Exemplo n.º 1
0
/* Subroutine */ int cunmql_(char *side, char *trans, integer *m, integer *n, 
	integer *k, complex *a, integer *lda, complex *tau, complex *c__, 
	integer *ldc, complex *work, integer *lwork, integer *info)
{
    /* System generated locals */
    address a__1[2];
    integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3[2], i__4, 
	    i__5;
    char ch__1[2];

    /* Builtin functions */
    /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);

    /* Local variables */
    integer i__;
    complex t[4160]	/* was [65][64] */;
    integer i1, i2, i3, ib, nb, mi, ni, nq, nw, iws;
    logical left;
    extern logical lsame_(char *, char *);
    integer nbmin, iinfo;
    extern /* Subroutine */ int cunm2l_(char *, char *, integer *, integer *, 
	    integer *, complex *, integer *, complex *, complex *, integer *, 
	    complex *, integer *), clarfb_(char *, char *, 
	    char *, char *, integer *, integer *, integer *, complex *, 
	    integer *, complex *, integer *, complex *, integer *, complex *, 
	    integer *), clarft_(char *, char *
, integer *, integer *, complex *, integer *, complex *, complex *
, integer *), xerbla_(char *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *);
    logical notran;
    integer ldwork, lwkopt;
    logical lquery;


/*  -- LAPACK routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  CUNMQL overwrites the general complex M-by-N matrix C with */

/*                  SIDE = 'L'     SIDE = 'R' */
/*  TRANS = 'N':      Q * C          C * Q */
/*  TRANS = 'C':      Q**H * C       C * Q**H */

/*  where Q is a complex unitary matrix defined as the product of k */
/*  elementary reflectors */

/*        Q = H(k) . . . H(2) H(1) */

/*  as returned by CGEQLF. Q is of order M if SIDE = 'L' and of order N */
/*  if SIDE = 'R'. */

/*  Arguments */
/*  ========= */

/*  SIDE    (input) CHARACTER*1 */
/*          = 'L': apply Q or Q**H from the Left; */
/*          = 'R': apply Q or Q**H from the Right. */

/*  TRANS   (input) CHARACTER*1 */
/*          = 'N':  No transpose, apply Q; */
/*          = 'C':  Transpose, apply Q**H. */

/*  M       (input) INTEGER */
/*          The number of rows of the matrix C. M >= 0. */

/*  N       (input) INTEGER */
/*          The number of columns of the matrix C. N >= 0. */

/*  K       (input) INTEGER */
/*          The number of elementary reflectors whose product defines */
/*          the matrix Q. */
/*          If SIDE = 'L', M >= K >= 0; */
/*          if SIDE = 'R', N >= K >= 0. */

/*  A       (input) COMPLEX array, dimension (LDA,K) */
/*          The i-th column must contain the vector which defines the */
/*          elementary reflector H(i), for i = 1,2,...,k, as returned by */
/*          CGEQLF in the last k columns of its array argument A. */
/*          A is modified by the routine but restored on exit. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A. */
/*          If SIDE = 'L', LDA >= max(1,M); */
/*          if SIDE = 'R', LDA >= max(1,N). */

/*  TAU     (input) COMPLEX array, dimension (K) */
/*          TAU(i) must contain the scalar factor of the elementary */
/*          reflector H(i), as returned by CGEQLF. */

/*  C       (input/output) COMPLEX array, dimension (LDC,N) */
/*          On entry, the M-by-N matrix C. */
/*          On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q. */

/*  LDC     (input) INTEGER */
/*          The leading dimension of the array C. LDC >= max(1,M). */

/*  WORK    (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) */
/*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */

/*  LWORK   (input) INTEGER */
/*          The dimension of the array WORK. */
/*          If SIDE = 'L', LWORK >= max(1,N); */
/*          if SIDE = 'R', LWORK >= max(1,M). */
/*          For optimum performance LWORK >= N*NB if SIDE = 'L', and */
/*          LWORK >= M*NB if SIDE = 'R', where NB is the optimal */
/*          blocksize. */

/*          If LWORK = -1, then a workspace query is assumed; the routine */
/*          only calculates the optimal size of the WORK array, returns */
/*          this value as the first entry of the WORK array, and no error */
/*          message related to LWORK is issued by XERBLA. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input arguments */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --tau;
    c_dim1 = *ldc;
    c_offset = 1 + c_dim1;
    c__ -= c_offset;
    --work;

    /* Function Body */
    *info = 0;
    left = lsame_(side, "L");
    notran = lsame_(trans, "N");
    lquery = *lwork == -1;

/*     NQ is the order of Q and NW is the minimum dimension of WORK */

    if (left) {
	nq = *m;
	nw = max(1,*n);
    } else {
	nq = *n;
	nw = max(1,*m);
    }
    if (! left && ! lsame_(side, "R")) {
	*info = -1;
    } else if (! notran && ! lsame_(trans, "C")) {
	*info = -2;
    } else if (*m < 0) {
	*info = -3;
    } else if (*n < 0) {
	*info = -4;
    } else if (*k < 0 || *k > nq) {
	*info = -5;
    } else if (*lda < max(1,nq)) {
	*info = -7;
    } else if (*ldc < max(1,*m)) {
	*info = -10;
    }

    if (*info == 0) {
	if (*m == 0 || *n == 0) {
	    lwkopt = 1;
	} else {

/*           Determine the block size.  NB may be at most NBMAX, where */
/*           NBMAX is used to define the local array T. */

