Exemplo n.º 1
0
/*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
 *  belongs to an active ".nfs..." file and we return -EBUSY.
 *
 *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
 */
static int nfs_unlink(struct inode *dir, struct dentry *dentry)
{
	int error;
	int need_rehash = 0;

	dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
		dir->i_ino, dentry->d_name.name);

	lock_kernel();
	spin_lock(&dcache_lock);
	spin_lock(&dentry->d_lock);
	if (atomic_read(&dentry->d_count) > 1) {
		spin_unlock(&dentry->d_lock);
		spin_unlock(&dcache_lock);
		error = nfs_sillyrename(dir, dentry);
		unlock_kernel();
		return error;
	}
	if (!d_unhashed(dentry)) {
		__d_drop(dentry);
		need_rehash = 1;
	}
	spin_unlock(&dentry->d_lock);
	spin_unlock(&dcache_lock);
	error = nfs_safe_remove(dentry);
	if (!error) {
		nfs_renew_times(dentry);
		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
	} else if (need_rehash)
		d_rehash(dentry);
	unlock_kernel();
	return error;
}
Exemplo n.º 2
0
static int
dumpfs_read_sb(struct super_block *sb, void *data, int silent)
{
	int	err = 0;
	struct	inode *inode;
	struct	buffer_head *bh;
	struct dumpfs_sb_info	*sbi;
	dumpfs_super_block_t	*ds;	
	char *dev_name = (char *)data;

	if (!dev_name) {
		err = -EINVAL;
		goto out;
	}
	/* 
	 * dev_name is device_name or file that needs to be mounted 
	 * mount -t dumpfs /mnt/filename /mnt/dumpfs, dev_name points
 	 * to /mnt/filename.
 	 */
	/* connect dumpfs superblock later */
	sbi = kzalloc(sizeof(struct dumpfs_sb_info), GFP_KERNEL);
	if (!sbi) {
		err = -ENOMEM;
		goto out;
	}
	sb->s_fs_info = sbi;

	/* read the superblock from the disk */
	if (!(bh = sb_bread(sb, 0))) {
		goto free;
	}
	ds = (dumpfs_super_block_t *)bh->b_data;

	sb->s_magic = ds->s_magic;
	sb->s_time_gran = 1;
	sb->s_op = &dumpfs_sops;
	sbi->s_buf = ds;
	printk(KERN_INFO "sbi->s_buf %p\n", sb->s_fs_info);
	inode = dumpfs_iget(sb, DUMPFS_ROOT_INUM);
	if (IS_ERR(inode)) {
		printk(KERN_INFO "%d \n", __LINE__);
		err = PTR_ERR(inode);
		goto out;
	}
	printk(KERN_INFO "inode %p magic %x\n", inode, ds->s_magic);
	
	sb->s_root = d_make_root(inode);
	if (!sb->s_root) {
		err = -ENOMEM;
		goto free;
	}
	d_rehash(sb->s_root);
	d_set_d_op(sb->s_root, &dumpfs_dops);
	goto out;
free:
	printk(KERN_INFO "Failed free superblock");
	kfree(sb->s_fs_info);
out:
	return (err);
}
Exemplo n.º 3
0
/**
 * ecryptfs_create
 * @dir: The inode of the directory in which to create the file.
 * @dentry: The eCryptfs dentry
 * @mode: The mode of the new file.
 *
 * Creates a new file.
 *
 * Returns zero on success; non-zero on error condition
 */
static int
ecryptfs_create(struct inode *directory_inode, struct dentry *ecryptfs_dentry,
		umode_t mode, bool excl)
{
	struct inode *ecryptfs_inode;
	int rc;

	ecryptfs_inode = ecryptfs_do_create(directory_inode, ecryptfs_dentry,
					    mode);
	if (unlikely(IS_ERR(ecryptfs_inode))) {
		ecryptfs_printk(KERN_WARNING, "Failed to create file in"
				"lower filesystem\n");
		rc = PTR_ERR(ecryptfs_inode);
		goto out;
	}
	/* At this point, a file exists on "disk"; we need to make sure
	 * that this on disk file is prepared to be an ecryptfs file */
	rc = ecryptfs_initialize_file(ecryptfs_dentry, ecryptfs_inode);
	if (rc) {
		ecryptfs_do_unlink(directory_inode, ecryptfs_dentry,
				   ecryptfs_inode);
		make_bad_inode(ecryptfs_inode);
		unlock_new_inode(ecryptfs_inode);
		iput(ecryptfs_inode);
		goto out;
	}
	unlock_new_inode(ecryptfs_inode);
	d_instantiate(ecryptfs_dentry, ecryptfs_inode);
	if(d_unhashed(ecryptfs_dentry))
		d_rehash(ecryptfs_dentry);
out:
	return rc;
}
Exemplo n.º 4
0
/* Re-target existing file to the new endpoint.
 * Caller is responsible for refcounts of the old and the new thr. */
void
oo_move_file(ci_private_t* priv, tcp_helper_resource_t *new_thr,
             oo_sp new_sockid)
{
  priv->thr = new_thr;
  priv->sock_id = new_sockid;
#ifndef EFX_HAVE_D_DNAME
  {
    /* tell everybody that we've changed the name.
     * Assume the name is short (DNAME_INLINE_LEN_MIN=36). */
    struct dentry *dentry = priv->_filp->f_dentry;
    if( dname_external(dentry) ) {
      /* We do not want to handle memory free/allocation,
       * so just go out.
       * Unlucky user gets incorrect name in /proc - it is much better
       * than memory corruption. */
      return;
    }
    d_drop(dentry);
    dentry->d_name.len = onloadfs_name(priv, dentry->d_iname,
                                       sizeof(dentry->d_iname));
    d_rehash(dentry);
  }
#endif
}
Exemplo n.º 5
0
Arquivo: dir.c Projeto: cilynx/dd-wrt
/**
 *	sysfs_attach_dentry - associate sysfs_dirent with dentry
 *	@sd: target sysfs_dirent
 *	@dentry: dentry to associate
 *
 *	Associate @sd with @dentry.  This is protected by
 *	sysfs_assoc_lock to avoid race with sysfs_d_iput().
 *
 *	LOCKING:
 *	mutex_lock(sysfs_mutex)
 */
static void sysfs_attach_dentry(struct sysfs_dirent *sd, struct dentry *dentry)
{
	dentry->d_op = &sysfs_dentry_ops;
	dentry->d_fsdata = sysfs_get(sd);

