Exemplo n.º 1
0
int
f2c_csymm(char* side, char* uplo, integer* M, integer* N,
          complex* alpha,
          complex* A, integer* lda,
          complex* B, integer* ldb,
          complex* beta,
          complex* C, integer* ldc)
{
    csymm_(side, uplo, M, N,
           alpha, A, lda, B, ldb, beta, C, ldc);
    return 0;
}
Exemplo n.º 2
0
void
csymm(char side, char uplo, int m, int n, complex *alpha, complex *a, int lda, complex *b, int ldb, complex *beta, complex *c, int ldc)
{
   csymm_( &side, &uplo, &m, &n, alpha, a, &lda, b, &ldb, beta, c, &ldc);
}
Exemplo n.º 3
0
/* Subroutine */ int csyt03_(char *uplo, integer *n, complex *a, integer *lda, 
	 complex *ainv, integer *ldainv, complex *work, integer *ldwork, real 
	*rwork, real *rcond, real *resid)
{
    /* System generated locals */
    integer a_dim1, a_offset, ainv_dim1, ainv_offset, work_dim1, work_offset, 
	    i__1, i__2, i__3, i__4;
    complex q__1;

    /* Local variables */
    integer i__, j;
    real eps;
    extern logical lsame_(char *, char *);
    real anorm;
    extern /* Subroutine */ int csymm_(char *, char *, integer *, integer *, 
	    complex *, complex *, integer *, complex *, integer *, complex *, 
	    complex *, integer *);
    extern doublereal clange_(char *, integer *, integer *, complex *, 
	    integer *, real *), slamch_(char *);
    real ainvnm;
    extern doublereal clansy_(char *, char *, integer *, complex *, integer *, 
	     real *);


/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  CSYT03 computes the residual for a complex symmetric matrix times */
/*  its inverse: */
/*     norm( I - A*AINV ) / ( N * norm(A) * norm(AINV) * EPS ) */
/*  where EPS is the machine epsilon. */

/*  Arguments */
/*  ========== */

/*  UPLO    (input) CHARACTER*1 */
/*          Specifies whether the upper or lower triangular part of the */
/*          complex symmetric matrix A is stored: */
/*          = 'U':  Upper triangular */
/*          = 'L':  Lower triangular */

/*  N       (input) INTEGER */
/*          The number of rows and columns of the matrix A.  N >= 0. */

/*  A       (input) COMPLEX array, dimension (LDA,N) */
/*          The original complex symmetric matrix A. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,N) */

/*  AINV    (input/output) COMPLEX array, dimension (LDAINV,N) */
/*          On entry, the inverse of the matrix A, stored as a symmetric */
/*          matrix in the same format as A. */
/*          In this version, AINV is expanded into a full matrix and */
/*          multiplied by A, so the opposing triangle of AINV will be */
/*          changed; i.e., if the upper triangular part of AINV is */
/*          stored, the lower triangular part will be used as work space. */

/*  LDAINV  (input) INTEGER */
/*          The leading dimension of the array AINV.  LDAINV >= max(1,N). */

/*  WORK    (workspace) COMPLEX array, dimension (LDWORK,N) */

/*  LDWORK  (input) INTEGER */
/*          The leading dimension of the array WORK.  LDWORK >= max(1,N). */

/*  RWORK   (workspace) REAL array, dimension (N) */

/*  RCOND   (output) REAL */
/*          The reciprocal of the condition number of A, computed as */
/*          RCOND = 1/ (norm(A) * norm(AINV)). */

/*  RESID   (output) REAL */
/*          norm(I - A*AINV) / ( N * norm(A) * norm(AINV) * EPS ) */

/*  ===================================================================== */


/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Quick exit if N = 0 */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    ainv_dim1 = *ldainv;
    ainv_offset = 1 + ainv_dim1;
    ainv -= ainv_offset;
    work_dim1 = *ldwork;
    work_offset = 1 + work_dim1;
    work -= work_offset;
    --rwork;

    /* Function Body */
    if (*n <= 0) {
	*rcond = 1.f;
	*resid = 0.f;
	return 0;
    }

/*     Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0. */

    eps = slamch_("Epsilon");
    anorm = clansy_("1", uplo, n, &a[a_offset], lda, &rwork[1]);
    ainvnm = clansy_("1", uplo, n, &ainv[ainv_offset], ldainv, &rwork[1]);
    if (anorm <= 0.f || ainvnm <= 0.f) {
	*rcond = 0.f;
	*resid = 1.f / eps;
	return 0;
    }
    *rcond = 1.f / anorm / ainvnm;

