int dCollideCylinderPlane(dxGeom *Cylinder, dxGeom *Plane, int flags, dContactGeom *contact, int skip)
{
	dIASSERT (skip >= (int)sizeof(dContactGeom));
	dIASSERT (Cylinder->type == dCylinderClass);
	dIASSERT (Plane->type == dPlaneClass);
	dIASSERT ((flags & NUMC_MASK) >= 1);

	int GeomCount = 0; // count of used contactgeoms

#ifdef dSINGLE
	const dReal toleranz = REAL(0.0001);
#endif
#ifdef dDOUBLE
	const dReal toleranz = REAL(0.0000001);
#endif

	// Get the properties of the cylinder (length+radius)
	dReal radius, length;
	dGeomCylinderGetParams(Cylinder, &radius, &length);
	dVector3 &cylpos = Cylinder->final_posr->pos;
	// and the plane
	dVector4 planevec;
	dGeomPlaneGetParams(Plane, planevec);
	dVector3 PlaneNormal = {planevec[0],planevec[1],planevec[2]};
	dVector3 PlanePos = {planevec[0] * planevec[3],planevec[1] * planevec[3],planevec[2] * planevec[3]};

	dVector3 G1Pos1, G1Pos2, vDir1;
	vDir1[0] = Cylinder->final_posr->R[2];
	vDir1[1] = Cylinder->final_posr->R[6];
	vDir1[2] = Cylinder->final_posr->R[10];

	dReal s;
	s = length * REAL(0.5);
	G1Pos2[0] = vDir1[0] * s + cylpos[0];
	G1Pos2[1] = vDir1[1] * s + cylpos[1];
	G1Pos2[2] = vDir1[2] * s + cylpos[2];

	G1Pos1[0] = vDir1[0] * -s + cylpos[0];
	G1Pos1[1] = vDir1[1] * -s + cylpos[1];
	G1Pos1[2] = vDir1[2] * -s + cylpos[2];

	dVector3 C;

	// parallel-check
	s = vDir1[0] * PlaneNormal[0] + vDir1[1] * PlaneNormal[1] + vDir1[2] * PlaneNormal[2];
	if(s < 0)
		s += REAL(1.0); // is ca. 0, if vDir1 and PlaneNormal are parallel
	else
		s -= REAL(1.0); // is ca. 0, if vDir1 and PlaneNormal are parallel
	if(s < toleranz && s > (-toleranz))
	{
		// discs are parallel to the plane

		// 1.compute if, and where contacts are
		dVector3 P;
		s = planevec[3] - dVector3Dot(planevec, G1Pos1);
		dReal t;
		t = planevec[3] - dVector3Dot(planevec, G1Pos2);
		if(s >= t) // s == t does never happen, 
		{
			if(s >= 0)
			{
				// 1. Disc
				dVector3Copy(G1Pos1, P);
			}
			else
				return GeomCount; // no contacts
		}
		else
		{
			if(t >= 0)
			{
				// 2. Disc
				dVector3Copy(G1Pos2, P);
			}
			else
				return GeomCount; // no contacts
		}

		// 2. generate a coordinate-system on the disc
		dVector3 V1, V2;
		if(vDir1[0] < toleranz && vDir1[0] > (-toleranz))
		{
			// not x-axis
			V1[0] = vDir1[0] + REAL(1.0); // random value
			V1[1] = vDir1[1];
			V1[2] = vDir1[2];
		}
		else
		{
			// maybe x-axis
			V1[0] = vDir1[0];
			V1[1] = vDir1[1] + REAL(1.0); // random value
			V1[2] = vDir1[2];
		}
		// V1 is now another direction than vDir1
		// Cross-product
	    dVector3Cross(V1, vDir1, V2);
		// make unit V2
		t = dVector3Length(V2);
		t = radius / t;
		dVector3Scale(V2, t);
		// cross again
		dVector3Cross(V2, vDir1, V1);
		// |V2| is 'radius' and vDir1 unit, so |V1| is 'radius'
		// V1 = first axis
		// V2 = second axis

		// 3. generate contactpoints

		// Potential contact 1
		dVector3Add(P, V1, contact->pos);
		contact->depth = planevec[3] - dVector3Dot(planevec, contact->pos);
		if(contact->depth > 0)
		{
			dVector3Copy(PlaneNormal, contact->normal);
			contact->g1 = Cylinder;
			contact->g2 = Plane;
			GeomCount++;
			if( GeomCount >= (flags & NUMC_MASK))
				return GeomCount; // enough contactgeoms
			contact = (dContactGeom *)((char *)contact + skip);
		}

