags[i]); clone->len = clone->data_len = head->data_len - plen; head->data_len -= clone->len; head->len -= clone->len; clone->csum = 0; clone->ip_summed = head->ip_summed; atomic_add(clone->truesize, &fq->q.net->mem); } nhoff = fq->nhoffset; skb_network_header(head)[nhoff] = skb_transport_header(head)[0]; memmove(head->head + sizeof(struct frag_hdr), head->head, (head->data - head->head) - sizeof(struct frag_hdr)); head->mac_header += sizeof(struct frag_hdr); head->network_header += sizeof(struct frag_hdr); skb_shinfo(head)->frag_list = head->next; skb_reset_transport_header(head); skb_push(head, head->data - skb_network_header(head)); for (fp=head->next; fp; fp = fp->next) { head->data_len += fp->len; head->len += fp->len; if (head->ip_summed != fp->ip_summed) head->ip_summed = CHECKSUM_NONE; else if (head->ip_summed == CHECKSUM_COMPLETE) head->csum = csum_add(head->csum, fp->csum); head->truesize += fp->truesize; } atomic_sub(head->truesize, &fq->q.net->mem); head->next = NULL; head->dev = dev; head->tstamp = fq->q.stamp; ipv6_hdr(head)->payload_len = htons(payload_len); IP6CB(head)->nhoff = nhoff; IP6CB(head)->flags |= IP6SKB_FRAGMENTED; if (head->ip_summed == CHECKSUM_COMPLETE) head->csum = csum_partial(skb_network_header(head), skb_network_header_len(head), head->csum); rcu_read_lock(); IP6_INC_STATS_BH(net, __in6_dev_get(dev), IPSTATS_MIB_REASMOKS); rcu_read_unlock(); fq->q.fragments = NULL; fq->q.fragments_tail = NULL; return 1; out_oversize: if (net_ratelimit()) printk(KERN_DEBUG "ip6_frag_reasm: payload len = %d\n", payload_len); goto out_fail; out_oom: if (net_ratelimit()) printk(KERN_DEBUG "ip6_frag_reasm: no memory for reassembly\n"); out_fail: rcu_read_lock(); IP6_INC_STATS_BH(net, __in6_dev_get(dev), IPSTATS_MIB_REASMFAILS); rcu_read_unlock(); return -1; }
/* * Check if this packet is complete. * Returns NULL on failure by any reason, and pointer * to current nexthdr field in reassembled frame. * * It is called with locked fq, and caller must check that * queue is eligible for reassembly i.e. it is not COMPLETE, * the last and the first frames arrived and all the bits are here. */ static int ip6_frag_reasm(struct frag_queue *fq, struct sk_buff *prev, struct net_device *dev) { struct net *net = container_of(fq->q.net, struct net, ipv6.frags); struct sk_buff *fp, *head = fq->q.fragments; int payload_len; unsigned int nhoff; int sum_truesize; u8 ecn; inet_frag_kill(&fq->q, &ip6_frags); ecn = ip_frag_ecn_table[fq->ecn]; if (unlikely(ecn == 0xff)) goto out_fail; /* Make the one we just received the head. */ if (prev) { head = prev->next; fp = skb_clone(head, GFP_ATOMIC); if (!fp) goto out_oom; fp->next = head->next; if (!fp->next) fq->q.fragments_tail = fp; prev->next = fp; skb_morph(head, fq->q.fragments); head->next = fq->q.fragments->next; consume_skb(fq->q.fragments); fq->q.fragments = head; } WARN_ON(head == NULL); WARN_ON(FRAG6_CB(head)->offset != 0); /* Unfragmented part is taken from the first segment. */ payload_len = ((head->data - skb_network_header(head)) - sizeof(struct ipv6hdr) + fq->q.len - sizeof(struct frag_hdr)); if (payload_len > IPV6_MAXPLEN) goto out_oversize; /* Head of list must not be cloned. */ if (skb_unclone(head, GFP_ATOMIC)) goto out_oom; /* If the first fragment is fragmented itself, we split * it to two chunks: the first