/*     Expand AINV into a full matrix and call CSYMM to multiply */
/*     AINV on the left by A (store the result in WORK). */

    if (lsame_(uplo, "U")) {
	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
	    i__2 = j - 1;
	    for (i__ = 1; i__ <= i__2; ++i__) {
		i__3 = j + i__ * ainv_dim1;
		i__4 = i__ + j * ainv_dim1;
		ainv[i__3].r = ainv[i__4].r, ainv[i__3].i = ainv[i__4].i;
/* L10: */
	    }
/* L20: */
	}
    } else {
	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
	    i__2 = *n;
	    for (i__ = j + 1; i__ <= i__2; ++i__) {
		i__3 = j + i__ * ainv_dim1;
		i__4 = i__ + j * ainv_dim1;
		ainv[i__3].r = ainv[i__4].r, ainv[i__3].i = ainv[i__4].i;
/* L30: */
	    }
/* L40: */
	}
    }
    q__1.r = -1.f, q__1.i = -0.f;
    csymm_("Left", uplo, n, n, &q__1, &a[a_offset], lda, &ainv[ainv_offset], 
	    ldainv, &c_b1, &work[work_offset], ldwork);

/*     Add the identity matrix to WORK . */

    i__1 = *n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	i__2 = i__ + i__ * work_dim1;
	i__3 = i__ + i__ * work_dim1;
	q__1.r = work[i__3].r + 1.f, q__1.i = work[i__3].i + 0.f;
	work[i__2].r = q__1.r, work[i__2].i = q__1.i;
/* L50: */
    }

/*     Compute norm(I - A*AINV) / (N * norm(A) * norm(AINV) * EPS) */

    *resid = clange_("1", n, n, &work[work_offset], ldwork, &rwork[1]);

    *resid = *resid * *rcond / eps / (real) (*n);

    return 0;

/*     End of CSYT03 */

} /* csyt03_ */
Exemplo n.º 4
0
/* Subroutine */ int clarhs_(char *path, char *xtype, char *uplo, char *trans, 
	 integer *m, integer *n, integer *kl, integer *ku, integer *nrhs, 
	complex *a, integer *lda, complex *x, integer *ldx, complex *b, 
	integer *ldb, integer *iseed, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, x_dim1, x_offset, i__1;

    /* Local variables */
    integer j;
    char c1[1], c2[2];
    integer mb, nx;
    logical gen, tri, qrs, sym, band;
    char diag[1];
    logical tran;
    extern /* Subroutine */ int cgemm_(char *, char *, integer *, integer *, 
	    integer *, complex *, complex *, integer *, complex *, integer *, 
	    complex *, complex *, integer *), chemm_(char *, 
	    char *, integer *, integer *, complex *, complex *, integer *, 
	    complex *, integer *, complex *, complex *, integer *), cgbmv_(char *, integer *, integer *, integer *, integer *
, complex *, complex *, integer *, complex *, integer *, complex *
, complex *, integer *), chbmv_(char *, integer *, 
	    integer *, complex *, complex *, integer *, complex *, integer *, 
	    complex *, complex *, integer *);
    extern /* Subroutine */ int csbmv_(char *, integer *, integer *, complex *
, complex *, integer *, complex *, integer *, complex *, complex *
, integer *), ctbmv_(char *, char *, char *, integer *, 
	    integer *, complex *, integer *, complex *, integer *), chpmv_(char *, integer *, complex *, complex *, 
	    complex *, integer *, complex *, complex *, integer *), 
	    ctrmm_(char *, char *, char *, char *, integer *, integer *, 
	    complex *, complex *, integer *, complex *, integer *), cspmv_(char *, integer *, complex *, 
	    complex *, complex *, integer *, complex *, complex *, integer *), csymm_(char *, char *, integer *, integer *, complex *, 
	    complex *, integer *, complex *, integer *, complex *, complex *, 
	    integer *), ctpmv_(char *, char *, char *, 
	    integer *, complex *, complex *, integer *), clacpy_(char *, integer *, integer *, complex *, integer 
	    *, complex *, integer *), xerbla_(char *, integer *);
    extern logical lsamen_(integer *, char *, char *);
    extern /* Subroutine */ int clarnv_(integer *, integer *, integer *, 
	    complex *);
    logical notran;