	/* protect sd->s_dentry against sysfs_d_iput */
	spin_lock(&sysfs_assoc_lock);
	sd->s_dentry = dentry;
	spin_unlock(&sysfs_assoc_lock);

	d_rehash(dentry);
}
/*
 * Remove a file after making sure there are no pending writes,
 * and after checking that the file has only one user. 
 *
 * We invalidate the attribute cache and free the inode prior to the operation
 * to avoid possible races if the server reuses the inode.
 */
static int nfs_safe_remove(struct dentry *dentry)
{
	struct inode *dir = dentry->d_parent->d_inode;
	struct inode *inode = dentry->d_inode;
	int error = -EBUSY, rehash = 0;
		
	dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
		dentry->d_parent->d_name.name, dentry->d_name.name);

	/*
	 * Unhash the dentry while we remove the file ...
	 */
	if (!d_unhashed(dentry)) {
		d_drop(dentry);
		rehash = 1;
	}
	if (atomic_read(&dentry->d_count) > 1) {
#ifdef NFS_PARANOIA
		printk("nfs_safe_remove: %s/%s busy, d_count=%d\n",
			dentry->d_parent->d_name.name, dentry->d_name.name,
			atomic_read(&dentry->d_count));
#endif
		goto out;
	}

	/* If the dentry was sillyrenamed, we simply call d_delete() */
	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
		error = 0;
		goto out_delete;
	}

	nfs_zap_caches(dir);
	if (inode)
		NFS_CACHEINV(inode);
	error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
	if (error < 0)
		goto out;
	if (inode)
		inode->i_nlink--;

 out_delete:
	/*
	 * Free the inode
	 */
	d_delete(dentry);
out:
	if (rehash)
		d_rehash(dentry);
	return error;
}
Exemplo n.º 7
0
/* this routine links an IS_ROOT dentry into the dcache tree.  It gains "parent"
 * as a parent and "name" as a name
 * It should possibly go in dcache.c
 */
int d_splice(struct dentry *target, struct dentry *parent, struct qstr *name)
{
	struct dentry *tdentry;
#ifdef NFSD_PARANOIA
	if (!IS_ROOT(target))
		printk("nfsd: d_splice with no-root target: %s/%s\n", parent->d_name.name, name->name);
	if (!(target->d_flags & DCACHE_NFSD_DISCONNECTED))
		printk("nfsd: d_splice with non-DISCONNECTED target: %s/%s\n", parent->d_name.name, name->name);
#endif
	tdentry = d_alloc(parent, name);
	if (tdentry == NULL)
		return -ENOMEM;
	d_move(target, tdentry);

	/* tdentry will have been made a "child" of target (the parent of target)
	 * make it an IS_ROOT instead
	 */
	spin_lock(&dcache_lock);
	list_del_init(&tdentry->d_child);
	tdentry->d_parent = tdentry;
	spin_unlock(&dcache_lock);
	d_rehash(target);
	dput(tdentry);

	/* if parent is properly connected, then we can assert that
	 * the children are connected, but it must be a singluar (non-forking)
	 * branch
	 */
	if (!(parent->d_flags & DCACHE_NFSD_DISCONNECTED)) {
		while (target) {
			target->d_flags &= ~DCACHE_NFSD_DISCONNECTED;
			parent = target;
			spin_lock(&dcache_lock);
			if (list_empty(&parent->d_subdirs))
				target = NULL;
			else {
				target = list_entry(parent->d_subdirs.next, struct dentry, d_child);
#ifdef NFSD_PARANOIA
				/* must be only child */
				if (target->d_child.next != &parent->d_subdirs
				    || target->d_child.prev != &parent->d_subdirs)
					printk("nfsd: d_splice found non-singular disconnected branch: %s/%s\n",
					       parent->d_name.name, target->d_name.name);
#endif
			}
			spin_unlock(&dcache_lock);
		}
	}
	return 0;
}
Exemplo n.º 8
0
/* Might check in the future if inode number changed so we can rehash inode */
static int construct_dentry(struct qstr *qstring, struct file *file,
	struct inode **ptmp_inode, struct dentry **pnew_dentry)
{
	struct dentry *tmp_dentry;
	struct cifs_sb_info *cifs_sb;
	struct cifsTconInfo *pTcon;
	int rc = 0;