with data and paged part * and the second, holding only fragments. */ if (skb_has_frag_list(head)) { struct sk_buff *clone; int i, plen = 0; clone = alloc_skb(0, GFP_ATOMIC); if (!clone) goto out_oom; clone->next = head->next; head->next = clone; skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list; skb_frag_list_init(head); for (i = 0; i < skb_shinfo(head)->nr_frags; i++) plen += skb_frag_size(&skb_shinfo(head)->frags[i]); clone->len = clone->data_len = head->data_len - plen; head->data_len -= clone->len; head->len -= clone->len; clone->csum = 0; clone->ip_summed = head->ip_summed; add_frag_mem_limit(fq->q.net, clone->truesize); } /* We have to remove fragment header from datagram and to relocate * header in order to calculate ICV correctly. */ nhoff = fq->nhoffset; skb_network_header(head)[nhoff] = skb_transport_header(head)[0]; memmove(head->head + sizeof(struct frag_hdr), head->head, (head->data - head->head) - sizeof(struct frag_hdr)); if (skb_mac_header_was_set(head)) head->mac_header += sizeof(struct frag_hdr); head->network_header += sizeof(struct frag_hdr); skb_reset_transport_header(head); skb_push(head, head->data - skb_network_header(head)); sum_truesize = head->truesize; for (fp = head->next; fp;) { bool headstolen; int delta; struct sk_buff *next = fp->next; sum_truesize += fp->truesize; if (head->ip_summed != fp->ip_summed) head->ip_summed = CHECKSUM_NONE; else if (head->ip_summed == CHECKSUM_COMPLETE) head->csum = csum_add(head->csum, fp->csum); if (skb_try_coalesce(head, fp, &headstolen, &delta)) { kfree_skb_partial(fp, headstolen); } else { if (!skb_shinfo(head)->frag_list) skb_shinfo(head)->frag_list = fp; head->data_len += fp->len; head->len += fp->len; head->truesize += fp->truesize; } fp = next; } sub_frag_mem_limit(fq->q.net, sum_truesize); head->next = NULL; head->dev = dev; head->tstamp = fq->q.stamp; ipv6_hdr(head)->payload_len = htons(payload_len); ipv6_change_dsfield(ipv6_hdr(head), 0xff, ecn); IP6CB(head)->nhoff = nhoff; IP6CB(head)->flags |= IP6SKB_FRAGMENTED; IP6CB(head)->frag_max_size = fq->q.max_size; /* Yes, and fold redundant checksum back. 8) */ skb_postpush_rcsum(head, skb_network_header(head), skb_network_header_len(head)); rcu_read_lock(); __IP6_INC_STATS(net, __in6_dev_get(dev), IPSTATS_MIB_REASMOKS); rcu_read_unlock(); fq->q.fragments = NULL; fq->q.fragments_tail = NULL; return 1; out_oversize: net_dbg_ratelimited("ip6_frag_reasm: payload len = %d\n", payload_len); goto out_fail; out_oom: net_dbg_ratelimited("ip6_frag_reasm: no memory for reassembly\n"); out_fail: rcu_read_lock(); __IP6_INC_STATS(net, __in6_dev_get(dev), IPSTATS_MIB_REASMFAILS); rcu_read_unlock(); return -1; }
static struct sk_buff *__skb_udp_tunnel_segment(struct sk_buff *skb, netdev_features_t features, struct sk_buff *(*gso_inner_segment)(struct sk_buff *skb, netdev_features_t features), __be16 new_protocol, bool is_ipv6) { int tnl_hlen = skb_inner_mac_header(skb) - skb_transport_header(skb); bool remcsum, need_csum, offload_csum, gso_partial; struct sk_buff *segs = ERR_PTR(-EINVAL); struct udphdr *uh = udp_hdr(skb); u16 mac_offset = skb->mac_header; __be16 protocol = skb->protocol; u16 mac_len = skb->mac_len; int udp_offset, outer_hlen; __wsum partial; bool need_ipsec; if (unlikely(!pskb_may_pull(skb, tnl_hlen))) goto out; /* Adjust