/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  CLARHS chooses a set of NRHS random solution vectors and sets */
/*  up the right hand sides for the linear system */
/*     op( A ) * X = B, */
/*  where op( A ) may be A, A**T (transpose of A), or A**H (conjugate */
/*  transpose of A). */

/*  Arguments */
/*  ========= */

/*  PATH    (input) CHARACTER*3 */
/*          The type of the complex matrix A.  PATH may be given in any */
/*          combination of upper and lower case.  Valid paths include */
/*             xGE:  General m x n matrix */
/*             xGB:  General banded matrix */
/*             xPO:  Hermitian positive definite, 2-D storage */
/*             xPP:  Hermitian positive definite packed */
/*             xPB:  Hermitian positive definite banded */
/*             xHE:  Hermitian indefinite, 2-D storage */
/*             xHP:  Hermitian indefinite packed */
/*             xHB:  Hermitian indefinite banded */
/*             xSY:  Symmetric indefinite, 2-D storage */
/*             xSP:  Symmetric indefinite packed */
/*             xSB:  Symmetric indefinite banded */
/*             xTR:  Triangular */
/*             xTP:  Triangular packed */
/*             xTB:  Triangular banded */
/*             xQR:  General m x n matrix */
/*             xLQ:  General m x n matrix */
/*             xQL:  General m x n matrix */
/*             xRQ:  General m x n matrix */
/*          where the leading character indicates the precision. */

/*  XTYPE   (input) CHARACTER*1 */
/*          Specifies how the exact solution X will be determined: */
/*          = 'N':  New solution; generate a random X. */
/*          = 'C':  Computed; use value of X on entry. */

/*  UPLO    (input) CHARACTER*1 */
/*          Used only if A is symmetric or triangular; specifies whether */
/*          the upper or lower triangular part of the matrix A is stored. */
/*          = 'U':  Upper triangular */
/*          = 'L':  Lower triangular */

/*  TRANS   (input) CHARACTER*1 */
/*          Used only if A is nonsymmetric; specifies the operation */
/*          applied to the matrix A. */
/*          = 'N':  B := A    * X */
/*          = 'T':  B := A**T * X */
/*          = 'C':  B := A**H * X */

/*  M       (input) INTEGER */
/*          The number of rows of the matrix A.  M >= 0. */

/*  N       (input) INTEGER */
/*          The number of columns of the matrix A.  N >= 0. */

/*  KL      (input) INTEGER */
/*          Used only if A is a band matrix; specifies the number of */
/*          subdiagonals of A if A is a general band matrix or if A is */
/*          symmetric or triangular and UPLO = 'L'; specifies the number */
/*          of superdiagonals of A if A is symmetric or triangular and */
/*          UPLO = 'U'.  0 <= KL <= M-1. */

/*  KU      (input) INTEGER */
/*          Used only if A is a general band matrix or if A is */
/*          triangular. */

/*          If PATH = xGB, specifies the number of superdiagonals of A, */
/*          and 0 <= KU <= N-1. */

/*          If PATH = xTR, xTP, or xTB, specifies whether or not the */
/*          matrix has unit diagonal: */
/*          = 1:  matrix has non-unit diagonal (default) */
/*          = 2:  matrix has unit diagonal */

/*  NRHS    (input) INTEGER */
/*          The number of right hand side vectors in the system A*X = B. */

/*  A       (input) COMPLEX array, dimension (LDA,N) */
/*          The test matrix whose type is given by PATH. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A. */
/*          If PATH = xGB, LDA >= KL+KU+1. */
/*          If PATH = xPB, xSB, xHB, or xTB, LDA >= KL+1. */
/*          Otherwise, LDA >= max(1,M). */

/*  X       (input or output) COMPLEX  array, dimension (LDX,NRHS) */
/*          On entry, if XTYPE = 'C' (for 'Computed'), then X contains */
/*          the exact solution to the system of linear equations. */
/*          On exit, if XTYPE = 'N' (for 'New'), then X is initialized */
/*          with random values. */

/*  LDX     (input) INTEGER */
/*          The leading dimension of the array X.  If TRANS = 'N', */
/*          LDX >= max(1,N); if TRANS = 'T', LDX >= max(1,M). */