/* Computing MIN */
/* Writing concatenation */
	    i__3[0] = 1, a__1[0] = side;
	    i__3[1] = 1, a__1[1] = trans;
	    s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
	    i__1 = 64, i__2 = ilaenv_(&c__1, "CUNMQL", ch__1, m, n, k, &c_n1);
	    nb = min(i__1,i__2);
	    lwkopt = nw * nb;
	}
	work[1].r = (real) lwkopt, work[1].i = 0.f;

	if (*lwork < nw && ! lquery) {
	    *info = -12;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CUNMQL", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    if (*m == 0 || *n == 0) {
	return 0;
    }

    nbmin = 2;
    ldwork = nw;
    if (nb > 1 && nb < *k) {
	iws = nw * nb;
	if (*lwork < iws) {
	    nb = *lwork / ldwork;
/* Computing MAX */
/* Writing concatenation */
	    i__3[0] = 1, a__1[0] = side;
	    i__3[1] = 1, a__1[1] = trans;
	    s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
	    i__1 = 2, i__2 = ilaenv_(&c__2, "CUNMQL", ch__1, m, n, k, &c_n1);
	    nbmin = max(i__1,i__2);
	}
    } else {
	iws = nw;
    }

    if (nb < nbmin || nb >= *k) {

/*        Use unblocked code */

	cunm2l_(side, trans, m, n, k, &a[a_offset], lda, &tau[1], &c__[
		c_offset], ldc, &work[1], &iinfo);
    } else {

/*        Use blocked code */

	if (left && notran || ! left && ! notran) {
	    i1 = 1;
	    i2 = *k;
	    i3 = nb;
	} else {
	    i1 = (*k - 1) / nb * nb + 1;
	    i2 = 1;
	    i3 = -nb;
	}

	if (left) {
	    ni = *n;
	} else {
	    mi = *m;
	}

	i__1 = i2;
	i__2 = i3;
	for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
/* Computing MIN */
	    i__4 = nb, i__5 = *k - i__ + 1;
	    ib = min(i__4,i__5);

/*           Form the triangular factor of the block reflector */
/*           H = H(i+ib-1) . . . H(i+1) H(i) */

	    i__4 = nq - *k + i__ + ib - 1;
	    clarft_("Backward", "Columnwise", &i__4, &ib, &a[i__ * a_dim1 + 1]
, lda, &tau[i__], t, &c__65);
	    if (left) {

/*              H or H' is applied to C(1:m-k+i+ib-1,1:n) */

		mi = *m - *k + i__ + ib - 1;
	    } else {

/*              H or H' is applied to C(1:m,1:n-k+i+ib-1) */

		ni = *n - *k + i__ + ib - 1;
	    }

/*           Apply H or H' */

	    clarfb_(side, trans, "Backward", "Columnwise", &mi, &ni, &ib, &a[
		    i__ * a_dim1 + 1], lda, t, &c__65, &c__[c_offset], ldc, &
		    work[1], &ldwork);
/* L10: */
	}
    }
    work[1].r = (real) lwkopt, work[1].i = 0.f;
    return 0;

/*     End of CUNMQL */

} /* cunmql_ */
Exemplo n.º 2
0
/* Subroutine */ int cunmql_(char *side, char *trans, integer *m, integer *n, 
	integer *k, complex *a, integer *lda, complex *tau, complex *c__, 
	integer *ldc, complex *work, integer *lwork, integer *info)
{
/*  -- LAPACK routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       June 30, 1999   


    Purpose   
    =======   

    CUNMQL overwrites the general complex M-by-N matrix C with   

                    SIDE = 'L'     SIDE = 'R'   
    TRANS = 'N':      Q * C          C * Q   
    TRANS = 'C':      Q**H * C       C * Q**H   

    where Q is a complex unitary matrix defined as the product of k   
    elementary reflectors   

          Q = H(k) . . . H(2) H(1)   

    as returned by CGEQLF. Q is of order M if SIDE = 'L' and of order N   
    if SIDE = 'R'.   

    Arguments   
    =========   

    SIDE    (input) CHARACTER*1   
            = 'L': apply Q or Q**H from the Left;   
            = 'R': apply Q or Q**H from the Right.   

    TRANS   (input) CHARACTER*1   
            = 'N':  No transpose, apply Q;   
            = 'C':  Transpose, apply Q**H.   

    M       (input) INTEGER   
            The number of rows of the matrix C. M >= 0.   

    N       (input) INTEGER   
            The number of columns of the matrix C. N >= 0.   

    K       (input) INTEGER   
            The number of elementary reflectors whose product defines   
            the matrix Q.   
            If SIDE = 'L', M >= K >= 0;   
            if SIDE = 'R', N >= K >= 0.   

    A       (input) COMPLEX array, dimension (LDA,K)   
            The i-th column must contain the vector which defines the   
            elementary reflector H(i), for i = 1,2,...,k, as returned by   
            CGEQLF in the last k columns of its array argument A.   
            A is modified by the routine but restored on exit.   

    LDA     (input) INTEGER   
            The leading dimension of the array A.   
            If SIDE = 'L', LDA >= max(1,M);   
            if SIDE = 'R', LDA >= max(1,N).   

    TAU     (input) COMPLEX array, dimension (K)   
            TAU(i) must contain the scalar factor of the elementary   
            reflector H(i), as returned by CGEQLF.   

    C       (input/output) COMPLEX array, dimension (LDC,N)   
            On entry, the M-by-N matrix C.   
            On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.   

    LDC     (input) INTEGER   
            The leading dimension of the array C. LDC >= max(1,M).   

    WORK    (workspace/output) COMPLEX array, dimension (LWORK)   
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.   

    LWORK   (input) INTEGER   
            The dimension of the array WORK.   
            If SIDE = 'L', LWORK >= max(1,N);   
            if SIDE = 'R', LWORK >= max(1,M).   
            For optimum performance LWORK >= N*NB if SIDE = 'L', and   
            LWORK >= M*NB if SIDE = 'R', where NB is the optimal   
            blocksize.   