partial header checksum to negate old length. * We cannot rely on the value contained in uh->len as it is * possible that the actual value exceeds the boundaries of the * 16 bit length field due to the header being added outside of an * IP or IPv6 frame that was already limited to 64K - 1. */ if (skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) partial = (__force __wsum)uh->len; else partial = (__force __wsum)htonl(skb->len); partial = csum_sub(csum_unfold(uh->check), partial); /* setup inner skb. */ skb->encapsulation = 0; SKB_GSO_CB(skb)->encap_level = 0; __skb_pull(skb, tnl_hlen); skb_reset_mac_header(skb); skb_set_network_header(skb, skb_inner_network_offset(skb)); skb->mac_len = skb_inner_network_offset(skb); skb->protocol = new_protocol; need_csum = !!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM); skb->encap_hdr_csum = need_csum; remcsum = !!(skb_shinfo(skb)->gso_type & SKB_GSO_TUNNEL_REMCSUM); skb->remcsum_offload = remcsum; need_ipsec = skb_dst(skb) && dst_xfrm(skb_dst(skb)); /* Try to offload checksum if possible */ offload_csum = !!(need_csum && !need_ipsec && (skb->dev->features & (is_ipv6 ? (NETIF_F_HW_CSUM | NETIF_F_IPV6_CSUM) : (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM)))); features &= skb->dev->hw_enc_features; /* The only checksum offload we care about from here on out is the * outer one so strip the existing checksum feature flags and * instead set the flag based on our outer checksum offload value. */ if (remcsum) { features &= ~NETIF_F_CSUM_MASK; if (!need_csum || offload_csum) features |= NETIF_F_HW_CSUM; } /* segment inner packet. */ segs = gso_inner_segment(skb, features); if (IS_ERR_OR_NULL(segs)) { skb_gso_error_unwind(skb, protocol, tnl_hlen, mac_offset, mac_len); goto out; } gso_partial = !!(skb_shinfo(segs)->gso_type & SKB_GSO_PARTIAL); outer_hlen = skb_tnl_header_len(skb); udp_offset = outer_hlen - tnl_hlen; skb = segs; do { unsigned int len; if (remcsum) skb->ip_summed = CHECKSUM_NONE; /* Set up inner headers if we are offloading inner checksum */ if (skb->ip_summed == CHECKSUM_PARTIAL) { skb_reset_inner_headers(skb); skb->encapsulation = 1; } skb->mac_len = mac_len; skb->protocol = protocol; __skb_push(skb, outer_hlen); skb_reset_mac_header(skb); skb_set_network_header(skb, mac_len); skb_set_transport_header(skb, udp_offset); len = skb->len - udp_offset; uh = udp_hdr(skb); /* If we are only performing partial GSO the inner header * will be using a length value equal to only one MSS sized * segment instead of the entire frame. */ if (gso_partial && skb_is_gso(skb)) { uh->len = htons(skb_shinfo(skb)->gso_size + SKB_GSO_CB(skb)->data_offset + skb->head - (unsigned char *)uh); } else { uh->len = htons(len); } if (!need_csum) continue; uh->check = ~csum_fold(csum_add(partial, (__force __wsum)htonl(len))); if (skb->encapsulation || !offload_csum) { uh->check = gso_make_checksum(skb, ~uh->check); if (uh->check == 0) uh->check = CSUM_MANGLED_0; } else { skb->ip_summed = CHECKSUM_PARTIAL; skb->csum_start = skb_transport_header(skb) - skb->head; skb->csum_offset = offsetof(struct udphdr, check); } } while ((skb = skb->next)); out: return segs; }