/*  B       (output) COMPLEX  array, dimension (LDB,NRHS) */
/*          The right hand side vector(s) for the system of equations, */
/*          computed from B = op(A) * X, where op(A) is determined by */
/*          TRANS. */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B.  If TRANS = 'N', */
/*          LDB >= max(1,M); if TRANS = 'T', LDB >= max(1,N). */

/*  ISEED   (input/output) INTEGER array, dimension (4) */
/*          The seed vector for the random number generator (used in */
/*          CLATMS).  Modified on exit. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    x_dim1 = *ldx;
    x_offset = 1 + x_dim1;
    x -= x_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;
    --iseed;

    /* Function Body */
    *info = 0;
    *(unsigned char *)c1 = *(unsigned char *)path;
    s_copy(c2, path + 1, (ftnlen)2, (ftnlen)2);
    tran = lsame_(trans, "T") || lsame_(trans, "C");
    notran = ! tran;
    gen = lsame_(path + 1, "G");
    qrs = lsame_(path + 1, "Q") || lsame_(path + 2, 
	    "Q");
    sym = lsame_(path + 1, "P") || lsame_(path + 1, 
	    "S") || lsame_(path + 1, "H");
    tri = lsame_(path + 1, "T");
    band = lsame_(path + 2, "B");
    if (! lsame_(c1, "Complex precision")) {
	*info = -1;
    } else if (! (lsame_(xtype, "N") || lsame_(xtype, 
	    "C"))) {
	*info = -2;
    } else if ((sym || tri) && ! (lsame_(uplo, "U") || 
	    lsame_(uplo, "L"))) {
	*info = -3;
    } else if ((gen || qrs) && ! (tran || lsame_(trans, "N"))) {
	*info = -4;
    } else if (*m < 0) {
	*info = -5;
    } else if (*n < 0) {
	*info = -6;
    } else if (band && *kl < 0) {
	*info = -7;
    } else if (band && *ku < 0) {
	*info = -8;
    } else if (*nrhs < 0) {
	*info = -9;
    } else if (! band && *lda < max(1,*m) || band && (sym || tri) && *lda < *
	    kl + 1 || band && gen && *lda < *kl + *ku + 1) {
	*info = -11;
    } else if (notran && *ldx < max(1,*n) || tran && *ldx < max(1,*m)) {
	*info = -13;
    } else if (notran && *ldb < max(1,*m) || tran && *ldb < max(1,*n)) {
	*info = -15;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CLARHS", &i__1);
	return 0;
    }

/*     Initialize X to NRHS random vectors unless XTYPE = 'C'. */

    if (tran) {
	nx = *m;
	mb = *n;
    } else {
	nx = *n;
	mb = *m;
    }
    if (! lsame_(xtype, "C")) {
	i__1 = *nrhs;
	for (j = 1; j <= i__1; ++j) {
	    clarnv_(&c__2, &iseed[1], n, &x[j * x_dim1 + 1]);
/* L10: */
	}
    }

/*     Multiply X by op( A ) using an appropriate */
/*     matrix multiply routine. */

    if (lsamen_(&c__2, c2, "GE") || lsamen_(&c__2, c2, 
	    "QR") || lsamen_(&c__2, c2, "LQ") || lsamen_(&c__2, c2, "QL") || 
	    lsamen_(&c__2, c2, "RQ")) {

/*        General matrix */

	cgemm_(trans, "N", &mb, nrhs, &nx, &c_b1, &a[a_offset], lda, &x[
		x_offset], ldx, &c_b2, &b[b_offset], ldb);

    } else if (lsamen_(&c__2, c2, "PO") || lsamen_(&
	    c__2, c2, "HE")) {

/*        Hermitian matrix, 2-D storage */

	chemm_("Left", uplo, n, nrhs, &c_b1, &a[a_offset], lda, &x[x_offset], 
		ldx, &c_b2, &b[b_offset], ldb);

    } else if (lsamen_(&c__2, c2, "SY")) {

/*        Symmetric matrix, 2-D storage */

	csymm_("Left", uplo, n, nrhs, &c_b1, &a[a_offset], lda, &x[x_offset], 
		ldx, &c_b2, &b[b_offset], ldb);