	cFYI(1, ("For %s", qstring->name));
	cifs_sb = CIFS_SB(file->f_dentry->d_sb);
	pTcon = cifs_sb->tcon;

	qstring->hash = full_name_hash(qstring->name, qstring->len);
	tmp_dentry = d_lookup(file->f_dentry, qstring);
	if (tmp_dentry) {
		cFYI(0, ("existing dentry with inode 0x%p", tmp_dentry->d_inode));
		*ptmp_inode = tmp_dentry->d_inode;
/* BB overwrite old name? i.e. tmp_dentry->d_name and tmp_dentry->d_name.len??*/
		if(*ptmp_inode == NULL) {
			*ptmp_inode = new_inode(file->f_dentry->d_sb);
			if(*ptmp_inode == NULL)
				return rc;
			rc = 1;
			d_instantiate(tmp_dentry, *ptmp_inode);
		}
	} else {
		tmp_dentry = d_alloc(file->f_dentry, qstring);
		if(tmp_dentry == NULL) {
			cERROR(1,("Failed allocating dentry"));
			*ptmp_inode = NULL;
			return rc;
		}

		*ptmp_inode = new_inode(file->f_dentry->d_sb);
		tmp_dentry->d_op = &cifs_dentry_ops;
		if(*ptmp_inode == NULL)
			return rc;
		rc = 1;
		d_instantiate(tmp_dentry, *ptmp_inode);
		d_rehash(tmp_dentry);
	}

	tmp_dentry->d_time = jiffies;
	*pnew_dentry = tmp_dentry;
	return rc;
}
Exemplo n.º 9
0
static int jffs2_whiteout(struct inode *old_dir, struct dentry *old_dentry)
{
	struct dentry *wh;
	int err;

	wh = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
	if (!wh)
		return -ENOMEM;

	err = jffs2_mknod(old_dir, wh, S_IFCHR | WHITEOUT_MODE,
			  WHITEOUT_DEV);
	if (err)
		return err;

	d_rehash(wh);
	return 0;
}
Exemplo n.º 10
0
/**
 * ecryptfs_interpose
 * @lower_dentry: Existing dentry in the lower filesystem
 * @dentry: ecryptfs' dentry
 * @sb: ecryptfs's super_block
 *
 * Interposes upper and lower dentries.
 *
 * Returns zero on success; non-zero otherwise
 */
static int ecryptfs_interpose(struct dentry *lower_dentry,
			      struct dentry *dentry, struct super_block *sb)
{
	struct inode *inode = ecryptfs_get_inode(lower_dentry->d_inode, sb);

	if (IS_ERR(inode))
		return PTR_ERR(inode);

	d_instantiate(dentry, inode);
	if(d_unhashed(dentry))
		d_rehash(dentry);

#ifdef CONFIG_SDP
	if(S_ISDIR(inode->i_mode) && dentry) {
		if(IS_UNDER_ROOT(dentry)) {
			struct ecryptfs_mount_crypt_stat *mount_crypt_stat  =
					&ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
			int engineid;
			printk("Creating a directoy under root directory of current partition.\n");

			if(is_chamber_directory(mount_crypt_stat, dentry->d_name.name, &engineid)) {
				printk("This is a chamber directory engine[%d]\n", engineid);
				set_chamber_flag(engineid, inode);
			}
		} else if(IS_SENSITIVE_DENTRY(dentry->d_parent)) {
			/*
			 * When parent directory is sensitive
			 */
			struct ecryptfs_crypt_stat *crypt_stat =
					&ecryptfs_inode_to_private(inode)->crypt_stat;
			struct ecryptfs_crypt_stat *parent_crypt_stat =
					&ecryptfs_inode_to_private(dentry->d_parent->d_inode)->crypt_stat;

			//TODO : remove this log
			DEK_LOGE("Parent %s[id:%d] is sensitive. so this directory is sensitive too\n",
					dentry->d_parent->d_name.name, parent_crypt_stat->engine_id);
			crypt_stat->flags |= ECRYPTFS_DEK_IS_SENSITIVE;
			crypt_stat->engine_id = parent_crypt_stat->engine_id;
		}
	}
#endif

	return 0;
}
Exemplo n.º 11
0
/*
 * There is no need to lock the unionfs_super_info's rwsem as there is no
 * way anyone can have a reference to the superblock at this point in time.
 */
static int unionfs_read_super(struct super_block *sb, void *raw_data,
			      int silent)
{
	int err = 0;
	struct unionfs_dentry_info *lower_root_info = NULL;
	int bindex, bstart, bend;
	struct inode *inode = NULL;

	if (!raw_data) {
		printk(KERN_ERR
		       "unionfs: read_super: missing data argument\n");
		err = -EINVAL;
		goto out;
	}