		// Potential contact 2
		dVector3Subtract(P, V1, contact->pos);
		contact->depth = planevec[3] - dVector3Dot(planevec, contact->pos);
		if(contact->depth > 0)
		{
			dVector3Copy(PlaneNormal, contact->normal);
			contact->g1 = Cylinder;
			contact->g2 = Plane;
			GeomCount++;
			if( GeomCount >= (flags & NUMC_MASK))
				return GeomCount; // enough contactgeoms
			contact = (dContactGeom *)((char *)contact + skip);
		}

		// Potential contact 3
		dVector3Add(P, V2, contact->pos);
		contact->depth = planevec[3] - dVector3Dot(planevec, contact->pos);
		if(contact->depth > 0)
		{
			dVector3Copy(PlaneNormal, contact->normal);
			contact->g1 = Cylinder;
			contact->g2 = Plane;
			GeomCount++;
			if( GeomCount >= (flags & NUMC_MASK))
				return GeomCount; // enough contactgeoms
			contact = (dContactGeom *)((char *)contact + skip);
		}

		// Potential contact 4
		dVector3Subtract(P, V2, contact->pos);
		contact->depth = planevec[3] - dVector3Dot(planevec, contact->pos);
		if(contact->depth > 0)
		{
			dVector3Copy(PlaneNormal, contact->normal);
			contact->g1 = Cylinder;
			contact->g2 = Plane;
			GeomCount++;
			if( GeomCount >= (flags & NUMC_MASK))
				return GeomCount; // enough contactgeoms
			contact = (dContactGeom *)((char *)contact + skip);
		}
	}
	else
	{
		dReal t = dVector3Dot(PlaneNormal, vDir1);
		C[0] = vDir1[0] * t - PlaneNormal[0];
		C[1] = vDir1[1] * t - PlaneNormal[1];
		C[2] = vDir1[2] * t - PlaneNormal[2];
		s = dVector3Length(C);
		// move C onto the circle
		s = radius / s;
		dVector3Scale(C, s);

		// deepest point of disc 1
		dVector3Add(C, G1Pos1, contact->pos);

		// depth of the deepest point
		contact->depth = planevec[3] - dVector3Dot(planevec, contact->pos);
		if(contact->depth >= 0)
		{
			dVector3Copy(PlaneNormal, contact->normal);
			contact->g1 = Cylinder;
			contact->g2 = Plane;
			GeomCount++;
			if( GeomCount >= (flags & NUMC_MASK))
				return GeomCount; // enough contactgeoms
			contact = (dContactGeom *)((char *)contact + skip);
		}

		// C is still computed

		// deepest point of disc 2
		dVector3Add(C, G1Pos2, contact->pos);

		// depth of the deepest point
		contact->depth = planevec[3] - planevec[0] * contact->pos[0] - planevec[1] * contact->pos[1] - planevec[2] * contact->pos[2];
		if(contact->depth >= 0)
		{
			dVector3Copy(PlaneNormal, contact->normal);
			contact->g1 = Cylinder;
			contact->g2 = Plane;
			GeomCount++;
			if( GeomCount >= (flags & NUMC_MASK))
				return GeomCount; // enough contactgeoms
			contact = (dContactGeom *)((char *)contact + skip);
		}
	}
	return GeomCount;
}
Exemplo n.º 2
0
// initialize collision data
void _cldInitCylinderBox(sCylinderBoxData& cData) 
{
	// get cylinder position, orientation
	const dReal* pRotCyc = dGeomGetRotation(cData.gCylinder); 
	dMatrix3Copy(pRotCyc,cData.mCylinderRot);

	const dVector3* pPosCyc = (const dVector3*)dGeomGetPosition(cData.gCylinder);
	dVector3Copy(*pPosCyc,cData.vCylinderPos);

	dMat3GetCol(cData.mCylinderRot,nCYLINDER_AXIS,cData.vCylinderAxis);
	
	// get cylinder radius and size
	dGeomCylinderGetParams(cData.gCylinder,&cData.fCylinderRadius,&cData.fCylinderSize);

	// get box position, orientation, size
	const dReal* pRotBox = dGeomGetRotation(cData.gBox);
	dMatrix3Copy(pRotBox,cData.mBoxRot);
	const dVector3* pPosBox  = (const dVector3*)dGeomGetPosition(cData.gBox);
	dVector3Copy(*pPosBox,cData.vBoxPos);

	dGeomBoxGetLengths(cData.gBox, cData.vBoxHalfSize);
	cData.vBoxHalfSize[0] *= REAL(0.5);
	cData.vBoxHalfSize[1] *= REAL(0.5);
	cData.vBoxHalfSize[2] *= REAL(0.5);