    } else if (lsamen_(&c__2, c2, "GB")) {

/*        General matrix, band storage */

	i__1 = *nrhs;
	for (j = 1; j <= i__1; ++j) {
	    cgbmv_(trans, m, n, kl, ku, &c_b1, &a[a_offset], lda, &x[j * 
		    x_dim1 + 1], &c__1, &c_b2, &b[j * b_dim1 + 1], &c__1);
/* L20: */
	}

    } else if (lsamen_(&c__2, c2, "PB") || lsamen_(&
	    c__2, c2, "HB")) {

/*        Hermitian matrix, band storage */

	i__1 = *nrhs;
	for (j = 1; j <= i__1; ++j) {
	    chbmv_(uplo, n, kl, &c_b1, &a[a_offset], lda, &x[j * x_dim1 + 1], 
		    &c__1, &c_b2, &b[j * b_dim1 + 1], &c__1);
/* L30: */
	}

    } else if (lsamen_(&c__2, c2, "SB")) {

/*        Symmetric matrix, band storage */

	i__1 = *nrhs;
	for (j = 1; j <= i__1; ++j) {
	    csbmv_(uplo, n, kl, &c_b1, &a[a_offset], lda, &x[j * x_dim1 + 1], 
		    &c__1, &c_b2, &b[j * b_dim1 + 1], &c__1);
/* L40: */
	}

    } else if (lsamen_(&c__2, c2, "PP") || lsamen_(&
	    c__2, c2, "HP")) {

/*        Hermitian matrix, packed storage */

	i__1 = *nrhs;
	for (j = 1; j <= i__1; ++j) {
	    chpmv_(uplo, n, &c_b1, &a[a_offset], &x[j * x_dim1 + 1], &c__1, &
		    c_b2, &b[j * b_dim1 + 1], &c__1);
/* L50: */
	}

    } else if (lsamen_(&c__2, c2, "SP")) {

/*        Symmetric matrix, packed storage */

	i__1 = *nrhs;
	for (j = 1; j <= i__1; ++j) {
	    cspmv_(uplo, n, &c_b1, &a[a_offset], &x[j * x_dim1 + 1], &c__1, &
		    c_b2, &b[j * b_dim1 + 1], &c__1);
/* L60: */
	}

    } else if (lsamen_(&c__2, c2, "TR")) {

/*        Triangular matrix.  Note that for triangular matrices, */
/*           KU = 1 => non-unit triangular */
/*           KU = 2 => unit triangular */

	clacpy_("Full", n, nrhs, &x[x_offset], ldx, &b[b_offset], ldb);
	if (*ku == 2) {
	    *(unsigned char *)diag = 'U';
	} else {
	    *(unsigned char *)diag = 'N';
	}
	ctrmm_("Left", uplo, trans, diag, n, nrhs, &c_b1, &a[a_offset], lda, &
		b[b_offset], ldb);

    } else if (lsamen_(&c__2, c2, "TP")) {

/*        Triangular matrix, packed storage */

	clacpy_("Full", n, nrhs, &x[x_offset], ldx, &b[b_offset], ldb);
	if (*ku == 2) {
	    *(unsigned char *)diag = 'U';
	} else {
	    *(unsigned char *)diag = 'N';
	}
	i__1 = *nrhs;
	for (j = 1; j <= i__1; ++j) {
	    ctpmv_(uplo, trans, diag, n, &a[a_offset], &b[j * b_dim1 + 1], &
		    c__1);
/* L70: */
	}

    } else if (lsamen_(&c__2, c2, "TB")) {

/*        Triangular matrix, banded storage */

	clacpy_("Full", n, nrhs, &x[x_offset], ldx, &b[b_offset], ldb);
	if (*ku == 2) {
	    *(unsigned char *)diag = 'U';
	} else {
	    *(unsigned char *)diag = 'N';
	}
	i__1 = *nrhs;
	for (j = 1; j <= i__1; ++j) {
	    ctbmv_(uplo, trans, diag, n, kl, &a[a_offset], lda, &b[j * b_dim1 
		    + 1], &c__1);
/* L80: */
	}

    } else {

/*        If none of the above, set INFO = -1 and return */

	*info = -1;
	i__1 = -(*info);
	xerbla_("CLARHS", &i__1);
    }

    return 0;

/*     End of CLARHS */

} /* clarhs_ */
Exemplo n.º 5
0
/* Subroutine */ int csyt02_(char *uplo, integer *n, integer *nrhs, complex *
	a, integer *lda, complex *x, integer *ldx, complex *b, integer *ldb, 
	real *rwork, real *resid)
{
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, x_dim1, x_offset, i__1;
    real r__1, r__2;
    complex q__1;