            If LWORK = -1, then a workspace query is assumed; the routine   
            only calculates the optimal size of the WORK array, returns   
            this value as the first entry of the WORK array, and no error   
            message related to LWORK is issued by XERBLA.   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   

    =====================================================================   


       Test the input arguments   

       Parameter adjustments */
    /* Table of constant values */
    static integer c__1 = 1;
    static integer c_n1 = -1;
    static integer c__2 = 2;
    static integer c__65 = 65;
    
    /* System generated locals */
    address a__1[2];
    integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3[2], i__4, 
	    i__5;
    char ch__1[2];
    /* Builtin functions   
       Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);
    /* Local variables */
    static logical left;
    static integer i__;
    static complex t[4160]	/* was [65][64] */;
    extern logical lsame_(char *, char *);
    static integer nbmin, iinfo, i1, i2, i3;
    extern /* Subroutine */ int cunm2l_(char *, char *, integer *, integer *, 
	    integer *, complex *, integer *, complex *, complex *, integer *, 
	    complex *, integer *);
    static integer ib, nb, mi, ni;
    extern /* Subroutine */ int clarfb_(char *, char *, char *, char *, 
	    integer *, integer *, integer *, complex *, integer *, complex *, 
	    integer *, complex *, integer *, complex *, integer *);
    static integer nq, nw;
    extern /* Subroutine */ int clarft_(char *, char *, integer *, integer *, 
	    complex *, integer *, complex *, complex *, integer *), xerbla_(char *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *, ftnlen, ftnlen);
    static logical notran;
    static integer ldwork, lwkopt;
    static logical lquery;
    static integer iws;
#define a_subscr(a_1,a_2) (a_2)*a_dim1 + a_1
#define a_ref(a_1,a_2) a[a_subscr(a_1,a_2)]


    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    --tau;
    c_dim1 = *ldc;
    c_offset = 1 + c_dim1 * 1;
    c__ -= c_offset;
    --work;

    /* Function Body */
    *info = 0;
    left = lsame_(side, "L");
    notran = lsame_(trans, "N");
    lquery = *lwork == -1;

/*     NQ is the order of Q and NW is the minimum dimension of WORK */

    if (left) {
	nq = *m;
	nw = *n;
    } else {
	nq = *n;
	nw = *m;
    }
    if (! left && ! lsame_(side, "R")) {
	*info = -1;
    } else if (! notran && ! lsame_(trans, "C")) {
	*info = -2;
    } else if (*m < 0) {
	*info = -3;
    } else if (*n < 0) {
	*info = -4;
    } else if (*k < 0 || *k > nq) {
	*info = -5;
    } else if (*lda < max(1,nq)) {
	*info = -7;
    } else if (*ldc < max(1,*m)) {
	*info = -10;
    } else if (*lwork < max(1,nw) && ! lquery) {
	*info = -12;
    }

    if (*info == 0) {

/*        Determine the block size.  NB may be at most NBMAX, where NBMAX   
          is used to define the local array T.   

   Computing MIN   
   Writing concatenation */
	i__3[0] = 1, a__1[0] = side;
	i__3[1] = 1, a__1[1] = trans;
	s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
	i__1 = 64, i__2 = ilaenv_(&c__1, "CUNMQL", ch__1, m, n, k, &c_n1, (
		ftnlen)6, (ftnlen)2);
	nb = min(i__1,i__2);
	lwkopt = max(1,nw) * nb;
	work[1].r = (real) lwkopt, work[1].i = 0.f;
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CUNMQL", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    if (*m == 0 || *n == 0 || *k == 0) {
	work[1].r = 1.f, work[1].i = 0.f;
	return 0;
    }

    nbmin = 2;
    ldwork = nw;
    if (nb > 1 && nb < *k) {
	iws = nw * nb;
	if (*lwork < iws) {
	    nb = *lwork / ldwork;
/* Computing MAX   
   Writing concatenation */
	    i__3[0] = 1, a__1[0] = side;
	    i__3[1] = 1, a__1[1] = trans;
	    s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
	    i__1 = 2, i__2 = ilaenv_(&c__2, "CUNMQL", ch__1, m, n, k, &c_n1, (
		    ftnlen)6, (ftnlen)2);
	    nbmin = max(i__1,i__2);
	}
    } else {
	iws = nw;
    }

    if (nb < nbmin || nb >= *k) {

/*        Use unblocked code */

	cunm2l_(side, trans, m, n, k, &a[a_offset], lda, &tau[1], &c__[
		c_offset], ldc, &work[1], &iinfo);
    } else {

/*        Use blocked code */

	if (left && notran || ! left && ! notran) {
	    i1 = 1;
	    i2 = *k;
	    i3 = nb;
	} else {
	    i1 = (*k - 1) / nb * nb + 1;
	    i2 = 1;
	    i3 = -nb;
	}

	if (left) {
	    ni = *n;
	} else {
	    mi = *m;
	}

	i__1 = i2;
	i__2 = i3;
	for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
/* Computing MIN */
	    i__4 = nb, i__5 = *k - i__ + 1;
	    ib = min(i__4,i__5);

/*           Form the triangular factor of the block reflector   
             H = H(i+ib-1) . . . H(i+1) H(i) */

	    i__4 = nq - *k + i__ + ib - 1;
	    clarft_("Backward", "Columnwise", &i__4, &ib, &a_ref(1, i__), lda,
		     &tau[i__], t, &c__65);
	    if (left) {

/*              H or H' is applied to C(1:m-k+i+ib-1,1:n) */

		mi = *m - *k + i__ + ib - 1;
	    } else {

/*              H or H' is applied to C(1:m,1:n-k+i+ib-1) */

		ni = *n - *k + i__ + ib - 1;
	    }

/*           Apply H or H' */

	    clarfb_(side, trans, "Backward", "Columnwise", &mi, &ni, &ib, &
		    a_ref(1, i__), lda, t, &c__65, &c__[c_offset], ldc, &work[
		    1], &ldwork);
/* L10: */
	}
    }
    work[1].r = (real) lwkopt, work[1].i = 0.f;
    return 0;

/*     End of CUNMQL */

} /* cunmql_ */
Exemplo n.º 3
0
/* Subroutine */ int cerrql_(char *path, integer *nunit)
{
    /* System generated locals */
    integer i__1;
    real r__1, r__2;
    complex q__1;

    /* Builtin functions */
    integer s_wsle(cilist *), e_wsle(void);
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);