/* * Check if this packet is complete. * Returns NULL on failure by any reason, and pointer * to current nexthdr field in reassembled frame. * * It is called with locked fq, and caller must check that * queue is eligible for reassembly i.e. it is not COMPLETE, * the last and the first frames arrived and all the bits are here. */ static int ip6_frag_reasm(struct frag_queue *fq, struct sk_buff **skb_in, struct net_device *dev) { struct sk_buff *fp, *head = fq->fragments; int remove_fraghdr = 0; int payload_len; int nhoff; fq_kill(fq); BUG_TRAP(head != NULL); BUG_TRAP(FRAG6_CB(head)->offset == 0); /* Unfragmented part is taken from the first segment. */ payload_len = (head->data - head->nh.raw) - sizeof(struct ipv6hdr) + fq->len; nhoff = head->h.raw - head->nh.raw; if (payload_len > 65535) { payload_len -= 8; if (payload_len > 65535) goto out_oversize; remove_fraghdr = 1; } /* Head of list must not be cloned. */ if (skb_cloned(head) && pskb_expand_head(head, 0, 0, GFP_ATOMIC)) goto out_oom; /* If the first fragment is fragmented itself, we split * it to two chunks: the first with data and paged part * and the second, holding only fragments. */ if (skb_shinfo(head)->frag_list) { struct sk_buff *clone; int i, plen = 0; if ((clone = alloc_skb(0, GFP_ATOMIC)) == NULL) goto out_oom; clone->next = head->next; head->next = clone; skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list; skb_shinfo(head)->frag_list = NULL; for (i=0; i<skb_shinfo(head)->nr_frags; i++) plen += skb_shinfo(head)->frags[i].size; clone->len = clone->data_len = head->data_len - plen; head->data_len -= clone->len; head->len -= clone->len; clone->csum = 0; clone->ip_summed = head->ip_summed; atomic_add(clone->truesize, &ip6_frag_mem); } /* Normally we do not remove frag header from datagram, but * we have to do this and to relocate header, when payload * is > 65535-8. */ if (remove_fraghdr) { nhoff = fq->nhoffset; head->nh.raw[nhoff] = head->h.raw[0]; memmove(head->head+8, head->head, (head->data-head->head)-8); head->mac.raw += 8; head->nh.raw += 8; } else { ((struct frag_hdr*)head->h.raw)->frag_off = 0; } skb_shinfo(head)->frag_list = head->next; head->h.raw = head->data; skb_push(head, head->data - head->nh.raw); atomic_sub(head->truesize, &ip6_frag_mem); for (fp=head->next; fp; fp = fp->next) { head->data_len += fp->len; head->len += fp->len; if (head->ip_summed != fp->ip_summed) head->ip_summed = CHECKSUM_NONE; else if (head->ip_summed == CHECKSUM_HW) head->csum = csum_add(head->csum, fp->csum); head->truesize += fp->truesize; atomic_sub(fp->truesize, &ip6_frag_mem); } head->next = NULL; head->dev = dev; head->stamp = fq->stamp; head->nh.ipv6h->payload_len = ntohs(payload_len); *skb_in = head; /* Yes, and fold redundant checksum back. 8) */ if (head->ip_summed == CHECKSUM_HW) head->csum = csum_partial(head->nh.raw, head->h.raw-head->nh.raw, head->csum); IP6_INC_STATS_BH(Ip6ReasmOKs); fq->fragments = NULL; return nhoff; out_oversize: if (net_ratelimit()) printk(KERN_DEBUG "ip6_frag_reasm: payload len = %d\n", payload_len); goto out_fail; out_oom: if (net_ratelimit()) printk(KERN_DEBUG "ip6_frag_reasm: no memory for reassembly\n"); out_fail: IP6_INC_STATS_BH(Ip6ReasmFails); return -1; }