	/* Allocate superblock private data */
	sb->s_fs_info = kzalloc(sizeof(struct unionfs_sb_info), GFP_KERNEL);
	if (unlikely(!UNIONFS_SB(sb))) {
		printk(KERN_CRIT "unionfs: read_super: out of memory\n");
		err = -ENOMEM;
		goto out;
	}

	UNIONFS_SB(sb)->bend = -1;
	atomic_set(&UNIONFS_SB(sb)->generation, 1);
	init_rwsem(&UNIONFS_SB(sb)->rwsem);
	UNIONFS_SB(sb)->high_branch_id = -1; /* -1 == invalid branch ID */

	lower_root_info = unionfs_parse_options(sb, raw_data);
	if (IS_ERR(lower_root_info)) {
		printk(KERN_ERR
		       "unionfs: read_super: error while parsing options "
		       "(err = %ld)\n", PTR_ERR(lower_root_info));
		err = PTR_ERR(lower_root_info);
		lower_root_info = NULL;
		goto out_free;
	}
	if (lower_root_info->bstart == -1) {
		err = -ENOENT;
		goto out_free;
	}

	/* set the lower superblock field of upper superblock */
	bstart = lower_root_info->bstart;
	BUG_ON(bstart != 0);
	sbend(sb) = bend = lower_root_info->bend;
	for (bindex = bstart; bindex <= bend; bindex++) {
		struct dentry *d = lower_root_info->lower_paths[bindex].dentry;
		atomic_inc(&d->d_sb->s_active);
		unionfs_set_lower_super_idx(sb, bindex, d->d_sb);
	}

	/* max Bytes is the maximum bytes from highest priority branch */
	sb->s_maxbytes = unionfs_lower_super_idx(sb, 0)->s_maxbytes;

	/*
	 * Our c/m/atime granularity is 1 ns because we may stack on file
	 * systems whose granularity is as good.  This is important for our
	 * time-based cache coherency.
	 */
	sb->s_time_gran = 1;

	sb->s_op = &unionfs_sops;

	/* get a new inode and allocate our root dentry */
	inode = unionfs_iget(sb, iunique(sb, UNIONFS_ROOT_INO));
	if (IS_ERR(inode)) {
		err = PTR_ERR(inode);
		goto out_dput;
	}
	sb->s_root = d_make_root(inode);
	if (unlikely(!sb->s_root)) {
		err = -ENOMEM;
		goto out_iput;
	}
	d_set_d_op(sb->s_root, &unionfs_dops);

	/* link the upper and lower dentries */
	sb->s_root->d_fsdata = NULL;
	err = new_dentry_private_data(sb->s_root, UNIONFS_DMUTEX_ROOT);
	if (unlikely(err))
		goto out_freedpd;

	/* if get here: cannot have error */

	/* Set the lower dentries for s_root */
	for (bindex = bstart; bindex <= bend; bindex++) {
		struct dentry *d;
		struct vfsmount *m;

		d = lower_root_info->lower_paths[bindex].dentry;
		m = lower_root_info->lower_paths[bindex].mnt;

		unionfs_set_lower_dentry_idx(sb->s_root, bindex, d);
		unionfs_set_lower_mnt_idx(sb->s_root, bindex, m);
	}
	dbstart(sb->s_root) = bstart;
	dbend(sb->s_root) = bend;

	/* Set the generation number to one, since this is for the mount. */
	atomic_set(&UNIONFS_D(sb->s_root)->generation, 1);

	if (atomic_read(&inode->i_count) <= 1)
		unionfs_fill_inode(sb->s_root, inode);

	/*
	 * No need to call interpose because we already have a positive
	 * dentry, which was instantiated by d_alloc_root.  Just need to
	 * d_rehash it.
	 */
	d_rehash(sb->s_root);

	unionfs_unlock_dentry(sb->s_root);
	goto out; /* all is well */

out_freedpd:
	if (UNIONFS_D(sb->s_root)) {
		kfree(UNIONFS_D(sb->s_root)->lower_paths);
		free_dentry_private_data(sb->s_root);
	}
	dput(sb->s_root);

out_iput:
	iput(inode);

out_dput:
	if (lower_root_info && !IS_ERR(lower_root_info)) {
		for (bindex = lower_root_info->bstart;
		     bindex <= lower_root_info->bend; bindex++) {
			struct dentry *d;
			d = lower_root_info->lower_paths[bindex].dentry;
			/* drop refs we took earlier */
			atomic_dec(&d->d_sb->s_active);
			path_put(&lower_root_info->lower_paths[bindex]);
		}
		kfree(lower_root_info->lower_paths);
		kfree(lower_root_info);
		lower_root_info = NULL;
	}

out_free:
	kfree(UNIONFS_SB(sb)->data);
	kfree(UNIONFS_SB(sb));
	sb->s_fs_info = NULL;

out:
	if (lower_root_info && !IS_ERR(lower_root_info)) {
		kfree(lower_root_info->lower_paths);
		kfree(lower_root_info);
	}
	return err;
}
Exemplo n.º 12
0
/*
 * create a regular file on an AFS filesystem
 */
static int afs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
		      bool excl)
{
	struct afs_file_status status;
	struct afs_callback cb;
	struct afs_server *server;
	struct afs_vnode *dvnode, *vnode;
	struct afs_fid fid;
	struct inode *inode;
	struct key *key;
	int ret;

	dvnode = AFS_FS_I(dir);