    /* Local variables */
    complex a[4]	/* was [2][2] */, b[2];
    integer i__, j;
    complex w[2], x[2], af[4]	/* was [2][2] */;
    integer info;
    extern /* Subroutine */ int cgeql2_(integer *, integer *, complex *, 
	    integer *, complex *, complex *, integer *), cung2l_(integer *, 
	    integer *, integer *, complex *, integer *, complex *, complex *, 
	    integer *), cunm2l_(char *, char *, integer *, integer *, integer 
	    *, complex *, integer *, complex *, complex *, integer *, complex 
	    *, integer *), cgeqlf_(integer *, integer *, 
	    complex *, integer *, complex *, complex *, integer *, integer *),
	     alaesm_(char *, logical *, integer *), cgeqls_(integer *, 
	     integer *, integer *, complex *, integer *, complex *, complex *, 
	     integer *, complex *, integer *, integer *), chkxer_(char *, 
	    integer *, integer *, logical *, logical *), cungql_(
	    integer *, integer *, integer *, complex *, integer *, complex *, 
	    complex *, integer *, integer *), cunmql_(char *, char *, integer 
	    *, integer *, integer *, complex *, integer *, complex *, complex 
	    *, integer *, complex *, integer *, integer *);

    /* Fortran I/O blocks */
    static cilist io___1 = { 0, 0, 0, 0, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  CERRQL tests the error exits for the COMPLEX routines */
/*  that use the QL decomposition of a general matrix. */

/*  Arguments */
/*  ========= */

/*  PATH    (input) CHARACTER*3 */
/*          The LAPACK path name for the routines to be tested. */

/*  NUNIT   (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

    infoc_1.nout = *nunit;
    io___1.ciunit = infoc_1.nout;
    s_wsle(&io___1);
    e_wsle();

/*     Set the variables to innocuous values. */

    for (j = 1; j <= 2; ++j) {
	for (i__ = 1; i__ <= 2; ++i__) {
	    i__1 = i__ + (j << 1) - 3;
	    r__1 = 1.f / (real) (i__ + j);
	    r__2 = -1.f / (real) (i__ + j);
	    q__1.r = r__1, q__1.i = r__2;
	    a[i__1].r = q__1.r, a[i__1].i = q__1.i;
	    i__1 = i__ + (j << 1) - 3;
	    r__1 = 1.f / (real) (i__ + j);
	    r__2 = -1.f / (real) (i__ + j);
	    q__1.r = r__1, q__1.i = r__2;
	    af[i__1].r = q__1.r, af[i__1].i = q__1.i;
/* L10: */
	}
	i__1 = j - 1;
	b[i__1].r = 0.f, b[i__1].i = 0.f;
	i__1 = j - 1;
	w[i__1].r = 0.f, w[i__1].i = 0.f;
	i__1 = j - 1;
	x[i__1].r = 0.f, x[i__1].i = 0.f;
/* L20: */
    }
    infoc_1.ok = TRUE_;

/*     Error exits for QL factorization */

/*     CGEQLF */

    s_copy(srnamc_1.srnamt, "CGEQLF", (ftnlen)32, (ftnlen)6);
    infoc_1.infot = 1;
    cgeqlf_(&c_n1, &c__0, a, &c__1, b, w, &c__1, &info);
    chkxer_("CGEQLF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 2;
    cgeqlf_(&c__0, &c_n1, a, &c__1, b, w, &c__1, &info);
    chkxer_("CGEQLF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 4;
    cgeqlf_(&c__2, &c__1, a, &c__1, b, w, &c__1, &info);
    chkxer_("CGEQLF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 7;
    cgeqlf_(&c__1, &c__2, a, &c__1, b, w, &c__1, &info);
    chkxer_("CGEQLF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);

/*     CGEQL2 */

    s_copy(srnamc_1.srnamt, "CGEQL2", (ftnlen)32, (ftnlen)6);
    infoc_1.infot = 1;
    cgeql2_(&c_n1, &c__0, a, &c__1, b, w, &info);
    chkxer_("CGEQL2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 2;
    cgeql2_(&c__0, &c_n1, a, &c__1, b, w, &info);
    chkxer_("CGEQL2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 4;
    cgeql2_(&c__2, &c__1, a, &c__1, b, w, &info);
    chkxer_("CGEQL2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);

/*     CGEQLS */

    s_copy(srnamc_1.srnamt, "CGEQLS", (ftnlen)32, (ftnlen)6);
    infoc_1.infot = 1;
    cgeqls_(&c_n1, &c__0, &c__0, a, &c__1, x, b, &c__1, w, &c__1, &info);
    chkxer_("CGEQLS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 2;
    cgeqls_(&c__0, &c_n1, &c__0, a, &c__1, x, b, &c__1, w, &c__1, &info);
    chkxer_("CGEQLS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 2;
    cgeqls_(&c__1, &c__2, &c__0, a, &c__1, x, b, &c__1, w, &c__1, &info);
    chkxer_("CGEQLS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 3;
    cgeqls_(&c__0, &c__0, &c_n1, a, &c__1, x, b, &c__1, w, &c__1, &info);
    chkxer_("CGEQLS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 5;
    cgeqls_(&c__2, &c__1, &c__0, a, &c__1, x, b, &c__2, w, &c__1, &info);
    chkxer_("CGEQLS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 8;
    cgeqls_(&c__2, &c__1, &c__0, a, &c__2, x, b, &c__1, w, &c__1, &info);
    chkxer_("CGEQLS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 10;
    cgeqls_(&c__1, &c__1, &c__2, a, &c__1, x, b, &c__1, w, &c__1, &info);
    chkxer_("CGEQLS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);

