Exemplo n.º 1
0
void
dxJointUniversal::computeInitialRelativeRotations()
{
    if ( node[0].body )
    {
        dVector3 ax1, ax2;
        dMatrix3 R;
        dQuaternion qcross;

        getAxes( ax1, ax2 );

        // Axis 1.
        dRFrom2Axes( R, ax1[0], ax1[1], ax1[2], ax2[0], ax2[1], ax2[2] );
        dRtoQ( R, qcross );
        dQMultiply1( qrel1, node[0].body->q, qcross );

        // Axis 2.
        dRFrom2Axes( R, ax2[0], ax2[1], ax2[2], ax1[0], ax1[1], ax1[2] );
        dRtoQ( R, qcross );
        if ( node[1].body )
        {
            dQMultiply1( qrel2, node[1].body->q, qcross );
        }
        else
        {
            // set joint->qrel to qcross
            for ( int i = 0; i < 4; i++ ) qrel2[i] = qcross[i];
        }
    }
}
Exemplo n.º 2
0
void setFixedOrientation( dxJoint *joint, dxJoint::Info2 *info, dQuaternion qrel, int start_row )
{
    int s = info->rowskip;
    int start_index = start_row * s;

    // 3 rows to make body rotations equal
    info->J1a[start_index] = 1;
    info->J1a[start_index + s + 1] = 1;
    info->J1a[start_index + s*2+2] = 1;
    if ( joint->node[1].body )
    {
        info->J2a[start_index] = -1;
        info->J2a[start_index + s+1] = -1;
        info->J2a[start_index + s*2+2] = -1;
    }

    // compute the right hand side. the first three elements will result in
    // relative angular velocity of the two bodies - this is set to bring them
    // back into alignment. the correcting angular velocity is
    //   |angular_velocity| = angle/time = erp*theta / stepsize
    //                      = (erp*fps) * theta
    //    angular_velocity  = |angular_velocity| * u
    //                      = (erp*fps) * theta * u
    // where rotation along unit length axis u by theta brings body 2's frame
    // to qrel with respect to body 1's frame. using a small angle approximation
    // for sin(), this gives
    //    angular_velocity  = (erp*fps) * 2 * v
    // where the quaternion of the relative rotation between the two bodies is
    //    q = [cos(theta/2) sin(theta/2)*u] = [s v]

    // get qerr = relative rotation (rotation error) between two bodies
    dQuaternion qerr, e;
    if ( joint->node[1].body )
    {
        dQuaternion qq;
        dQMultiply1( qq, joint->node[0].body->q, joint->node[1].body->q );
        dQMultiply2( qerr, qq, qrel );
    }
    else
    {
        dQMultiply3( qerr, joint->node[0].body->q, qrel );
    }
    if ( qerr[0] < 0 )
    {
        qerr[1] = -qerr[1];  // adjust sign of qerr to make theta small
        qerr[2] = -qerr[2];
        qerr[3] = -qerr[3];
    }
    dMultiply0_331( e, joint->node[0].body->posr.R, qerr + 1 );  // @@@ bad SIMD padding!
    dReal k = info->fps * info->erp;
    info->c[start_row] = 2 * k * e[0];
    info->c[start_row+1] = 2 * k * e[1];
    info->c[start_row+2] = 2 * k * e[2];
}
Exemplo n.º 3
0
dReal
dxJointUniversal::getAngle2()
{
    if ( node[0].body )
    {
        // length 1 joint axis in global coordinates, from each body
        dVector3 ax1, ax2;
        dMatrix3 R;
        dQuaternion qcross, qq, qrel;

        getAxes( ax1, ax2 );

        // It should be possible to get both angles without explicitly
        // constructing the rotation matrix of the cross.  Basically,
        // orientation of the cross about axis1 comes from body 2,
        // about axis 2 comes from body 1, and the perpendicular
        // axis can come from the two bodies somehow.  (We don't really
        // want to assume it's 90 degrees, because in general the
        // constraints won't be perfectly satisfied, or even very well
        // satisfied.)
        //
        // However, we'd need a version of getHingeAngleFromRElativeQuat()
        // that CAN handle when its relative quat is rotated along a direction
        // other than the given axis.  What I have here works,
        // although it's probably much slower than need be.