/* * Check if this packet is complete. * Returns NULL on failure by any reason, and pointer * to current nexthdr field in reassembled frame. * * It is called with locked fq, and caller must check that * queue is eligible for reassembly i.e. it is not COMPLETE, * the last and the first frames arrived and all the bits are here. */ static struct sk_buff * nf_ct_frag6_reasm(struct nf_ct_frag6_queue *fq, struct net_device *dev) { struct sk_buff *fp, *op, *head = fq->fragments; int payload_len; fq_kill(fq); BUG_TRAP(head != NULL); BUG_TRAP(NFCT_FRAG6_CB(head)->offset == 0); /* Unfragmented part is taken from the first segment. */ payload_len = (head->data - head->nh.raw) - sizeof(struct ipv6hdr) + fq->len - sizeof(struct frag_hdr); if (payload_len > IPV6_MAXPLEN) { DEBUGP("payload len is too large.\n"); goto out_oversize; } /* Head of list must not be cloned. */ if (skb_cloned(head) && pskb_expand_head(head, 0, 0, GFP_ATOMIC)) { DEBUGP("skb is cloned but can't expand head"); goto out_oom; } /* If the first fragment is fragmented itself, we split * it to two chunks: the first with data and paged part * and the second, holding only fragments. */ if (skb_shinfo(head)->frag_list) { struct sk_buff *clone; int i, plen = 0; if ((clone = alloc_skb(0, GFP_ATOMIC)) == NULL) { DEBUGP("Can't alloc skb\n"); goto out_oom; } clone->next = head->next; head->next = clone; skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list; skb_shinfo(head)->frag_list = NULL; for (i=0; i<skb_shinfo(head)->nr_frags; i++) plen += skb_shinfo(head)->frags[i].size; clone->len = clone->data_len = head->data_len - plen; head->data_len -= clone->len; head->len -= clone->len; clone->csum = 0; clone->ip_summed = head->ip_summed; NFCT_FRAG6_CB(clone)->orig = NULL; atomic_add(clone->truesize, &nf_ct_frag6_mem); } /* We have to remove fragment header from datagram and to relocate * header in order to calculate ICV correctly. */ head->nh.raw[fq->nhoffset] = head->h.raw[0]; memmove(head->head + sizeof(struct frag_hdr), head->head, (head->data - head->head) - sizeof(struct frag_hdr)); head->mac.raw += sizeof(struct frag_hdr); head->nh.raw += sizeof(struct frag_hdr); skb_shinfo(head)->frag_list = head->next; head->h.raw = head->data; skb_push(head, head->data - head->nh.raw); atomic_sub(head->truesize, &nf_ct_frag6_mem); for (fp=head->next; fp; fp = fp->next) { head->data_len += fp->len; head->len += fp->len; if (head->ip_summed != fp->ip_summed) head->ip_summed = CHECKSUM_NONE; else if (head->ip_summed == CHECKSUM_HW) head->csum = csum_add(head->csum, fp->csum); head->truesize += fp->truesize; atomic_sub(fp->truesize, &nf_ct_frag6_mem); } head->next = NULL; head->dev = dev; skb_set_timestamp(head, &fq->stamp); head->nh.ipv6h->payload_len = htons(payload_len); /* Yes, and fold redundant checksum back. 8) */ if (head->ip_summed == CHECKSUM_HW) head->csum = csum_partial(head->nh.raw, head->h.raw-head->nh.raw, head->csum); fq->fragments = NULL; /* all original skbs are linked into the NFCT_FRAG6_CB(head).orig */ fp = skb_shinfo(head)->frag_list; if (NFCT_FRAG6_CB(fp)->orig == NULL) /* at above code, head skb is divided into two skbs. */ fp = fp->next; op = NFCT_FRAG6_CB(head)->orig; for (; fp; fp = fp->next) { struct sk_buff *orig = NFCT_FRAG6_CB(fp)->orig; op->next = orig; op = orig; NFCT_FRAG6_CB(fp)->orig = NULL; } return head; out_oversize: if (net_ratelimit()) printk(KERN_DEBUG "nf_ct_frag6_reasm: payload len = %d\n", payload_len); goto out_fail; out_oom: if (net_ratelimit()) printk(KERN_DEBUG "nf_ct_frag6_reasm: no memory for reassembly\n"); out_fail: return NULL; }