/*     CUNGQL */

    s_copy(srnamc_1.srnamt, "CUNGQL", (ftnlen)32, (ftnlen)6);
    infoc_1.infot = 1;
    cungql_(&c_n1, &c__0, &c__0, a, &c__1, x, w, &c__1, &info);
    chkxer_("CUNGQL", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 2;
    cungql_(&c__0, &c_n1, &c__0, a, &c__1, x, w, &c__1, &info);
    chkxer_("CUNGQL", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 2;
    cungql_(&c__1, &c__2, &c__0, a, &c__1, x, w, &c__2, &info);
    chkxer_("CUNGQL", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 3;
    cungql_(&c__0, &c__0, &c_n1, a, &c__1, x, w, &c__1, &info);
    chkxer_("CUNGQL", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 3;
    cungql_(&c__1, &c__1, &c__2, a, &c__1, x, w, &c__1, &info);
    chkxer_("CUNGQL", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 5;
    cungql_(&c__2, &c__1, &c__0, a, &c__1, x, w, &c__1, &info);
    chkxer_("CUNGQL", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 8;
    cungql_(&c__2, &c__2, &c__0, a, &c__2, x, w, &c__1, &info);
    chkxer_("CUNGQL", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);

/*     CUNG2L */

    s_copy(srnamc_1.srnamt, "CUNG2L", (ftnlen)32, (ftnlen)6);
    infoc_1.infot = 1;
    cung2l_(&c_n1, &c__0, &c__0, a, &c__1, x, w, &info);
    chkxer_("CUNG2L", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 2;
    cung2l_(&c__0, &c_n1, &c__0, a, &c__1, x, w, &info);
    chkxer_("CUNG2L", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 2;
    cung2l_(&c__1, &c__2, &c__0, a, &c__1, x, w, &info);
    chkxer_("CUNG2L", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 3;
    cung2l_(&c__0, &c__0, &c_n1, a, &c__1, x, w, &info);
    chkxer_("CUNG2L", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 3;
    cung2l_(&c__2, &c__1, &c__2, a, &c__2, x, w, &info);
    chkxer_("CUNG2L", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 5;
    cung2l_(&c__2, &c__1, &c__0, a, &c__1, x, w, &info);
    chkxer_("CUNG2L", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);

/*     CUNMQL */

    s_copy(srnamc_1.srnamt, "CUNMQL", (ftnlen)32, (ftnlen)6);
    infoc_1.infot = 1;
    cunmql_("/", "N", &c__0, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &c__1, &
	    info);
    chkxer_("CUNMQL", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 2;
    cunmql_("L", "/", &c__0, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &c__1, &
	    info);
    chkxer_("CUNMQL", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 3;
    cunmql_("L", "N", &c_n1, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &c__1, &
	    info);
    chkxer_("CUNMQL", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 4;
    cunmql_("L", "N", &c__0, &c_n1, &c__0, a, &c__1, x, af, &c__1, w, &c__1, &
	    info);
    chkxer_("CUNMQL", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 5;
    cunmql_("L", "N", &c__0, &c__0, &c_n1, a, &c__1, x, af, &c__1, w, &c__1, &
	    info);
    chkxer_("CUNMQL", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 5;
    cunmql_("L", "N", &c__0, &c__1, &c__1, a, &c__1, x, af, &c__1, w, &c__1, &
	    info);
    chkxer_("CUNMQL", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 5;
    cunmql_("R", "N", &c__1, &c__0, &c__1, a, &c__1, x, af, &c__1, w, &c__1, &
	    info);
    chkxer_("CUNMQL", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 7;
    cunmql_("L", "N", &c__2, &c__1, &c__0, a, &c__1, x, af, &c__2, w, &c__1, &
	    info);
    chkxer_("CUNMQL", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 7;
    cunmql_("R", "N", &c__1, &c__2, &c__0, a, &c__1, x, af, &c__1, w, &c__1, &
	    info);
    chkxer_("CUNMQL", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 10;
    cunmql_("L", "N", &c__2, &c__1, &c__0, a, &c__2, x, af, &c__1, w, &c__1, &
	    info);
    chkxer_("CUNMQL", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 12;
    cunmql_("L", "N", &c__1, &c__2, &c__0, a, &c__1, x, af, &c__1, w, &c__1, &
	    info);
    chkxer_("CUNMQL", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 12;
    cunmql_("R", "N", &c__2, &c__1, &c__0, a, &c__1, x, af, &c__2, w, &c__1, &
	    info);
    chkxer_("CUNMQL", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);

/*     CUNM2L */

    s_copy(srnamc_1.srnamt, "CUNM2L", (ftnlen)32, (ftnlen)6);
    infoc_1.infot = 1;
    cunm2l_("/", "N", &c__0, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &info);
    chkxer_("CUNM2L", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 2;
    cunm2l_("L", "/", &c__0, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &info);
    chkxer_("CUNM2L", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 3;
    cunm2l_("L", "N", &c_n1, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &info);
    chkxer_("CUNM2L", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 4;
    cunm2l_("L", "N", &c__0, &c_n1, &c__0, a, &c__1, x, af, &c__1, w, &info);
    chkxer_("CUNM2L", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 5;
    cunm2l_("L", "N", &c__0, &c__0, &c_n1, a, &c__1, x, af, &c__1, w, &info);
    chkxer_("CUNM2L", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 5;
    cunm2l_("L", "N", &c__0, &c__1, &c__1, a, &c__1, x, af, &c__1, w, &info);
    chkxer_("CUNM2L", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 5;
    cunm2l_("R", "N", &c__1, &c__0, &c__1, a, &c__1, x, af, &c__1, w, &info);
    chkxer_("CUNM2L", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 7;
    cunm2l_("L", "N", &c__2, &c__1, &c__0, a, &c__1, x, af, &c__2, w, &info);
    chkxer_("CUNM2L", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 7;
    cunm2l_("R", "N", &c__1, &c__2, &c__0, a, &c__1, x, af, &c__1, w, &info);
    chkxer_("CUNM2L", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 10;
    cunm2l_("L", "N", &c__2, &c__1, &c__0, a, &c__2, x, af, &c__1, w, &info);
    chkxer_("CUNM2L", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);

/*     Print a summary line. */

    alaesm_(path, &infoc_1.ok, &infoc_1.nout);

    return 0;

