/* Subroutine */ int cgeqls_(integer *m, integer *n, integer *nrhs, complex * a, integer *lda, complex *tau, complex *b, integer *ldb, complex * work, integer *lwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, i__1; /* Local variables */ /* -- LAPACK routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* Solve the least squares problem */ /* min || A*X - B || */ /* using the QL factorization */ /* A = Q*L */ /* computed by CGEQLF. */ /* Arguments */ /* ========= */ /* M (input) INTEGER */ /* The number of rows of the matrix A. M >= 0. */ /* N (input) INTEGER */ /* The number of columns of the matrix A. M >= N >= 0. */ /* NRHS (input) INTEGER */ /* The number of columns of B. NRHS >= 0. */ /* A (input) COMPLEX array, dimension (LDA,N) */ /* Details of the QL factorization of the original matrix A as */ /* returned by CGEQLF. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= M. */ /* TAU (input) COMPLEX array, dimension (N) */ /* Details of the orthogonal matrix Q. */ /* B (input/output) COMPLEX array, dimension (LDB,NRHS) */ /* On entry, the m-by-nrhs right hand side matrix B. */ /* On exit, the n-by-nrhs solution matrix X, stored in rows */ /* m-n+1:m. */ /* LDB (input) INTEGER */ /* The leading dimension of the array B. LDB >= M. */ /* WORK (workspace) COMPLEX array, dimension (LWORK) */ /* LWORK (input) INTEGER */ /* The length of the array WORK. LWORK must be at least NRHS, */ /* and should be at least NRHS*NB, where NB is the block size */ /* for this environment. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input arguments. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; --work; /* Function Body */ *info = 0; if (*m < 0) { *info = -1; } else if (*n < 0 || *n > *m) { *info = -2; } else if (*nrhs < 0) { *info = -3; } else if (*lda < max(1,*m)) { *info = -5; } else if (*ldb < max(1,*m)) { *info = -8; } else if (*lwork < 1 || *lwork < *nrhs && *m > 0 && *n > 0) { *info = -10; } if (*info != 0) { i__1 = -(*info); this_xerbla_("CGEQLS", &i__1); return 0; } /* Quick return if possible */ if (*n == 0 || *nrhs == 0 || *m == 0) { return 0; } /* B := Q' * B */ cunmql_("Left", "Conjugate transpose", m, nrhs, n, &a[a_offset], lda, & tau[1], &b[b_offset], ldb, &work[1], lwork, info); /* Solve L*X = B(m-n+1:m,:) */ ctrsm_("Left", "Lower", "No transpose", "Non-unit", n, nrhs, &c_b1, &a[*m - *n + 1 + a_dim1], lda, &b[*m - *n + 1 + b_dim1], ldb); return 0; /* End of CGEQLS */ } /* cgeqls_ */
/* Subroutine */ int cunmtr_(char *side, char *uplo, char *trans, integer *m, integer *n, complex *a, integer *lda, complex *tau, complex *c__, integer *ldc, complex *work, integer *lwork, integer *info) { /* System generated locals */ address a__1[2]; integer a_dim1, a_offset, c_dim1, c_offset, i__1[2], i__2, i__3; char ch__1[2]; /* Builtin functions */ /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen); /* Local variables */ integer i1, i2, nb, mi, ni, nq, nw; logical left; extern logical lsame_(char *, char *); integer iinfo; logical upper; extern /* Subroutine */ int xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *); extern /* Subroutine */ int cunmql_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *, integer *), cunmqr_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *, integer *); integer lwkopt; logical lquery; /* -- LAPACK routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CUNMTR overwrites the general complex M-by-N matrix C with */ /* SIDE = 'L' SIDE = 'R' */ /* TRANS = 'N': Q * C C * Q */ /* TRANS = 'C': Q**H * C C * Q**H */ /* where Q is a complex unitary matrix of order nq, with nq = m if */ /* SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of */ /* nq-1 elementary reflectors, as returned by CHETRD: */ /* if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1); */ /* if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1). */ /* Arguments */ /* ========= */ /* SIDE (input) CHARACTER*1 */ /* = 'L': apply Q or Q**H from the Left; */ /* = 'R': apply Q or Q**H from the Right. */ /* UPLO (input) CHARACTER*1 */ /* = 'U': Upper triangle of A contains elementary reflectors */ /* from CHETRD; */ /* = 'L': Lower triangle of A contains elementary reflectors */ /* from CHETRD. */ /* TRANS (input) CHARACTER*1 */ /* = 'N': No transpose, apply Q; */ /* = 'C': Conjugate transpose, apply Q**H. */ /* M (input) INTEGER */ /* The number of rows of the matrix C. M >= 0. */ /* N (input) INTEGER */ /* The number of columns of the matrix C. N >= 0. */ /* A (input) COMPLEX array, dimension */ /* (LDA,M) if SIDE = 'L' */ /* (LDA,N) if SIDE = 'R' */ /* The vectors which define the elementary reflectors, as */ /* returned by CHETRD. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. */ /* LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'. */ /* TAU (input) COMPLEX array, dimension */ /* (M-1) if SIDE = 'L' */ /* (N-1) if SIDE = 'R' */ /* TAU(i) must contain the scalar factor of the elementary */ /* reflector H(i), as returned by CHETRD. */ /* C (input/output) COMPLEX array, dimension (LDC,N) */ /* On entry, the M-by-N matrix C. */ /* On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q. */ /* LDC (input) INTEGER */ /* The leading dimension of the array C. LDC >= max(1,M). */ /* WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) */ /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* LWORK (input) INTEGER */ /* The dimension of the array WORK. */ /* If SIDE = 'L', LWORK >= max(1,N); */ /* if SIDE = 'R', LWORK >= max(1,M). */ /* For optimum performance LWORK >= N*NB if SIDE = 'L', and */ /* LWORK >=M*NB if SIDE = 'R', where NB is the optimal */ /* blocksize. */ /* If LWORK = -1, then a workspace query is assumed; the routine */ /* only calculates the optimal size of the WORK array, returns */ /* this value as the first entry of the WORK array, and no error */ /* message related to LWORK is issued by XERBLA. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* ===================================================================== */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input arguments */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; c_dim1 = *ldc; c_offset = 1 + c_dim1; c__ -= c_offset; --work; /* Function Body */ *info = 0; left = lsame_(side, "L"); upper = lsame_(uplo, "U"); lquery = *lwork == -1; /* NQ is the order of Q and NW is the minimum dimension of WORK */ if (left) { nq = *m; nw = *n; } else { nq = *n; nw = *m; } if (! left && ! lsame_(side, "R")) { *info = -1; } else if (! upper && ! lsame_(uplo, "L")) { *info = -2; } else if (! lsame_(trans, "N") && ! lsame_(trans, "C")) { *info = -3; } else if (*m < 0) { *info = -4; } else if (*n < 0) { *info = -5; } else if (*lda < max(1,nq)) { *info = -7; } else if (*ldc < max(1,*m)) { *info = -10; } else if (*lwork < max(1,nw) && ! lquery) { *info = -12; } if (*info == 0) { if (upper) { if (left) { /* Writing concatenation */ i__1[0] = 1, a__1[0] = side; i__1[1] = 1, a__1[1] = trans; s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2); i__2 = *m - 1; i__3 = *m - 1; nb = ilaenv_(&c__1, "CUNMQL", ch__1, &i__2, n, &i__3, &c_n1); } else { /* Writing concatenation */ i__1[0] = 1, a__1[0] = side; i__1[1] = 1, a__1[1] = trans; s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2); i__2 = *n - 1; i__3 = *n - 1; nb = ilaenv_(&c__1, "CUNMQL", ch__1, m, &i__2, &i__3, &c_n1); } } else { if (left) { /* Writing concatenation */ i__1[0] = 1, a__1[0] = side; i__1[1] = 1, a__1[1] = trans; s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2); i__2 = *m - 1; i__3 = *m - 1; nb = ilaenv_(&c__1, "CUNMQR", ch__1, &i__2, n, &i__3, &c_n1); } else { /* Writing concatenation */ i__1[0] = 1, a__1[0] = side; i__1[1] = 1, a__1[1] = trans; s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2); i__2 = *n - 1; i__3 = *n - 1; nb = ilaenv_(&c__1, "CUNMQR", ch__1, m, &i__2, &i__3, &c_n1); } } lwkopt = max(1,nw) * nb; work[1].r = (real) lwkopt, work[1].i = 0.f; } if (*info != 0) { i__2 = -(*info); xerbla_("CUNMTR", &i__2); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*m == 0 || *n == 0 || nq == 1) { work[1].r = 1.f, work[1].i = 0.f; return 0; } if (left) { mi = *m - 1; ni = *n; } else { mi = *m; ni = *n - 1; } if (upper) { /* Q was determined by a call to CHETRD with UPLO = 'U' */ i__2 = nq - 1; cunmql_(side, trans, &mi, &ni, &i__2, &a[(a_dim1 << 1) + 1], lda, & tau[1], &c__[c_offset], ldc, &work[1], lwork, &iinfo); } else { /* Q was determined by a call to CHETRD with UPLO = 'L' */ if (left) { i1 = 2; i2 = 1; } else { i1 = 1; i2 = 2; } i__2 = nq - 1; cunmqr_(side, trans, &mi, &ni, &i__2, &a[a_dim1 + 2], lda, &tau[1], & c__[i1 + i2 * c_dim1], ldc, &work[1], lwork, &iinfo); } work[1].r = (real) lwkopt, work[1].i = 0.f; return 0; /* End of CUNMTR */ } /* cunmtr_ */
/* Subroutine */ int cunmtr_(char *side, char *uplo, char *trans, integer *m, integer *n, complex *a, integer *lda, complex *tau, complex *c__, integer *ldc, complex *work, integer *lwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, c_dim1, c_offset, i__2, i__3; char ch__1[2]; /* Builtin functions */ /* Subroutine */ /* Local variables */ integer i1, i2, nb, mi, ni, nq, nw; logical left; extern logical lsame_(char *, char *); integer iinfo; logical upper; extern /* Subroutine */ int xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *); extern /* Subroutine */ int cunmql_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *, integer *), cunmqr_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *, integer *); integer lwkopt; logical lquery; /* -- LAPACK computational routine (version 3.4.0) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* November 2011 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input arguments */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; c_dim1 = *ldc; c_offset = 1 + c_dim1; c__ -= c_offset; --work; /* Function Body */ *info = 0; left = lsame_(side, "L"); upper = lsame_(uplo, "U"); lquery = *lwork == -1; /* NQ is the order of Q and NW is the minimum dimension of WORK */ if (left) { nq = *m; nw = *n; } else { nq = *n; nw = *m; } if (! left && ! lsame_(side, "R")) { *info = -1; } else if (! upper && ! lsame_(uplo, "L")) { *info = -2; } else if (! lsame_(trans, "N") && ! lsame_(trans, "C")) { *info = -3; } else if (*m < 0) { *info = -4; } else if (*n < 0) { *info = -5; } else if (*lda < max(1,nq)) { *info = -7; } else if (*ldc < max(1,*m)) { *info = -10; } else if (*lwork < max(1,nw) && ! lquery) { *info = -12; } if (*info == 0) { if (upper) { if (left) { i__2 = *m - 1; i__3 = *m - 1; nb = ilaenv_(&c__1, "CUNMQL", ch__1, &i__2, n, &i__3, &c_n1); } else { i__2 = *n - 1; i__3 = *n - 1; nb = ilaenv_(&c__1, "CUNMQL", ch__1, m, &i__2, &i__3, &c_n1); } } else { if (left) { i__2 = *m - 1; i__3 = *m - 1; nb = ilaenv_(&c__1, "CUNMQR", ch__1, &i__2, n, &i__3, &c_n1); } else { i__2 = *n - 1; i__3 = *n - 1; nb = ilaenv_(&c__1, "CUNMQR", ch__1, m, &i__2, &i__3, &c_n1); } } lwkopt = max(1,nw) * nb; work[1].r = (real) lwkopt; work[1].i = 0.f; // , expr subst } if (*info != 0) { i__2 = -(*info); xerbla_("CUNMTR", &i__2); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*m == 0 || *n == 0 || nq == 1) { work[1].r = 1.f; work[1].i = 0.f; // , expr subst return 0; } if (left) { mi = *m - 1; ni = *n; } else { mi = *m; ni = *n - 1; } if (upper) { /* Q was determined by a call to CHETRD with UPLO = 'U' */ i__2 = nq - 1; cunmql_(side, trans, &mi, &ni, &i__2, &a[(a_dim1 << 1) + 1], lda, & tau[1], &c__[c_offset], ldc, &work[1], lwork, &iinfo); } else { /* Q was determined by a call to CHETRD with UPLO = 'L' */ if (left) { i1 = 2; i2 = 1; } else { i1 = 1; i2 = 2; } i__2 = nq - 1; cunmqr_(side, trans, &mi, &ni, &i__2, &a[a_dim1 + 2], lda, &tau[1], & c__[i1 + i2 * c_dim1], ldc, &work[1], lwork, &iinfo); } work[1].r = (real) lwkopt; work[1].i = 0.f; // , expr subst return 0; /* End of CUNMTR */ }