	_enter("{%x:%u},{%pd},%ho,",
	       dvnode->fid.vid, dvnode->fid.vnode, dentry, mode);

	key = afs_request_key(dvnode->volume->cell);
	if (IS_ERR(key)) {
		ret = PTR_ERR(key);
		goto error;
	}

	mode |= S_IFREG;
	ret = afs_vnode_create(dvnode, key, dentry->d_name.name,
			       mode, &fid, &status, &cb, &server);
	if (ret < 0)
		goto create_error;

	inode = afs_iget(dir->i_sb, key, &fid, &status, &cb);
	if (IS_ERR(inode)) {
		/* ENOMEM at a really inconvenient time - just abandon the new
		 * directory on the server */
		ret = PTR_ERR(inode);
		goto iget_error;
	}

	/* apply the status report we've got for the new vnode */
	vnode = AFS_FS_I(inode);
	spin_lock(&vnode->lock);
	vnode->update_cnt++;
	spin_unlock(&vnode->lock);
	afs_vnode_finalise_status_update(vnode, server);
	afs_put_server(server);

	d_instantiate(dentry, inode);
	if (d_unhashed(dentry)) {
		_debug("not hashed");
		d_rehash(dentry);
	}
	key_put(key);
	_leave(" = 0");
	return 0;

iget_error:
	afs_put_server(server);
create_error:
	key_put(key);
error:
	d_drop(dentry);
	_leave(" = %d", ret);
	return ret;
}
Exemplo n.º 13
0
/*
 * Create dentry/inode for this file and add it to the dircache.
 */
int
smb_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
	       struct smb_cache_control *ctrl, struct qstr *qname,
	       struct smb_fattr *entry)
{
	struct dentry *newdent, *dentry = filp->f_path.dentry;
	struct inode *newino, *inode = dentry->d_inode;
	struct smb_cache_control ctl = *ctrl;
	int valid = 0;
	int hashed = 0;
	ino_t ino = 0;

	qname->hash = full_name_hash(qname->name, qname->len);

	if (dentry->d_op && dentry->d_op->d_hash)
		if (dentry->d_op->d_hash(dentry, qname) != 0)
			goto end_advance;

	newdent = d_lookup(dentry, qname);

	if (!newdent) {
		newdent = d_alloc(dentry, qname);
		if (!newdent)
			goto end_advance;
	} else {
		hashed = 1;
		memcpy((char *) newdent->d_name.name, qname->name,
		       newdent->d_name.len);
	}

	if (!newdent->d_inode) {
		smb_renew_times(newdent);
		entry->f_ino = iunique(inode->i_sb, 2);
		newino = smb_iget(inode->i_sb, entry);
		if (newino) {
			smb_new_dentry(newdent);
			d_instantiate(newdent, newino);
			if (!hashed)
				d_rehash(newdent);
		}
	} else
		smb_set_inode_attr(newdent->d_inode, entry);

        if (newdent->d_inode) {
		ino = newdent->d_inode->i_ino;
		newdent->d_fsdata = (void *) ctl.fpos;
		smb_new_dentry(newdent);
	}

	if (ctl.idx >= SMB_DIRCACHE_SIZE) {
		if (ctl.page) {
			kunmap(ctl.page);
			SetPageUptodate(ctl.page);
			unlock_page(ctl.page);
			page_cache_release(ctl.page);
		}
		ctl.cache = NULL;
		ctl.idx  -= SMB_DIRCACHE_SIZE;
		ctl.ofs  += 1;
		ctl.page  = grab_cache_page(&inode->i_data, ctl.ofs);
		if (ctl.page)
			ctl.cache = kmap(ctl.page);
	}
	if (ctl.cache) {
		ctl.cache->dentry[ctl.idx] = newdent;
		valid = 1;
	}
	dput(newdent);

end_advance:
	if (!valid)
		ctl.valid = 0;
	if (!ctl.filled && (ctl.fpos == filp->f_pos)) {
		if (!ino)
			ino = find_inode_number(dentry, qname);
		if (!ino)
			ino = iunique(inode->i_sb, 2);
		ctl.filled = filldir(dirent, qname->name, qname->len,
				     filp->f_pos, ino, DT_UNKNOWN);
		if (!ctl.filled)
			filp->f_pos += 1;
	}
	ctl.fpos += 1;
	ctl.idx  += 1;
	*ctrl = ctl;
	return (ctl.valid || !ctl.filled);
}
Exemplo n.º 14
0
/*
 * create a symlink in an AFS filesystem
 */
static int afs_symlink(struct inode *dir, struct dentry *dentry,
		       const char *content)
{
	struct afs_file_status status;
	struct afs_server *server;
	struct afs_vnode *dvnode, *vnode;
	struct afs_fid fid;
	struct inode *inode;
	struct key *key;
	int ret;

	dvnode = AFS_FS_I(dir);