/*     End of CERRQL */

} /* cerrql_ */
Exemplo n.º 4
0
/* Subroutine */ int chet21_(integer *itype, char *uplo, integer *n, integer *
	kband, complex *a, integer *lda, real *d__, real *e, complex *u, 
	integer *ldu, complex *v, integer *ldv, complex *tau, complex *work, 
	real *rwork, real *result)
{
    /* System generated locals */
    integer a_dim1, a_offset, u_dim1, u_offset, v_dim1, v_offset, i__1, i__2, 
	    i__3, i__4, i__5, i__6;
    real r__1, r__2;
    complex q__1, q__2, q__3;

    /* Local variables */
    integer j, jr;
    real ulp;
    extern /* Subroutine */ int cher_(char *, integer *, real *, complex *, 
	    integer *, complex *, integer *);
    integer jcol;
    real unfl;
    integer jrow;
    extern /* Subroutine */ int cher2_(char *, integer *, complex *, complex *
, integer *, complex *, integer *, complex *, integer *), 
	    cgemm_(char *, char *, integer *, integer *, integer *, complex *, 
	     complex *, integer *, complex *, integer *, complex *, complex *, 
	     integer *);
    extern logical lsame_(char *, char *);
    integer iinfo;
    real anorm;
    char cuplo[1];
    complex vsave;
    logical lower;
    real wnorm;
    extern /* Subroutine */ int cunm2l_(char *, char *, integer *, integer *, 
	    integer *, complex *, integer *, complex *, complex *, integer *, 
	    complex *, integer *), cunm2r_(char *, char *, 
	    integer *, integer *, integer *, complex *, integer *, complex *, 
	    complex *, integer *, complex *, integer *);
    extern doublereal clange_(char *, integer *, integer *, complex *, 
	    integer *, real *), clanhe_(char *, char *, integer *, 
	    complex *, integer *, real *), slamch_(char *);
    extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex 
	    *, integer *, complex *, integer *), claset_(char *, 
	    integer *, integer *, complex *, complex *, complex *, integer *), clarfy_(char *, integer *, complex *, integer *, complex 
	    *, complex *, integer *, complex *);


/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  CHET21 generally checks a decomposition of the form */

/*     A = U S U* */

/*  where * means conjugate transpose, A is hermitian, U is unitary, and */
/*  S is diagonal (if KBAND=0) or (real) symmetric tridiagonal (if */
/*  KBAND=1). */

/*  If ITYPE=1, then U is represented as a dense matrix; otherwise U is */
/*  expressed as a product of Householder transformations, whose vectors */
/*  are stored in the array "V" and whose scaling constants are in "TAU". */
/*  We shall use the letter "V" to refer to the product of Householder */
/*  transformations (which should be equal to U). */

/*  Specifically, if ITYPE=1, then: */

/*     RESULT(1) = | A - U S U* | / ( |A| n ulp ) *and* */
/*     RESULT(2) = | I - UU* | / ( n ulp ) */

/*  If ITYPE=2, then: */

/*     RESULT(1) = | A - V S V* | / ( |A| n ulp ) */

/*  If ITYPE=3, then: */

/*     RESULT(1) = | I - UV* | / ( n ulp ) */

/*  For ITYPE > 1, the transformation U is expressed as a product */
/*  V = H(1)...H(n-2),  where H(j) = I  -  tau(j) v(j) v(j)*  and each */
/*  vector v(j) has its first j elements 0 and the remaining n-j elements */
/*  stored in V(j+1:n,j). */

/*  Arguments */
/*  ========= */

/*  ITYPE   (input) INTEGER */
/*          Specifies the type of tests to be performed. */
/*          1: U expressed as a dense unitary matrix: */
/*             RESULT(1) = | A - U S U* | / ( |A| n ulp )   *and* */
/*             RESULT(2) = | I - UU* | / ( n ulp ) */

/*          2: U expressed as a product V of Housholder transformations: */
/*             RESULT(1) = | A - V S V* | / ( |A| n ulp ) */

/*          3: U expressed both as a dense unitary matrix and */
/*             as a product of Housholder transformations: */
/*             RESULT(1) = | I - UV* | / ( n ulp ) */

/*  UPLO    (input) CHARACTER */
/*          If UPLO='U', the upper triangle of A and V will be used and */
/*          the (strictly) lower triangle will not be referenced. */
/*          If UPLO='L', the lower triangle of A and V will be used and */
/*          the (strictly) upper triangle will not be referenced. */

/*  N       (input) INTEGER */
/*          The size of the matrix.  If it is zero, CHET21 does nothing. */
/*          It must be at least zero. */

/*  KBAND   (input) INTEGER */
/*          The bandwidth of the matrix.  It may only be zero or one. */
/*          If zero, then S is diagonal, and E is not referenced.  If */
/*          one, then S is symmetric tri-diagonal. */

/*  A       (input) COMPLEX array, dimension (LDA, N) */
/*          The original (unfactored) matrix.  It is assumed to be */
/*          hermitian, and only the upper (UPLO='U') or only the lower */
/*          (UPLO='L') will be referenced. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of A.  It must be at least 1 */
/*          and at least N. */

/*  D       (input) REAL array, dimension (N) */
/*          The diagonal of the (symmetric tri-) diagonal matrix. */

/*  E       (input) REAL array, dimension (N-1) */
/*          The off-diagonal of the (symmetric tri-) diagonal matrix. */
/*          E(1) is the (1,2) and (2,1) element, E(2) is the (2,3) and */
/*          (3,2) element, etc. */
/*          Not referenced if KBAND=0. */

/*  U       (input) COMPLEX array, dimension (LDU, N) */
/*          If ITYPE=1 or 3, this contains the unitary matrix in */
/*          the decomposition, expressed as a dense matrix.  If ITYPE=2, */
/*          then it is not referenced. */

/*  LDU     (input) INTEGER */
/*          The leading dimension of U.  LDU must be at least N and */
/*          at least 1. */

/*  V       (input) COMPLEX array, dimension (LDV, N) */
/*          If ITYPE=2 or 3, the columns of this array contain the */
/*          Householder vectors used to describe the unitary matrix */
/*          in the decomposition.  If UPLO='L', then the vectors are in */
/*          the lower triangle, if UPLO='U', then in the upper */
/*          triangle. */
/*          *NOTE* If ITYPE=2 or 3, V is modified and restored.  The */
/*          subdiagonal (if UPLO='L') or the superdiagonal (if UPLO='U') */
/*          is set to one, and later reset to its original value, during */
/*          the course of the calculation. */
/*          If ITYPE=1, then it is neither referenced nor modified. */