    /* Local variables */
    integer j;
    real eps, anorm, bnorm;
    extern /* Subroutine */ int csymm_(char *, char *, integer *, integer *, 
	    complex *, complex *, integer *, complex *, integer *, complex *, 
	    complex *, integer *);
    real xnorm;
    extern doublereal slamch_(char *), clansy_(char *, char *, 
	    integer *, complex *, integer *, real *), scasum_(
	    integer *, complex *, integer *);


/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  CSYT02 computes the residual for a solution to a complex symmetric */
/*  system of linear equations  A*x = b: */

/*     RESID = norm(B - A*X) / ( norm(A) * norm(X) * EPS ), */

/*  where EPS is the machine epsilon. */

/*  Arguments */
/*  ========= */

/*  UPLO    (input) CHARACTER*1 */
/*          Specifies whether the upper or lower triangular part of the */
/*          symmetric matrix A is stored: */
/*          = 'U':  Upper triangular */
/*          = 'L':  Lower triangular */

/*  N       (input) INTEGER */
/*          The number of rows and columns of the matrix A.  N >= 0. */

/*  NRHS    (input) INTEGER */
/*          The number of columns of B, the matrix of right hand sides. */
/*          NRHS >= 0. */

/*  A       (input) COMPLEX array, dimension (LDA,N) */
/*          The original complex symmetric matrix A. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,N) */

/*  X       (input) COMPLEX array, dimension (LDX,NRHS) */
/*          The computed solution vectors for the system of linear */
/*          equations. */

/*  LDX     (input) INTEGER */
/*          The leading dimension of the array X.   LDX >= max(1,N). */

/*  B       (input/output) COMPLEX array, dimension (LDB,NRHS) */
/*          On entry, the right hand side vectors for the system of */
/*          linear equations. */
/*          On exit, B is overwritten with the difference B - A*X. */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B.  LDB >= max(1,N). */

/*  RWORK   (workspace) REAL array, dimension (N) */

/*  RESID   (output) REAL */
/*          The maximum over the number of right hand sides of */
/*          norm(B - A*X) / ( norm(A) * norm(X) * EPS ). */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Quick exit if N = 0 or NRHS = 0 */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    x_dim1 = *ldx;
    x_offset = 1 + x_dim1;
    x -= x_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;
    --rwork;

    /* Function Body */
    if (*n <= 0 || *nrhs <= 0) {
	*resid = 0.f;
	return 0;
    }

/*     Exit with RESID = 1/EPS if ANORM = 0. */

    eps = slamch_("Epsilon");
    anorm = clansy_("1", uplo, n, &a[a_offset], lda, &rwork[1]);
    if (anorm <= 0.f) {
	*resid = 1.f / eps;
	return 0;
    }

/*     Compute  B - A*X  (or  B - A'*X ) and store in B . */

    q__1.r = -1.f, q__1.i = -0.f;
    csymm_("Left", uplo, n, nrhs, &q__1, &a[a_offset], lda, &x[x_offset], ldx, 
	     &c_b1, &b[b_offset], ldb);

/*     Compute the maximum over the number of right hand sides of */
/*        norm( B - A*X ) / ( norm(A) * norm(X) * EPS ) . */

    *resid = 0.f;
    i__1 = *nrhs;
    for (j = 1; j <= i__1; ++j) {
	bnorm = scasum_(n, &b[j * b_dim1 + 1], &c__1);
	xnorm = scasum_(n, &x[j * x_dim1 + 1], &c__1);
	if (xnorm <= 0.f) {
	    *resid = 1.f / eps;
	} else {
/* Computing MAX */
	    r__1 = *resid, r__2 = bnorm / anorm / xnorm / eps;
	    *resid = dmax(r__1,r__2);
	}
/* L10: */
    }

    return 0;

/*     End of CSYT02 */

} /* csyt02_ */
Exemplo n.º 6
0
/* Subroutine */ int csyt02_(char *uplo, integer *n, integer *nrhs, complex *
	a, integer *lda, complex *x, integer *ldx, complex *b, integer *ldb, 
	real *rwork, real *resid)
{
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, x_dim1, x_offset, i__1;
    real r__1, r__2;
    complex q__1;