	_enter("{%x:%u},{%s},%s",
	       dvnode->fid.vid, dvnode->fid.vnode, dentry->d_name.name,
	       content);

	ret = -ENAMETOOLONG;
	if (dentry->d_name.len >= AFSNAMEMAX)
		goto error;

	ret = -EINVAL;
	if (strlen(content) >= AFSPATHMAX)
		goto error;

	key = afs_request_key(dvnode->volume->cell);
	if (IS_ERR(key)) {
		ret = PTR_ERR(key);
		goto error;
	}

	ret = afs_vnode_symlink(dvnode, key, dentry->d_name.name, content,
				&fid, &status, &server);
	if (ret < 0)
		goto create_error;

	inode = afs_iget(dir->i_sb, key, &fid, &status, NULL);
	if (IS_ERR(inode)) {
		/* ENOMEM at a really inconvenient time - just abandon the new
		 * directory on the server */
		ret = PTR_ERR(inode);
		goto iget_error;
	}

	/* apply the status report we've got for the new vnode */
	vnode = AFS_FS_I(inode);
	spin_lock(&vnode->lock);
	vnode->update_cnt++;
	spin_unlock(&vnode->lock);
	afs_vnode_finalise_status_update(vnode, server);
	afs_put_server(server);

	d_instantiate(dentry, inode);
	if (d_unhashed(dentry)) {
		_debug("not hashed");
		d_rehash(dentry);
	}
	key_put(key);
	_leave(" = 0");
	return 0;

iget_error:
	afs_put_server(server);
create_error:
	key_put(key);
error:
	d_drop(dentry);
	_leave(" = %d", ret);
	return ret;
}
Exemplo n.º 15
0
static int cifs_filldir(char *pfindEntry, struct file *file,
	filldir_t filldir, void *direntry, char *scratch_buf, int max_len)
{
	int rc = 0;
	struct qstr qstring;
	struct cifsFileInfo *pCifsF;
	unsigned int obj_type;
	__u64  inum;
	struct cifs_sb_info *cifs_sb;
	struct inode *tmp_inode;
	struct dentry *tmp_dentry;

	/* get filename and len into qstring */
	/* get dentry */
	/* decide whether to create and populate ionde */
	if ((direntry == NULL) || (file == NULL))
		return -EINVAL;

	pCifsF = file->private_data;

	if ((scratch_buf == NULL) || (pfindEntry == NULL) || (pCifsF == NULL))
		return -ENOENT;

	rc = cifs_entry_is_dot(pfindEntry, pCifsF);
	/* skip . and .. since we added them first */
	if (rc != 0)
		return 0;

	cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);

	qstring.name = scratch_buf;
	rc = cifs_get_name_from_search_buf(&qstring, pfindEntry,
			pCifsF->srch_inf.info_level,
			pCifsF->srch_inf.unicode, cifs_sb,
			max_len,
			&inum /* returned */);

	if (rc)
		return rc;

	/* only these two infolevels return valid inode numbers */
	if (pCifsF->srch_inf.info_level == SMB_FIND_FILE_UNIX ||
	    pCifsF->srch_inf.info_level == SMB_FIND_FILE_ID_FULL_DIR_INFO)
		rc = construct_dentry(&qstring, file, &tmp_inode, &tmp_dentry,
					&inum);
	else
		rc = construct_dentry(&qstring, file, &tmp_inode, &tmp_dentry,
					NULL);

	if ((tmp_inode == NULL) || (tmp_dentry == NULL))
		return -ENOMEM;

	/* we pass in rc below, indicating whether it is a new inode,
	   so we can figure out whether to invalidate the inode cached
	   data if the file has changed */
	if (pCifsF->srch_inf.info_level == SMB_FIND_FILE_UNIX)
		unix_fill_in_inode(tmp_inode,
				   (FILE_UNIX_INFO *)pfindEntry,
				   &obj_type, rc);
	else if (pCifsF->srch_inf.info_level == SMB_FIND_FILE_INFO_STANDARD)
		fill_in_inode(tmp_inode, 0 /* old level 1 buffer type */,
				pfindEntry, &obj_type, rc);
	else
		fill_in_inode(tmp_inode, 1 /* NT */, pfindEntry, &obj_type, rc);

	if (rc) /* new inode - needs to be tied to dentry */ {
		d_instantiate(tmp_dentry, tmp_inode);
		if (rc == 2)
			d_rehash(tmp_dentry);
	}


	rc = filldir(direntry, qstring.name, qstring.len, file->f_pos,
		     tmp_inode->i_ino, obj_type);
	if (rc) {
		cFYI(1, ("filldir rc = %d", rc));
		/* we can not return filldir errors to the caller
		since they are "normal" when the stat blocksize
		is too small - we return remapped error instead */
		rc = -EOVERFLOW;
	}

	dput(tmp_dentry);
	return rc;
}
Exemplo n.º 16
0
static int hpfs_unlink(struct inode *dir, struct dentry *dentry)
{
	const char *name = dentry->d_name.name;
	unsigned len = dentry->d_name.len;
	struct quad_buffer_head qbh;
	struct hpfs_dirent *de;
	struct inode *inode = dentry->d_inode;
	dnode_secno dno;
	fnode_secno fno;
	int r;
	int rep = 0;
	int err;