/*  LDV     (input) INTEGER */
/*          The leading dimension of V.  LDV must be at least N and */
/*          at least 1. */

/*  TAU     (input) COMPLEX array, dimension (N) */
/*          If ITYPE >= 2, then TAU(j) is the scalar factor of */
/*          v(j) v(j)* in the Householder transformation H(j) of */
/*          the product  U = H(1)...H(n-2) */
/*          If ITYPE < 2, then TAU is not referenced. */

/*  WORK    (workspace) COMPLEX array, dimension (2*N**2) */

/*  RWORK   (workspace) REAL array, dimension (N) */

/*  RESULT  (output) REAL array, dimension (2) */
/*          The values computed by the two tests described above.  The */
/*          values are currently limited to 1/ulp, to avoid overflow. */
/*          RESULT(1) is always modified.  RESULT(2) is modified only */
/*          if ITYPE=1. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --d__;
    --e;
    u_dim1 = *ldu;
    u_offset = 1 + u_dim1;
    u -= u_offset;
    v_dim1 = *ldv;
    v_offset = 1 + v_dim1;
    v -= v_offset;
    --tau;
    --work;
    --rwork;
    --result;

    /* Function Body */
    result[1] = 0.f;
    if (*itype == 1) {
	result[2] = 0.f;
    }
    if (*n <= 0) {
	return 0;
    }

    if (lsame_(uplo, "U")) {
	lower = FALSE_;
	*(unsigned char *)cuplo = 'U';
    } else {
	lower = TRUE_;
	*(unsigned char *)cuplo = 'L';
    }

    unfl = slamch_("Safe minimum");
    ulp = slamch_("Epsilon") * slamch_("Base");

/*     Some Error Checks */

    if (*itype < 1 || *itype > 3) {
	result[1] = 10.f / ulp;
	return 0;
    }

/*     Do Test 1 */

/*     Norm of A: */

    if (*itype == 3) {
	anorm = 1.f;
    } else {
/* Computing MAX */
	r__1 = clanhe_("1", cuplo, n, &a[a_offset], lda, &rwork[1]);
	anorm = dmax(r__1,unfl);
    }

/*     Compute error matrix: */

    if (*itype == 1) {

/*        ITYPE=1: error = A - U S U* */

	claset_("Full", n, n, &c_b1, &c_b1, &work[1], n);
	clacpy_(cuplo, n, n, &a[a_offset], lda, &work[1], n);

	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
	    r__1 = -d__[j];
	    cher_(cuplo, n, &r__1, &u[j * u_dim1 + 1], &c__1, &work[1], n);
/* L10: */
	}

	if (*n > 1 && *kband == 1) {
	    i__1 = *n - 1;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = j;
		q__2.r = e[i__2], q__2.i = 0.f;
		q__1.r = -q__2.r, q__1.i = -q__2.i;
		cher2_(cuplo, n, &q__1, &u[j * u_dim1 + 1], &c__1, &u[(j - 1) 
			* u_dim1 + 1], &c__1, &work[1], n);
/* L20: */
	    }
	}
	wnorm = clanhe_("1", cuplo, n, &work[1], n, &rwork[1]);

    } else if (*itype == 2) {

/*        ITYPE=2: error = V S V* - A */

	claset_("Full", n, n, &c_b1, &c_b1, &work[1], n);

	if (lower) {
/* Computing 2nd power */
	    i__2 = *n;
	    i__1 = i__2 * i__2;
	    i__3 = *n;
	    work[i__1].r = d__[i__3], work[i__1].i = 0.f;
	    for (j = *n - 1; j >= 1; --j) {
		if (*kband == 1) {
		    i__1 = (*n + 1) * (j - 1) + 2;
		    i__2 = j;
		    q__2.r = 1.f - tau[i__2].r, q__2.i = 0.f - tau[i__2].i;
		    i__3 = j;
		    q__1.r = e[i__3] * q__2.r, q__1.i = e[i__3] * q__2.i;
		    work[i__1].r = q__1.r, work[i__1].i = q__1.i;
		    i__1 = *n;
		    for (jr = j + 2; jr <= i__1; ++jr) {
			i__2 = (j - 1) * *n + jr;
			i__3 = j;
			q__3.r = -tau[i__3].r, q__3.i = -tau[i__3].i;
			i__4 = j;
			q__2.r = e[i__4] * q__3.r, q__2.i = e[i__4] * q__3.i;
			i__5 = jr + j * v_dim1;
			q__1.r = q__2.r * v[i__5].r - q__2.i * v[i__5].i, 
				q__1.i = q__2.r * v[i__5].i + q__2.i * v[i__5]
				.r;
			work[i__2].r = q__1.r, work[i__2].i = q__1.i;
/* L30: */
		    }
		}