        dRFrom2Axes( R, ax2[0], ax2[1], ax2[2], ax1[0], ax1[1], ax1[2] );
        dRtoQ( R, qcross );

        if ( node[1].body )
        {
            dQMultiply1( qq, node[1].body->q, qcross );
            dQMultiply2( qrel, qq, qrel2 );
        }
        else
        {
            // pretend joint->node[1].body->q is the identity
            dQMultiply2( qrel, qcross, qrel2 );
        }

        return - getHingeAngleFromRelativeQuat( qrel, axis2 );
    }
    return 0;
}
Exemplo n.º 4
0
/// Compute initial relative rotation body1 -> body2, or env -> body1
void
dxJointScrew::computeInitialRelativeRotation()
{
    if ( node[0].body )
    {
        if ( node[1].body )
        {
            dQMultiply1( qrel, node[0].body->q, node[1].body->q );
        }
        else
        {
            // set qrel to the transpose of the first body q
            qrel[0] =  node[0].body->q[0];
            qrel[1] = -node[0].body->q[1];
            qrel[2] = -node[0].body->q[2];
            qrel[3] = -node[0].body->q[3];
        }
    }
}
Exemplo n.º 5
0
dReal getHingeAngle( dxBody *body1, dxBody *body2, dVector3 axis,
                     dQuaternion q_initial )
{
    // get qrel = relative rotation between the two bodies
    dQuaternion qrel;
    if ( body2 )
    {
        dQuaternion qq;
        dQMultiply1( qq, body1->q, body2->q );
        dQMultiply2( qrel, qq, q_initial );
    }
    else
    {
        // pretend body2->q is the identity
        dQMultiply3( qrel, body1->q, q_initial );
    }

    return getHingeAngleFromRelativeQuat( qrel, axis );
}
Exemplo n.º 6
0
// compute initial relative rotation body1 -> body2, or env -> body1
void
dxJointPR::computeInitialRelativeRotation()
{
    if ( node[0].body )
    {
        if ( node[1].body )
        {
            dQMultiply1( qrel, node[0].body->q, node[1].body->q );
        }
        else
        {
            // set joint->qrel to the transpose of the first body q
            qrel[0] = node[0].body->q[0];
            for ( int i = 1; i < 4; i++ )
                qrel[i] = -node[0].body->q[i];
            // WARNING do we need the - in -joint->node[0].body->q[i]; or not
        }
    }
}
Exemplo n.º 7
0
void testQuaternionMultiply()
{
  HEADER;
  dMatrix3 RA,RB,RC,Rtest;
  dQuaternion qa,qb,qc;
  dReal diff,maxdiff=0;

  for (int i=0; i<100; i++) {
    makeRandomRotation (RB);
    makeRandomRotation (RC);
    dRtoQ (RB,qb);
    dRtoQ (RC,qc);

    dMultiply0 (RA,RB,RC,3,3,3);
    dQMultiply0 (qa,qb,qc);
    dQtoR (qa,Rtest);
    diff = dMaxDifference (Rtest,RA,3,3);
    if (diff > maxdiff) maxdiff = diff;

    dMultiply1 (RA,RB,RC,3,3,3);
    dQMultiply1 (qa,qb,qc);
    dQtoR (qa,Rtest);
    diff = dMaxDifference (Rtest,RA,3,3);
    if (diff > maxdiff) maxdiff = diff;

    dMultiply2 (RA,RB,RC,3,3,3);
    dQMultiply2 (qa,qb,qc);
    dQtoR (qa,Rtest);
    diff = dMaxDifference (Rtest,RA,3,3);
    if (diff > maxdiff) maxdiff = diff;