	lock_kernel();
	hpfs_adjust_length((char *)name, &len);
again:
	mutex_lock(&hpfs_i(inode)->i_parent_mutex);
	mutex_lock(&hpfs_i(dir)->i_mutex);
	err = -ENOENT;
	de = map_dirent(dir, hpfs_i(dir)->i_dno, (char *)name, len, &dno, &qbh);
	if (!de)
		goto out;

	err = -EPERM;
	if (de->first)
		goto out1;

	err = -EISDIR;
	if (de->directory)
		goto out1;

	fno = de->fnode;
	r = hpfs_remove_dirent(dir, dno, de, &qbh, 1);
	switch (r) {
	case 1:
		hpfs_error(dir->i_sb, "there was error when removing dirent");
		err = -EFSERROR;
		break;
	case 2:		/* no space for deleting, try to truncate file */

		err = -ENOSPC;
		if (rep++)
			break;

		mutex_unlock(&hpfs_i(dir)->i_mutex);
		mutex_unlock(&hpfs_i(inode)->i_parent_mutex);
		d_drop(dentry);
		spin_lock(&dentry->d_lock);
		if (atomic_read(&dentry->d_count) > 1 ||
		    permission(inode, MAY_WRITE, NULL) ||
		    !S_ISREG(inode->i_mode) ||
		    get_write_access(inode)) {
			spin_unlock(&dentry->d_lock);
			d_rehash(dentry);
		} else {
			struct iattr newattrs;
			spin_unlock(&dentry->d_lock);
			/*printk("HPFS: truncating file before delete.\n");*/
			newattrs.ia_size = 0;
			newattrs.ia_valid = ATTR_SIZE | ATTR_CTIME;
			err = notify_change(dentry, &newattrs);
			put_write_access(inode);
			if (!err)
				goto again;
		}
		unlock_kernel();
		return -ENOSPC;
	default:
		inode->i_nlink--;
		err = 0;
	}
	goto out;

out1:
	hpfs_brelse4(&qbh);
out:
	mutex_unlock(&hpfs_i(dir)->i_mutex);
	mutex_unlock(&hpfs_i(inode)->i_parent_mutex);
	unlock_kernel();
	return err;
}
Exemplo n.º 17
0
/*
 * There is no need to lock the esdfs_super_info's rwsem as there is no
 * way anyone can have a reference to the superblock at this point in time.
 */
static int esdfs_read_super(struct super_block *sb, const char *dev_name,
		void *raw_data, int silent)
{
	int err = 0;
	struct super_block *lower_sb;
	struct path lower_path;
	struct esdfs_sb_info *sbi;
	struct inode *inode;

	if (!dev_name) {
		esdfs_msg(sb, KERN_ERR, "missing dev_name argument\n");
		err = -EINVAL;
		goto out;
	}

	/* parse lower path */
	err = kern_path(dev_name, LOOKUP_FOLLOW | LOOKUP_DIRECTORY,
			&lower_path);
	if (err) {
		esdfs_msg(sb, KERN_ERR, "error accessing lower directory '%s'\n",
			dev_name);
		goto out;
	}

	/* allocate superblock private data */
	sb->s_fs_info = kzalloc(sizeof(struct esdfs_sb_info), GFP_KERNEL);
	sbi = ESDFS_SB(sb);
	if (!sbi) {
		esdfs_msg(sb, KERN_CRIT, "read_super: out of memory\n");
		err = -ENOMEM;
		goto out_pput;
	}

	/* set defaults and then parse the mount options */
	memcpy(&sbi->lower_perms,
	       &esdfs_perms_table[ESDFS_PERMS_LOWER_DEFAULT],
	       sizeof(struct esdfs_perms));
	memcpy(&sbi->upper_perms,
	       &esdfs_perms_table[ESDFS_PERMS_UPPER_LEGACY],
	       sizeof(struct esdfs_perms));
	err = parse_options(sb, (char *)raw_data);
	if (err)
		goto out_free;

	/* set the lower superblock field of upper superblock */
	lower_sb = lower_path.dentry->d_sb;
	atomic_inc(&lower_sb->s_active);
	esdfs_set_lower_super(sb, lower_sb);

	/* inherit maxbytes from lower file system */
	sb->s_maxbytes = lower_sb->s_maxbytes;

	/*
	 * Our c/m/atime granularity is 1 ns because we may stack on file
	 * systems whose granularity is as good.
	 */
	sb->s_time_gran = 1;

	sb->s_op = &esdfs_sops;

	/* get a new inode and allocate our root dentry */
	inode = esdfs_iget(sb, lower_path.dentry->d_inode);
	if (IS_ERR(inode)) {
		err = PTR_ERR(inode);
		goto out_sput;
	}
	sb->s_root = d_make_root(inode);
	if (!sb->s_root) {
		err = -ENOMEM;
		goto out_iput;
	}
	d_set_d_op(sb->s_root, &esdfs_dops);