		i__1 = j + 1 + j * v_dim1;
		vsave.r = v[i__1].r, vsave.i = v[i__1].i;
		i__1 = j + 1 + j * v_dim1;
		v[i__1].r = 1.f, v[i__1].i = 0.f;
		i__1 = *n - j;
/* Computing 2nd power */
		i__2 = *n;
		clarfy_("L", &i__1, &v[j + 1 + j * v_dim1], &c__1, &tau[j], &
			work[(*n + 1) * j + 1], n, &work[i__2 * i__2 + 1]);
		i__1 = j + 1 + j * v_dim1;
		v[i__1].r = vsave.r, v[i__1].i = vsave.i;
		i__1 = (*n + 1) * (j - 1) + 1;
		i__2 = j;
		work[i__1].r = d__[i__2], work[i__1].i = 0.f;
/* L40: */
	    }
	} else {
	    work[1].r = d__[1], work[1].i = 0.f;
	    i__1 = *n - 1;
	    for (j = 1; j <= i__1; ++j) {
		if (*kband == 1) {
		    i__2 = (*n + 1) * j;
		    i__3 = j;
		    q__2.r = 1.f - tau[i__3].r, q__2.i = 0.f - tau[i__3].i;
		    i__4 = j;
		    q__1.r = e[i__4] * q__2.r, q__1.i = e[i__4] * q__2.i;
		    work[i__2].r = q__1.r, work[i__2].i = q__1.i;
		    i__2 = j - 1;
		    for (jr = 1; jr <= i__2; ++jr) {
			i__3 = j * *n + jr;
			i__4 = j;
			q__3.r = -tau[i__4].r, q__3.i = -tau[i__4].i;
			i__5 = j;
			q__2.r = e[i__5] * q__3.r, q__2.i = e[i__5] * q__3.i;
			i__6 = jr + (j + 1) * v_dim1;
			q__1.r = q__2.r * v[i__6].r - q__2.i * v[i__6].i, 
				q__1.i = q__2.r * v[i__6].i + q__2.i * v[i__6]
				.r;
			work[i__3].r = q__1.r, work[i__3].i = q__1.i;
/* L50: */
		    }
		}

		i__2 = j + (j + 1) * v_dim1;
		vsave.r = v[i__2].r, vsave.i = v[i__2].i;
		i__2 = j + (j + 1) * v_dim1;
		v[i__2].r = 1.f, v[i__2].i = 0.f;
/* Computing 2nd power */
		i__2 = *n;
		clarfy_("U", &j, &v[(j + 1) * v_dim1 + 1], &c__1, &tau[j], &
			work[1], n, &work[i__2 * i__2 + 1]);
		i__2 = j + (j + 1) * v_dim1;
		v[i__2].r = vsave.r, v[i__2].i = vsave.i;
		i__2 = (*n + 1) * j + 1;
		i__3 = j + 1;
		work[i__2].r = d__[i__3], work[i__2].i = 0.f;
/* L60: */
	    }
	}

	i__1 = *n;
	for (jcol = 1; jcol <= i__1; ++jcol) {
	    if (lower) {
		i__2 = *n;
		for (jrow = jcol; jrow <= i__2; ++jrow) {
		    i__3 = jrow + *n * (jcol - 1);
		    i__4 = jrow + *n * (jcol - 1);
		    i__5 = jrow + jcol * a_dim1;
		    q__1.r = work[i__4].r - a[i__5].r, q__1.i = work[i__4].i 
			    - a[i__5].i;
		    work[i__3].r = q__1.r, work[i__3].i = q__1.i;
/* L70: */
		}
	    } else {
		i__2 = jcol;
		for (jrow = 1; jrow <= i__2; ++jrow) {
		    i__3 = jrow + *n * (jcol - 1);
		    i__4 = jrow + *n * (jcol - 1);
		    i__5 = jrow + jcol * a_dim1;
		    q__1.r = work[i__4].r - a[i__5].r, q__1.i = work[i__4].i 
			    - a[i__5].i;
		    work[i__3].r = q__1.r, work[i__3].i = q__1.i;
/* L80: */
		}
	    }
/* L90: */
	}
	wnorm = clanhe_("1", cuplo, n, &work[1], n, &rwork[1]);

    } else if (*itype == 3) {

/*        ITYPE=3: error = U V* - I */

	if (*n < 2) {
	    return 0;
	}
	clacpy_(" ", n, n, &u[u_offset], ldu, &work[1], n);
	if (lower) {
	    i__1 = *n - 1;
	    i__2 = *n - 1;
/* Computing 2nd power */
	    i__3 = *n;
	    cunm2r_("R", "C", n, &i__1, &i__2, &v[v_dim1 + 2], ldv, &tau[1], &
		    work[*n + 1], n, &work[i__3 * i__3 + 1], &iinfo);
	} else {
	    i__1 = *n - 1;
	    i__2 = *n - 1;
/* Computing 2nd power */
	    i__3 = *n;
	    cunm2l_("R", "C", n, &i__1, &i__2, &v[(v_dim1 << 1) + 1], ldv, &
		    tau[1], &work[1], n, &work[i__3 * i__3 + 1], &iinfo);
	}
	if (iinfo != 0) {
	    result[1] = 10.f / ulp;
	    return 0;
	}

	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
	    i__2 = (*n + 1) * (j - 1) + 1;
	    i__3 = (*n + 1) * (j - 1) + 1;
	    q__1.r = work[i__3].r - 1.f, q__1.i = work[i__3].i - 0.f;
	    work[i__2].r = q__1.r, work[i__2].i = q__1.i;
/* L100: */
	}

	wnorm = clange_("1", n, n, &work[1], n, &rwork[1]);
    }

    if (anorm > wnorm) {
	result[1] = wnorm / anorm / (*n * ulp);
    } else {
	if (anorm < 1.f) {
/* Computing MIN */
	    r__1 = wnorm, r__2 = *n * anorm;
	    result[1] = dmin(r__1,r__2) / anorm / (*n * ulp);
	} else {
/* Computing MIN */
	    r__1 = wnorm / anorm, r__2 = (real) (*n);
	    result[1] = dmin(r__1,r__2) / (*n * ulp);
	}
    }

/*     Do Test 2 */

/*     Compute  UU* - I */

    if (*itype == 1) {
	cgemm_("N", "C", n, n, n, &c_b2, &u[u_offset], ldu, &u[u_offset], ldu, 
		 &c_b1, &work[1], n);

	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
	    i__2 = (*n + 1) * (j - 1) + 1;
	    i__3 = (*n + 1) * (j - 1) + 1;
	    q__1.r = work[i__3].r - 1.f, q__1.i = work[i__3].i - 0.f;
	    work[i__2].r = q__1.r, work[i__2].i = q__1.i;
/* L110: */
	}

/* Computing MIN */
	r__1 = clange_("1", n, n, &work[1], n, &rwork[1]), r__2 = (
		real) (*n);
	result[2] = dmin(r__1,r__2) / (*n * ulp);
    }

    return 0;

/*     End of CHET21 */

} /* chet21_ */