	// vertex 0
	cData.avBoxVertices[0][0] = -cData.vBoxHalfSize[0];
	cData.avBoxVertices[0][1] =  cData.vBoxHalfSize[1];
	cData.avBoxVertices[0][2] = -cData.vBoxHalfSize[2];

	// vertex 1
	cData.avBoxVertices[1][0] =  cData.vBoxHalfSize[0];
	cData.avBoxVertices[1][1] =  cData.vBoxHalfSize[1];
	cData.avBoxVertices[1][2] = -cData.vBoxHalfSize[2];

	// vertex 2
	cData.avBoxVertices[2][0] = -cData.vBoxHalfSize[0];
	cData.avBoxVertices[2][1] = -cData.vBoxHalfSize[1];
	cData.avBoxVertices[2][2] = -cData.vBoxHalfSize[2];

	// vertex 3
	cData.avBoxVertices[3][0] =  cData.vBoxHalfSize[0];
	cData.avBoxVertices[3][1] = -cData.vBoxHalfSize[1];
	cData.avBoxVertices[3][2] = -cData.vBoxHalfSize[2];

	// vertex 4
	cData.avBoxVertices[4][0] =  cData.vBoxHalfSize[0];
	cData.avBoxVertices[4][1] =  cData.vBoxHalfSize[1];
	cData.avBoxVertices[4][2] =  cData.vBoxHalfSize[2];

	// vertex 5
	cData.avBoxVertices[5][0] =  cData.vBoxHalfSize[0];
	cData.avBoxVertices[5][1] = -cData.vBoxHalfSize[1];
	cData.avBoxVertices[5][2] =  cData.vBoxHalfSize[2];

	// vertex 6
	cData.avBoxVertices[6][0] = -cData.vBoxHalfSize[0];
	cData.avBoxVertices[6][1] = -cData.vBoxHalfSize[1];
	cData.avBoxVertices[6][2] =  cData.vBoxHalfSize[2];

	// vertex 7
	cData.avBoxVertices[7][0] = -cData.vBoxHalfSize[0];
	cData.avBoxVertices[7][1] =  cData.vBoxHalfSize[1];
	cData.avBoxVertices[7][2] =  cData.vBoxHalfSize[2];

	// temp index
	int i = 0;
	dVector3	vTempBoxVertices[8];
	// transform vertices in absolute space
	for(i=0; i < 8; i++) 
	{
		dMultiplyMat3Vec3(cData.mBoxRot,cData.avBoxVertices[i], vTempBoxVertices[i]);
		dVector3Add(vTempBoxVertices[i], cData.vBoxPos, cData.avBoxVertices[i]);
	}

	// find relative position
	dVector3Subtract(cData.vCylinderPos,cData.vBoxPos,cData.vDiff);
	cData.fBestDepth = MAX_FLOAT;
	cData.vNormal[0] = REAL(0.0);
	cData.vNormal[1] = REAL(0.0);
	cData.vNormal[2] = REAL(0.0);

	// calculate basic angle for nCYLINDER_SEGMENT-gon
	dReal fAngle = M_PI/nCYLINDER_SEGMENT;

	// calculate angle increment
	dReal fAngleIncrement = fAngle * REAL(2.0); 

	// calculate nCYLINDER_SEGMENT-gon points
	for(i = 0; i < nCYLINDER_SEGMENT; i++) 
	{
		cData.avCylinderNormals[i][0] = -dCos(fAngle);
		cData.avCylinderNormals[i][1] = -dSin(fAngle);
		cData.avCylinderNormals[i][2] = 0;

		fAngle += fAngleIncrement;
	}

	cData.fBestrb		= 0;
	cData.fBestrc		= 0;
	cData.iBestAxis		= 0;
	cData.nContacts		= 0;

}
// initialize collision data
void sCylinderBoxData::_cldInitCylinderBox() 
{
	// get cylinder position, orientation
	const dReal* pRotCyc = dGeomGetRotation(m_gCylinder); 
	dMatrix3Copy(pRotCyc,m_mCylinderRot);

	const dVector3* pPosCyc = (const dVector3*)dGeomGetPosition(m_gCylinder);
	dVector3Copy(*pPosCyc,m_vCylinderPos);

	dMat3GetCol(m_mCylinderRot,nCYLINDER_AXIS,m_vCylinderAxis);
	