    dMultiply0 (RA,RC,RB,3,3,3);
    transpose3x3 (RA);
    dQMultiply3 (qa,qb,qc);
    dQtoR (qa,Rtest);
    diff = dMaxDifference (Rtest,RA,3,3);
    if (diff > maxdiff) maxdiff = diff;
  }
  printf ("\tmaximum difference = %e - %s\n",maxdiff,
	  (maxdiff > tol) ? "FAILED" : "passed");
}
Exemplo n.º 8
0
/// Compute initial relative rotation body1 -> body2, or env -> body1
void
dxJointSlider::computeInitialRelativeRotation()
{
    if ( node[0].body )
    {
        // compute initial relative rotation body1 -> body2, or env -> body1
        // also compute center of body1 w.r.t body 2
        if ( node[1].body )
        {
            dQMultiply1 ( qrel, node[0].body->q, node[1].body->q );
        }
        else
        {
            // set qrel to the transpose of the first body's q
            qrel[0] =  node[0].body->q[0];
            qrel[1] = -node[0].body->q[1];
            qrel[2] = -node[0].body->q[2];
            qrel[3] = -node[0].body->q[3];
        }
    }
}
Exemplo n.º 9
0
ManNiiPosture OculusDK2DeviceManager::convertQuaternion2ManNiiPosture(const SigCmn::Vector4 &quaternion)
{
    ManNiiPosture posture;

    dQuaternion tmpQ1;
    tmpQ1[0] = +quaternion.w;
    tmpQ1[1] = -quaternion.x;
    tmpQ1[2] = +quaternion.y;
    tmpQ1[3] = -quaternion.z;

    dQuaternion tmpQ2;

    //dQuaternion defaultQ = this->defaultHeadJointQuaternion;
    dQMultiply1(tmpQ2, defaultHeadJoint0Quaternion, tmpQ1);

    Quaternion tmpQ3(tmpQ2[0], tmpQ2[1], tmpQ2[2], tmpQ2[3]);

    posture.joint[ManNiiPosture::HEAD_JOINT0].jointType  = ManNiiPosture::HEAD_JOINT0;
    posture.joint[ManNiiPosture::HEAD_JOINT0].quaternion = tmpQ3;

    return posture;
}
Exemplo n.º 10
0
void dJointSetGearboxReferenceBody2( dJointID j, dBodyID b )
{
    dxJointGearbox* joint = dynamic_cast<dxJointGearbox*>(j);
    dUASSERT( joint, "bad joint argument" );
    dUASSERT( b, "bad body argument" );

    joint->refBody2 = b;

    if ( joint->node[1].body )
    {
      if ( b )
        dQMultiply1( joint->qrel2, joint->refBody2->q, joint->node[1].body->q );
      else
      {
        // set qrel1 to the transpose of the first body q
        joint->qrel2[0] = joint->node[1].body->q[0];
        joint->qrel2[1] = joint->node[1].body->q[1];
        joint->qrel2[2] = joint->node[1].body->q[2];
        joint->qrel2[3] = joint->node[1].body->q[3];
      }
    }
    else
    {
      if ( b )
      {
        // set qrel2 to the transpose of the second body q
        joint->qrel2[0] =   joint->refBody2->q[0];
        joint->qrel2[1] = - joint->refBody2->q[1];
        joint->qrel2[2] = - joint->refBody2->q[2];
        joint->qrel2[3] = - joint->refBody2->q[3];
      }
      else
      {
        // both refBody2 and node[1].body are null, nothing happens
      }
    }
}
Exemplo n.º 11
0
// simulation loop
static void simLoop (int pause)
{
  static bool todo = false;
  if ( todo ) { // DEBUG
    static int cnt = 0;
    ++cnt;

    if (cnt == 5)
      command ( 'q' );
    if (cnt == 10)
      dsStop();
  }




  if (!pause) {
    double simstep = 0.01; // 10ms simulation steps
    double dt = dsElapsedTime();

    int nrofsteps = (int) ceilf (dt/simstep);
    if (!nrofsteps)
      nrofsteps = 1;