/* Subroutine */ int cerrql_(char *path, integer *nunit) { /* System generated locals */ integer i__1; real r__1, r__2; complex q__1; /* Builtin functions */ integer s_wsle(cilist *), e_wsle(void); /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); /* Local variables */ complex a[4] /* was [2][2] */, b[2]; integer i__, j; complex w[2], x[2], af[4] /* was [2][2] */; integer info; extern /* Subroutine */ int cgeql2_(integer *, integer *, complex *, integer *, complex *, complex *, integer *), cung2l_(integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *), cunm2l_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *), cgeqlf_(integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *), alaesm_(char *, logical *, integer *), cgeqls_(integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *, integer *), chkxer_(char *, integer *, integer *, logical *, logical *), cungql_( integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *), cunmql_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *, integer *); /* Fortran I/O blocks */ static cilist io___1 = { 0, 0, 0, 0, 0 }; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CERRQL tests the error exits for the COMPLEX routines */ /* that use the QL decomposition of a general matrix. */ /* Arguments */ /* ========= */ /* PATH (input) CHARACTER*3 */ /* The LAPACK path name for the routines to be tested. */ /* NUNIT (input) INTEGER */ /* The unit number for output. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Scalars in Common .. */ /* .. */ /* .. Common blocks .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ infoc_1.nout = *nunit; io___1.ciunit = infoc_1.nout; s_wsle(&io___1); e_wsle(); /* Set the variables to innocuous values. */ for (j = 1; j <= 2; ++j) { for (i__ = 1; i__ <= 2; ++i__) { i__1 = i__ + (j << 1) - 3; r__1 = 1.f / (real) (i__ + j); r__2 = -1.f / (real) (i__ + j); q__1.r = r__1, q__1.i = r__2; a[i__1].r = q__1.r, a[i__1].i = q__1.i; i__1 = i__ + (j << 1) - 3; r__1 = 1.f / (real) (i__ + j); r__2 = -1.f / (real) (i__ + j); q__1.r = r__1, q__1.i = r__2; af[i__1].r = q__1.r, af[i__1].i = q__1.i; /* L10: */ } i__1 = j - 1; b[i__1].r = 0.f, b[i__1].i = 0.f; i__1 = j - 1; w[i__1].r = 0.f, w[i__1].i = 0.f; i__1 = j - 1; x[i__1].r = 0.f, x[i__1].i = 0.f; /* L20: */ } infoc_1.ok = TRUE_; /* Error exits for QL factorization */ /* CGEQLF */ s_copy(srnamc_1.srnamt, "CGEQLF", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; cgeqlf_(&c_n1, &c__0, a, &c__1, b, w, &c__1, &info); chkxer_("CGEQLF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cgeqlf_(&c__0, &c_n1, a, &c__1, b, w, &c__1, &info); chkxer_("CGEQLF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; cgeqlf_(&c__2, &c__1, a, &c__1, b, w, &c__1, &info); chkxer_("CGEQLF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; cgeqlf_(&c__1, &c__2, a, &c__1, b, w, &c__1, &info); chkxer_("CGEQLF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* CGEQL2 */ s_copy(srnamc_1.srnamt, "CGEQL2", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; cgeql2_(&c_n1, &c__0, a, &c__1, b, w, &info); chkxer_("CGEQL2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cgeql2_(&c__0, &c_n1, a, &c__1, b, w, &info); chkxer_("CGEQL2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; cgeql2_(&c__2, &c__1, a, &c__1, b, w, &info); chkxer_("CGEQL2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* CGEQLS */ s_copy(srnamc_1.srnamt, "CGEQLS", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; cgeqls_(&c_n1, &c__0, &c__0, a, &c__1, x, b, &c__1, w, &c__1, &info); chkxer_("CGEQLS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cgeqls_(&c__0, &c_n1, &c__0, a, &c__1, x, b, &c__1, w, &c__1, &info); chkxer_("CGEQLS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cgeqls_(&c__1, &c__2, &c__0, a, &c__1, x, b, &c__1, w, &c__1, &info); chkxer_("CGEQLS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; cgeqls_(&c__0, &c__0, &c_n1, a, &c__1, x, b, &c__1, w, &c__1, &info); chkxer_("CGEQLS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; cgeqls_(&c__2, &c__1, &c__0, a, &c__1, x, b, &c__2, w, &c__1, &info); chkxer_("CGEQLS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 8; cgeqls_(&c__2, &c__1, &c__0, a, &c__2, x, b, &c__1, w, &c__1, &info); chkxer_("CGEQLS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 10; cgeqls_(&c__1, &c__1, &c__2, a, &c__1, x, b, &c__1, w, &c__1, &info); chkxer_("CGEQLS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* CUNGQL */ s_copy(srnamc_1.srnamt, "CUNGQL", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; cungql_(&c_n1, &c__0, &c__0, a, &c__1, x, w, &c__1, &info); chkxer_("CUNGQL", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cungql_(&c__0, &c_n1, &c__0, a, &c__1, x, w, &c__1, &info); chkxer_("CUNGQL", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cungql_(&c__1, &c__2, &c__0, a, &c__1, x, w, &c__2, &info); chkxer_("CUNGQL", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; cungql_(&c__0, &c__0, &c_n1, a, &c__1, x, w, &c__1, &info); chkxer_("CUNGQL", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; cungql_(&c__1, &c__1, &c__2, a, &c__1, x, w, &c__1, &info); chkxer_("CUNGQL", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; cungql_(&c__2, &c__1, &c__0, a, &c__1, x, w, &c__1, &info); chkxer_("CUNGQL", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 8; cungql_(&c__2, &c__2, &c__0, a, &c__2, x, w, &c__1, &info); chkxer_("CUNGQL", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* CUNG2L */ s_copy(srnamc_1.srnamt, "CUNG2L", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; cung2l_(&c_n1, &c__0, &c__0, a, &c__1, x, w, &info); chkxer_("CUNG2L", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cung2l_(&c__0, &c_n1, &c__0, a, &c__1, x, w, &info); chkxer_("CUNG2L", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cung2l_(&c__1, &c__2, &c__0, a, &c__1, x, w, &info); chkxer_("CUNG2L", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; cung2l_(&c__0, &c__0, &c_n1, a, &c__1, x, w, &info); chkxer_("CUNG2L", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; cung2l_(&c__2, &c__1, &c__2, a, &c__2, x, w, &info); chkxer_("CUNG2L", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; cung2l_(&c__2, &c__1, &c__0, a, &c__1, x, w, &info); chkxer_("CUNG2L", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* CUNMQL */ s_copy(srnamc_1.srnamt, "CUNMQL", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; cunmql_("/", "N", &c__0, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("CUNMQL", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cunmql_("L", "/", &c__0, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("CUNMQL", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; cunmql_("L", "N", &c_n1, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("CUNMQL", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; cunmql_("L", "N", &c__0, &c_n1, &c__0, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("CUNMQL", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; cunmql_("L", "N", &c__0, &c__0, &c_n1, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("CUNMQL", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; cunmql_("L", "N", &c__0, &c__1, &c__1, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("CUNMQL", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; cunmql_("R", "N", &c__1, &c__0, &c__1, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("CUNMQL", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; cunmql_("L", "N", &c__2, &c__1, &c__0, a, &c__1, x, af, &c__2, w, &c__1, & info); chkxer_("CUNMQL", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; cunmql_("R", "N", &c__1, &c__2, &c__0, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("CUNMQL", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 