	// get cylinder radius and size
	dGeomCylinderGetParams(m_gCylinder,&m_fCylinderRadius,&m_fCylinderSize);

	// get box position, orientation, size
	const dReal* pRotBox = dGeomGetRotation(m_gBox);
	dMatrix3Copy(pRotBox,m_mBoxRot);
	const dVector3* pPosBox  = (const dVector3*)dGeomGetPosition(m_gBox);
	dVector3Copy(*pPosBox,m_vBoxPos);

	dGeomBoxGetLengths(m_gBox, m_vBoxHalfSize);
	m_vBoxHalfSize[0] *= REAL(0.5);
	m_vBoxHalfSize[1] *= REAL(0.5);
	m_vBoxHalfSize[2] *= REAL(0.5);

	// vertex 0
	m_avBoxVertices[0][0] = -m_vBoxHalfSize[0];
	m_avBoxVertices[0][1] =  m_vBoxHalfSize[1];
	m_avBoxVertices[0][2] = -m_vBoxHalfSize[2];

	// vertex 1
	m_avBoxVertices[1][0] =  m_vBoxHalfSize[0];
	m_avBoxVertices[1][1] =  m_vBoxHalfSize[1];
	m_avBoxVertices[1][2] = -m_vBoxHalfSize[2];

	// vertex 2
	m_avBoxVertices[2][0] = -m_vBoxHalfSize[0];
	m_avBoxVertices[2][1] = -m_vBoxHalfSize[1];
	m_avBoxVertices[2][2] = -m_vBoxHalfSize[2];

	// vertex 3
	m_avBoxVertices[3][0] =  m_vBoxHalfSize[0];
	m_avBoxVertices[3][1] = -m_vBoxHalfSize[1];
	m_avBoxVertices[3][2] = -m_vBoxHalfSize[2];

	// vertex 4
	m_avBoxVertices[4][0] =  m_vBoxHalfSize[0];
	m_avBoxVertices[4][1] =  m_vBoxHalfSize[1];
	m_avBoxVertices[4][2] =  m_vBoxHalfSize[2];

	// vertex 5
	m_avBoxVertices[5][0] =  m_vBoxHalfSize[0];
	m_avBoxVertices[5][1] = -m_vBoxHalfSize[1];
	m_avBoxVertices[5][2] =  m_vBoxHalfSize[2];

	// vertex 6
	m_avBoxVertices[6][0] = -m_vBoxHalfSize[0];
	m_avBoxVertices[6][1] = -m_vBoxHalfSize[1];
	m_avBoxVertices[6][2] =  m_vBoxHalfSize[2];

	// vertex 7
	m_avBoxVertices[7][0] = -m_vBoxHalfSize[0];
	m_avBoxVertices[7][1] =  m_vBoxHalfSize[1];
	m_avBoxVertices[7][2] =  m_vBoxHalfSize[2];

	// temp index
	int i = 0;
	dVector3	vTempBoxVertices[8];
	// transform vertices in absolute space
	for(i=0; i < 8; i++) 
	{
		dMultiplyMat3Vec3(m_mBoxRot,m_avBoxVertices[i], vTempBoxVertices[i]);
		dVector3Add(vTempBoxVertices[i], m_vBoxPos, m_avBoxVertices[i]);
	}

	// find relative position
	dVector3Subtract(m_vCylinderPos,m_vBoxPos,m_vDiff);
	m_fBestDepth = MAX_FLOAT;
	m_vNormal[0] = REAL(0.0);
	m_vNormal[1] = REAL(0.0);
	m_vNormal[2] = REAL(0.0);

	// calculate basic angle for nCYLINDER_SEGMENT-gon
	dReal fAngle = (dReal) (M_PI/nCYLINDER_SEGMENT);

	// calculate angle increment
	dReal fAngleIncrement = fAngle * REAL(2.0); 

	// calculate nCYLINDER_SEGMENT-gon points
	for(i = 0; i < nCYLINDER_SEGMENT; i++) 
	{
		m_avCylinderNormals[i][0] = -dCos(fAngle);
		m_avCylinderNormals[i][1] = -dSin(fAngle);
		m_avCylinderNormals[i][2] = 0;

		fAngle += fAngleIncrement;
	}

	m_fBestrb		= 0;
	m_fBestrc		= 0;
	m_iBestAxis		= 0;
	m_nContacts		= 0;

}