    for (int i=0; i<nrofsteps && !pause; i++) {
      dSpaceCollide (space,0,&nearCallback);
      dWorldStep (world, simstep);

      dJointGroupEmpty (contactgroup);
    }

    update();


    dReal radius, length;

    dsSetTexture (DS_WOOD);

    drawBox (geom[W], 1,1,0);


    drawBox (geom[EXT], 0,1,0);

    dVector3 anchorPos;



    dReal ang1 = 0;
    dReal ang2 = 0;
    dVector3 axisP, axisR1, axisR2;

    if ( dJointTypePU == type ) {
      dPUJoint *pu = dynamic_cast<dPUJoint *> (joint);
      ang1 = pu->getAngle1();
      ang2 = pu->getAngle2();
      pu->getAxis1 (axisR1);
      pu->getAxis2 (axisR2);
      pu->getAxisP (axisP);

      dJointGetPUAnchor (pu->id(), anchorPos);
    }
    else if ( dJointTypePR == type ) {
      dPRJoint *pr = dynamic_cast<dPRJoint *> (joint);
      pr->getAxis1 (axisP);
      pr->getAxis2 (axisR1);

      dJointGetPRAnchor (pr->id(), anchorPos);
    }


    // Draw the axisR
    if ( geom[INT] ) {
      dsSetColor (1,0,1);
      dVector3 l;
      dGeomBoxGetLengths (geom[INT], l);

      const dReal *rotBox = dGeomGetRotation (geom[W]);

      dVector3 pos;
      for (int i=0; i<3; ++i)
        pos[i] = anchorPos[i] - 0.5*extDim[Z]*axisP[i];
      dsDrawBox (pos, rotBox, l);
    }

    dsSetTexture (DS_CHECKERED);
    if ( geom[AXIS1] ) {
      dQuaternion q, qAng;
      dQFromAxisAndAngle (qAng,axisR1[X], axisR1[Y], axisR1[Z], ang1);
      dGeomGetQuaternion (geom[AXIS1], q);

      dQuaternion qq;
      dQMultiply1 (qq, qAng, q);
      dMatrix3 R;
      dQtoR (qq,R);


      dGeomCylinderGetParams (dGeomTransformGetGeom (geom[AXIS1]), &radius, &length);
      dsSetColor (1,0,0);
      dsDrawCylinder (anchorPos, R, length, radius);
    }

    if ( dJointTypePU == type && geom[AXIS2] ) {
      //dPUJoint *pu = dynamic_cast<dPUJoint *> (joint);

      dQuaternion q, qAng, qq, qq1;
      dGeomGetQuaternion (geom[AXIS2], q);

      dQFromAxisAndAngle (qAng, 0, 1, 0, ang2);
      dQMultiply1 (qq, qAng, q);


      dQFromAxisAndAngle (qAng,axisR1[X], axisR1[Y], axisR1[Z], ang1);

      dQMultiply1 (qq1, qAng, qq);


      dMatrix3 R;
      dQtoR (qq1,R);


      dGeomCylinderGetParams (dGeomTransformGetGeom (geom[AXIS2]), &radius, &length);
      dsSetColor (0,0,1);
      dsDrawCylinder (anchorPos, R, length, radius);
    }

    dsSetTexture (DS_WOOD);

    // Draw the anchor
    if ( geom[ANCHOR] ) {
      dsSetColor (1,1,1);
      dVector3 l;
      dGeomBoxGetLengths (geom[ANCHOR], l);

      const dReal *rotBox = dGeomGetRotation (geom[D]);
      const dReal *posBox = dGeomGetPosition (geom[D]);

      dVector3 e;
      for (int i=0; i<3; ++i)
        e[i] = posBox[i] - anchorPos[i];
      dNormalize3 (e);

      dVector3 pos;
      for (int i=0; i<3; ++i)
        pos[i] = anchorPos[i] + 0.5 * l[Z]*e[i];
      dsDrawBox (pos, rotBox, l);
    }

    drawBox (geom[D], 1,1,0);
  }
}
Exemplo n.º 12
0
void
dxJointUniversal::getAngles( dReal *angle1, dReal *angle2 )
{
    if ( node[0].body )
    {
        // length 1 joint axis in global coordinates, from each body
        dVector3 ax1, ax2;
        dMatrix3 R;
        dQuaternion qcross, qq, qrel;

        getAxes( ax1, ax2 );