    /* Local variables */
    static integer j;
    static real anorm, bnorm;
    extern /* Subroutine */ int csymm_(char *, char *, integer *, integer *, 
	    complex *, complex *, integer *, complex *, integer *, complex *, 
	    complex *, integer *);
    static real xnorm;
    extern doublereal slamch_(char *), clansy_(char *, char *, 
	    integer *, complex *, integer *, real *), scasum_(
	    integer *, complex *, integer *);
    static real eps;


#define b_subscr(a_1,a_2) (a_2)*b_dim1 + a_1
#define b_ref(a_1,a_2) b[b_subscr(a_1,a_2)]
#define x_subscr(a_1,a_2) (a_2)*x_dim1 + a_1
#define x_ref(a_1,a_2) x[x_subscr(a_1,a_2)]


/*  -- LAPACK test routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       September 30, 1994   


    Purpose   
    =======   

    CSYT02 computes the residual for a solution to a complex symmetric   
    system of linear equations  A*x = b:   

       RESID = norm(B - A*X) / ( norm(A) * norm(X) * EPS ),   

    where EPS is the machine epsilon.   

    Arguments   
    =========   

    UPLO    (input) CHARACTER*1   
            Specifies whether the upper or lower triangular part of the   
            symmetric matrix A is stored:   
            = 'U':  Upper triangular   
            = 'L':  Lower triangular   

    N       (input) INTEGER   
            The number of rows and columns of the matrix A.  N >= 0.   

    NRHS    (input) INTEGER   
            The number of columns of B, the matrix of right hand sides.   
            NRHS >= 0.   

    A       (input) COMPLEX array, dimension (LDA,N)   
            The original complex symmetric matrix A.   

    LDA     (input) INTEGER   
            The leading dimension of the array A.  LDA >= max(1,N)   

    X       (input) COMPLEX array, dimension (LDX,NRHS)   
            The computed solution vectors for the system of linear   
            equations.   

    LDX     (input) INTEGER   
            The leading dimension of the array X.   LDX >= max(1,N).   

    B       (input/output) COMPLEX array, dimension (LDB,NRHS)   
            On entry, the right hand side vectors for the system of   
            linear equations.   
            On exit, B is overwritten with the difference B - A*X.   

    LDB     (input) INTEGER   
            The leading dimension of the array B.  LDB >= max(1,N).   

    RWORK   (workspace) REAL array, dimension (N)   

    RESID   (output) REAL   
            The maximum over the number of right hand sides of   
            norm(B - A*X) / ( norm(A) * norm(X) * EPS ).   

    =====================================================================   


       Quick exit if N = 0 or NRHS = 0   

       Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    x_dim1 = *ldx;
    x_offset = 1 + x_dim1 * 1;
    x -= x_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1 * 1;
    b -= b_offset;
    --rwork;

    /* Function Body */
    if (*n <= 0 || *nrhs <= 0) {
	*resid = 0.f;
	return 0;
    }

/*     Exit with RESID = 1/EPS if ANORM = 0. */

    eps = slamch_("Epsilon");
    anorm = clansy_("1", uplo, n, &a[a_offset], lda, &rwork[1]);
    if (anorm <= 0.f) {
	*resid = 1.f / eps;
	return 0;
    }

/*     Compute  B - A*X  (or  B - A'*X ) and store in B . */

    q__1.r = -1.f, q__1.i = 0.f;
    csymm_("Left", uplo, n, nrhs, &q__1, &a[a_offset], lda, &x[x_offset], ldx,
	     &c_b1, &b[b_offset], ldb);

/*     Compute the maximum over the number of right hand sides of   
          norm( B - A*X ) / ( norm(A) * norm(X) * EPS ) . */

    *resid = 0.f;
    i__1 = *nrhs;
    for (j = 1; j <= i__1; ++j) {
	bnorm = scasum_(n, &b_ref(1, j), &c__1);
	xnorm = scasum_(n, &x_ref(1, j), &c__1);
	if (xnorm <= 0.f) {
	    *resid = 1.f / eps;
	} else {
/* Computing MAX */
	    r__1 = *resid, r__2 = bnorm / anorm / xnorm / eps;
	    *resid = dmax(r__1,r__2);
	}
/* L10: */
    }

    return 0;

/*     End of CSYT02 */

} /* csyt02_ */