10; cunmql_("L", "N", &c__2, &c__1, &c__0, a, &c__2, x, af, &c__1, w, &c__1, & info); chkxer_("CUNMQL", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 12; cunmql_("L", "N", &c__1, &c__2, &c__0, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("CUNMQL", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 12; cunmql_("R", "N", &c__2, &c__1, &c__0, a, &c__1, x, af, &c__2, w, &c__1, & info); chkxer_("CUNMQL", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* CUNM2L */ s_copy(srnamc_1.srnamt, "CUNM2L", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; cunm2l_("/", "N", &c__0, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &info); chkxer_("CUNM2L", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cunm2l_("L", "/", &c__0, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &info); chkxer_("CUNM2L", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; cunm2l_("L", "N", &c_n1, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &info); chkxer_("CUNM2L", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; cunm2l_("L", "N", &c__0, &c_n1, &c__0, a, &c__1, x, af, &c__1, w, &info); chkxer_("CUNM2L", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; cunm2l_("L", "N", &c__0, &c__0, &c_n1, a, &c__1, x, af, &c__1, w, &info); chkxer_("CUNM2L", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; cunm2l_("L", "N", &c__0, &c__1, &c__1, a, &c__1, x, af, &c__1, w, &info); chkxer_("CUNM2L", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; cunm2l_("R", "N", &c__1, &c__0, &c__1, a, &c__1, x, af, &c__1, w, &info); chkxer_("CUNM2L", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; cunm2l_("L", "N", &c__2, &c__1, &c__0, a, &c__1, x, af, &c__2, w, &info); chkxer_("CUNM2L", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; cunm2l_("R", "N", &c__1, &c__2, &c__0, a, &c__1, x, af, &c__1, w, &info); chkxer_("CUNM2L", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 10; cunm2l_("L", "N", &c__2, &c__1, &c__0, a, &c__2, x, af, &c__1, w, &info); chkxer_("CUNM2L", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* Print a summary line. */ alaesm_(path, &infoc_1.ok, &infoc_1.nout); return 0; /* End of CERRQL */ } /* cerrql_ */
/* Subroutine */ int cqlt03_(integer *m, integer *n, integer *k, complex *af, complex *c__, complex *cc, complex *q, integer *lda, complex *tau, complex *work, integer *lwork, real *rwork, real *result) { /* Initialized data */ static integer iseed[4] = { 1988,1989,1990,1991 }; /* System generated locals */ integer af_dim1, af_offset, c_dim1, c_offset, cc_dim1, cc_offset, q_dim1, q_offset, i__1, i__2; /* Local variables */ integer j, mc, nc; real eps; char side[1]; integer info; integer iside; real resid; integer minmn; real cnorm; char trans[1]; integer itrans; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CQLT03 tests CUNMQL, which computes Q*C, Q'*C, C*Q or C*Q'. */ /* CQLT03 compares the results of a call to CUNMQL with the results of */ /* forming Q explicitly by a call to CUNGQL and then performing matrix */ /* multiplication by a call to CGEMM. */ /* Arguments */ /* ========= */ /* M (input) INTEGER */ /* The order of the orthogonal matrix Q. M >= 0. */ /* N (input) INTEGER */ /* The number of rows or columns of the matrix C; C is m-by-n if */ /* Q is applied from the left, or n-by-m if Q is applied from */ /* the right. N >= 0. */ /* K (input) INTEGER */ /* The number of elementary reflectors whose product defines the */ /* orthogonal matrix Q. M >= K >= 0. */ /* AF (input) COMPLEX array, dimension (LDA,N) */ /* Details of the QL factorization of an m-by-n matrix, as */ /* returned by CGEQLF. See CGEQLF for further details. */ /* C (workspace) COMPLEX array, dimension (LDA,N) */ /* CC (workspace) COMPLEX array, dimension (LDA,N) */ /* Q (workspace) COMPLEX array, dimension (LDA,M) */ /* LDA (input) INTEGER */ /* The leading dimension of the arrays AF, C, CC, and Q. */ /* TAU (input) COMPLEX array, dimension (min(M,N)) */ /* The scalar factors of the elementary reflectors corresponding */ /* to the QL factorization in AF. */ /* WORK (workspace) COMPLEX array, dimension (LWORK) */ /* LWORK (input) INTEGER */ /* The length of WORK. LWORK must be at least M, and should be */ /* M*NB, where NB is the blocksize for this environment. */ /* RWORK (workspace) REAL array, dimension (M) */ /* RESULT (output) REAL array, dimension (4) */ /* The test ratios compare two techniques for multiplying a */ /* random matrix C by an m-by-m orthogonal matrix Q. */ /* RESULT(1) = norm( Q*C - Q*C ) / ( M * norm(C) * EPS ) */ /* RESULT(2) = norm( C*Q - C*Q ) / ( M * norm(C) * EPS ) */ /* RESULT(3) = norm( Q'*C - Q'*C )/ ( M * norm(C) * EPS ) */ /* RESULT(4) = norm( C*Q' - C*Q' )/ ( M * norm(C) * EPS ) */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Scalars in Common .. */ /* .. */ /* .. Common blocks .. */ /* .. */ /* .. Data statements .. */ /* Parameter adjustments */ q_dim1 = *lda; q_offset = 1 + q_dim1; q -= q_offset; cc_dim1 = *lda; cc_offset = 1 + cc_dim1; cc -= cc_offset; c_dim1 = *lda; c_offset = 1 + c_dim1; c__ -= c_offset; af_dim1 = *lda; af_offset = 1 + af_dim1; af -= af_offset; --tau; --work; --rwork; --result; /* Function Body */ /* .. */ /* .. Executable Statements .. */ eps = slamch_("Epsilon"); minmn = min(*m,*n); /* Quick return if possible */ if (minmn == 0) { result[1] = 0.f; result[2] = 0.f; result[3] = 0.f; result[4] = 0.f; return 0; } /* Copy the last k columns of the factorization to the array Q */ claset_("Full", m, m, &c_b1, &c_b1, &q[q_offset], lda); if (*k > 0 && *m > *k) { i__1 = *m - *k; clacpy_("Full", &i__1, k, &af[(*n - *k + 1) * af_dim1 + 1], lda, &q[(* m - *k + 1) * q_dim1 + 1], lda); } if (*k > 1) { i__1 = *k - 1; i__2 = *k - 1; clacpy_("Upper", &i__1, &i__2, &af[*m - *k + 1 + (*n - *k + 2) * af_dim1], lda, &q[*m - *k + 1 + (*m - *k + 2) * q_dim1], lda); } /* Generate the m-by-m matrix Q */ s_copy(srnamc_1.srnamt, "CUNGQL", (ftnlen)32, (ftnlen)6); cungql_(m, m, k, &q[q_offset], lda, &tau[minmn - *k + 1], &work[1], lwork, &info); for (iside = 1; iside <= 2; ++iside) { if (iside == 1) { *(unsigned char *)side = 'L'; mc = *m; nc = *n; } else { *(unsigned char *)side = 'R'; mc = *n; nc = *m; } /* Generate MC by NC matrix C */ i__1 = nc; for (j = 1; j <= i__1; ++j) { clarnv_(&c__2, iseed, &mc, &c__[j * c_dim1 + 1]); /* L10: */ } cnorm = clange_("1", &mc, &nc, &c__[c_offset], lda, &rwork[1]); if (cnorm == 0.f) { cnorm = 1.f; } for (itrans = 1; itrans <= 2; ++itrans) { if (itrans == 1) { *(unsigned char *)trans = 'N'; } else { *(unsigned char *)trans = 'C'; } /* Copy C */ clacpy_("Full", &mc, &nc, &c__[c_offset], lda, &cc[cc_offset], lda); /* Apply Q or Q' to C */ s_copy(srnamc_1.srnamt, "CUNMQL", (ftnlen)32, (ftnlen)6); if (*k > 0) { cunmql_(side, trans, &mc, &nc, k, &af[(*n - *k + 1) * af_dim1 + 1], lda, &tau[minmn - *k + 1], &cc[cc_offset], lda, &work[1], lwork, &info); } /* Form explicit product and subtract */ if (lsame_(side, "L")) { cgemm_(trans, "No transpose", &mc, &nc, &mc, &c_b21, &q[ q_offset], lda, &c__[c_offset], lda, &c_b22, &cc[ cc_offset], lda); } else { cgemm_("No transpose", trans, &mc, &nc, &nc, &c_b21, &c__[ c_offset], lda, &q[q_offset], lda, &c_b22, &cc[ cc_offset], lda); } /* Compute error in the difference */ resid = clange_("1", &mc, &nc, &cc[cc_offset], lda, &rwork[1]); result[(iside - 1 << 1) + itrans] = resid / ((real) max(1,*m) * cnorm * eps); /* L20: */ } /* L30: */ } return 0; /* End of CQLT03 */ } /* cqlt03_ */