        // It should be possible to get both angles without explicitly
        // constructing the rotation matrix of the cross.  Basically,
        // orientation of the cross about axis1 comes from body 2,
        // about axis 2 comes from body 1, and the perpendicular
        // axis can come from the two bodies somehow.  (We don't really
        // want to assume it's 90 degrees, because in general the
        // constraints won't be perfectly satisfied, or even very well
        // satisfied.)
        //
        // However, we'd need a version of getHingeAngleFromRElativeQuat()
        // that CAN handle when its relative quat is rotated along a direction
        // other than the given axis.  What I have here works,
        // although it's probably much slower than need be.

        dRFrom2Axes( R, ax1[0], ax1[1], ax1[2], ax2[0], ax2[1], ax2[2] );

        dRtoQ( R, qcross );


        // This code is essentialy the same as getHingeAngle(), see the comments
        // there for details.

        // get qrel = relative rotation between node[0] and the cross
        dQMultiply1( qq, node[0].body->q, qcross );
        dQMultiply2( qrel, qq, qrel1 );

        *angle1 = getHingeAngleFromRelativeQuat( qrel, axis1 );

        // This is equivalent to
        // dRFrom2Axes(R, ax2[0], ax2[1], ax2[2], ax1[0], ax1[1], ax1[2]);
        // You see that the R is constructed from the same 2 axis as for angle1
        // but the first and second axis are swapped.
        // So we can take the first R and rapply a rotation to it.
        // The rotation is around the axis between the 2 axes (ax1 and ax2).
        // We do a rotation of 180deg.

        dQuaternion qcross2;
        // Find the vector between ax1 and ax2 (i.e. in the middle)
        // We need to turn around this vector by 180deg

        // The 2 axes should be normalize so to find the vector between the 2.
        // Add and devide by 2 then normalize or simply normalize
        //    ax2
        //    ^
        //    |
        //    |
        ///   *------------> ax1
        //    We want the vector a 45deg
        //
        // N.B. We don't need to normalize the ax1 and ax2 since there are
        //      normalized when we set them.

        // We set the quaternion q = [cos(theta), dir*sin(theta)] = [w, x, y, Z]
        qrel[0] = 0;                // equivalent to cos(Pi/2)
        qrel[1] = ax1[0] + ax2[0];  // equivalent to x*sin(Pi/2); since sin(Pi/2) = 1
        qrel[2] = ax1[1] + ax2[1];
        qrel[3] = ax1[2] + ax2[2];

        dReal l = dRecip( sqrt( qrel[1] * qrel[1] + qrel[2] * qrel[2] + qrel[3] * qrel[3] ) );
        qrel[1] *= l;
        qrel[2] *= l;
        qrel[3] *= l;

        dQMultiply0( qcross2, qrel, qcross );

        if ( node[1].body )
        {
            dQMultiply1( qq, node[1].body->q, qcross2 );
            dQMultiply2( qrel, qq, qrel2 );
        }
        else
        {
            // pretend joint->node[1].body->q is the identity
            dQMultiply2( qrel, qcross2, qrel2 );
        }

        *angle2 = - getHingeAngleFromRelativeQuat( qrel, axis2 );
    }
    else
    {
        *angle1 = 0;
        *angle2 = 0;
    }
}
Exemplo n.º 13
0
void dJointSetUniversalAxis2Offset( dJointID j, dReal x, dReal y, dReal z,
                                   dReal offset1, dReal offset2 )
{
    dxJointUniversal* joint = ( dxJointUniversal* )j;
    dUASSERT( joint, "bad joint argument" );
    checktype( joint, Universal );

    if ( joint->flags & dJOINT_REVERSE )
    {
        setAxes( joint, x, y, z, joint->axis1, NULL );
        offset1 = -offset2;
        offset2 = -offset1;
    }
    else
        setAxes( joint, x, y, z, NULL, joint->axis2 );


    joint->computeInitialRelativeRotations();

    // It is easier to retreive the 2 axes here since
    // when there is only one body B2 (the axes switch position)
    // Doing this way eliminate the need to write the code differently
    // for both case.
    dVector3 ax1, ax2;
    joint->getAxes(ax1, ax2 );



    dQuaternion qAngle;
    dQFromAxisAndAngle(qAngle, ax1[0], ax1[1], ax1[2], offset1);

    dMatrix3 R;
    dRFrom2Axes( R, ax1[0], ax1[1], ax1[2], ax2[0], ax2[1], ax2[2]);

    dQuaternion qcross;
    dRtoQ( R, qcross );

    dQuaternion qOffset;
    dQMultiply0(qOffset, qAngle, qcross);



    dQMultiply1( joint->qrel1, joint->node[0].body->q, qOffset );


    // Calculating the second offset
    dQFromAxisAndAngle(qAngle, ax2[0], ax2[1], ax2[2], offset2);

    dRFrom2Axes( R, ax2[0], ax2[1], ax2[2], ax1[0], ax1[1], ax1[2]);
    dRtoQ( R, qcross );

    dQMultiply1(qOffset, qAngle, qcross);
    if ( joint->node[1].body )
    {
        dQMultiply1( joint->qrel2, joint->node[1].body->q, qOffset );
    }
    else
    {
        joint->qrel2[0] = qcross[0];
        joint->qrel2[1] = qcross[1];
        joint->qrel2[2] = qcross[2];
        joint->qrel2[3] = qcross[3];
    }
}
Exemplo n.º 14
0
void dJointSetUniversalAxis1Offset( dJointID j, dReal x, dReal y, dReal z,
                                   dReal offset1, dReal offset2 )
{
    dxJointUniversal* joint = ( dxJointUniversal* )j;
    dUASSERT( joint, "bad joint argument" );
    checktype( joint, Universal );
    if ( joint->flags & dJOINT_REVERSE )
    {
        setAxes( joint, x, y, z, NULL, joint->axis2 );
        offset1 = -offset1;
        offset2 = -offset2;
    }
    else
        setAxes( joint, x, y, z, joint->axis1, NULL );

    joint->computeInitialRelativeRotations();


    dVector3 ax2;
    getAxis2( joint, ax2, joint->axis2 );

    {
        dVector3 ax1;
        joint->getAxes(ax1, ax2);
    }



    dQuaternion qAngle;
    dQFromAxisAndAngle(qAngle, x, y, z, offset1);

    dMatrix3 R;
    dRFrom2Axes( R, x, y, z, ax2[0], ax2[1], ax2[2] );

    dQuaternion qcross;
    dRtoQ( R, qcross );

    dQuaternion qOffset;
    dQMultiply0(qOffset, qAngle, qcross);

    dQMultiply1( joint->qrel1, joint->node[0].body->q, qOffset );

    // Calculating the second offset
    dQFromAxisAndAngle(qAngle, ax2[0], ax2[1], ax2[2], offset2);

    dRFrom2Axes( R, ax2[0], ax2[1], ax2[2], x, y, z );
    dRtoQ( R, qcross );

    dQMultiply1(qOffset, qAngle, qcross);
    if ( joint->node[1].body )
    {
        dQMultiply1( joint->qrel2, joint->node[1].body->q, qOffset );
    }
    else
    {
        joint->qrel2[0] = qcross[0];
        joint->qrel2[1] = qcross[1];
        joint->qrel2[2] = qcross[2];
        joint->qrel2[3] = qcross[3];
    }
}