	/* link the upper and lower dentries */
	sb->s_root->d_fsdata = NULL;
	err = new_dentry_private_data(sb->s_root);
	if (err)
		goto out_freeroot;

	/* if get here: cannot have error */

	/* set the lower dentries for s_root */
	esdfs_set_lower_path(sb->s_root, &lower_path);
#ifdef CONFIG_SECURITY_SELINUX
	security_secctx_to_secid(ESDFS_LOWER_SECCTX,
				 strlen(ESDFS_LOWER_SECCTX),
				 &sbi->lower_secid);
#endif
	/*
	 * No need to call interpose because we already have a positive
	 * dentry, which was instantiated by d_make_root.  Just need to
	 * d_rehash it.
	 */
	d_rehash(sb->s_root);
	if (!silent)
		esdfs_msg(sb, KERN_INFO, "mounted on top of %s type %s\n",
			dev_name, lower_sb->s_type->name);

	if (!ESDFS_DERIVE_PERMS(sbi))
		goto out;

	/* let user know that we ignore this option in derived mode */
	if (memcmp(&sbi->upper_perms,
		   &esdfs_perms_table[ESDFS_PERMS_UPPER_LEGACY],
		   sizeof(struct esdfs_perms)))
		esdfs_msg(sb, KERN_WARNING, "'upper' mount option ignored in derived mode\n");

	/* all derived modes start with the same, basic root */
	memcpy(&sbi->upper_perms,
	       &esdfs_perms_table[ESDFS_PERMS_UPPER_DERIVED],
	       sizeof(struct esdfs_perms));

	/*
	 * In Android 3.0 all user conent in the emulated storage tree was
	 * stored in /data/media.  Android 4.2 introduced multi-user support,
	 * which required that the primary user's content be migrated from
	 * /data/media to /data/media/0.  The framework then uses bind mounts
	 * to create per-process namespaces to isolate each user's tree at
	 * /data/media/N.  This approach of having each user in a common root
	 * is now considered "legacy" by the sdcard service.
	 */
	if (test_opt(sbi, DERIVE_LEGACY)) {
		ESDFS_I(inode)->tree = ESDFS_TREE_ROOT_LEGACY;
		sbi->obb_parent = dget(sb->s_root);
	/*
	 * Android 4.4 reorganized this sturcture yet again, so that the
	 * primary user's content was again at the root.  Secondary users'
	 * content is found in Android/user/N.  Emulated internal storage still
	 * seems to use the legacy tree, but secondary external storage uses
	 * this method.
	 */
	} else if (test_opt(sbi, DERIVE_UNIFIED))
		ESDFS_I(inode)->tree = ESDFS_TREE_ROOT;
	/*
	 * Later versions of Android organize user content using quantum
	 * entanglement, which has a low probability of being supported by
	 * this driver.
	 */
	else
		esdfs_msg(sb, KERN_WARNING, "unsupported derived permissions mode\n");

	/* initialize root inode */
	esdfs_derive_perms(sb->s_root);

	goto out;

out_freeroot:
	dput(sb->s_root);
out_iput:
	iput(inode);
out_sput:
	/* drop refs we took earlier */
	atomic_dec(&lower_sb->s_active);
out_free:
	kfree(ESDFS_SB(sb));
	sb->s_fs_info = NULL;
out_pput:
	path_put(&lower_path);

out:
	return err;
}
Exemplo n.º 18
0
int unionfs_rmdir(struct inode *dir, struct dentry *dentry)
{
	int err = 0;
	struct unionfs_dir_state *namelist = NULL;

	print_entry_location();
	lock_dentry(dentry);
	fist_print_dentry("IN unionfs_rmdir: ", dentry);

	/* check if this unionfs directory is empty or not */
	err = check_empty(dentry, &namelist);
	if (err) {
#if 0
		/* vfs_rmdir(our caller) unhashed the dentry.  This will recover
		 * the Unionfs inode number for the directory itself, but the 
		 * children are already lost.  It seems that tmpfs manages its
		 * way around this by upping the refcount on everything.
		 *
		 * Even if we do this, we still lose the inode numbers of the
		 * children.  The best way to fix this is to fix the VFS (or
		 * use persistent inode maps). */
		if (d_unhashed(dentry))
			d_rehash(dentry);
#endif
		goto out;
	}
#ifdef UNIONFS_DELETE_ALL
	if (IS_SET(dir->i_sb, DELETE_ALL)) {
		/* delete all. */
		err = unionfs_rmdir_all(dir, dentry, namelist);
	} else {		/* Delete the first directory. */
#endif
		err = unionfs_rmdir_first(dir, dentry, namelist);
		/* create whiteout */
		if (!err) {
			err = create_whiteout(dentry, dbstart(dentry));
		} else {
			int new_err;

			if (dbstart(dentry) == 0)
				goto out;

			/* exit if the error returned was NOT -EROFS */
			if (!IS_COPYUP_ERR(err))
				goto out;

			new_err = create_whiteout(dentry, dbstart(dentry) - 1);
			if (new_err != -EEXIST)
				err = new_err;
		}

#ifdef UNIONFS_DELETE_ALL
	}
#endif
      out:
	/* call d_drop so the system "forgets" about us */
	if (!err)
		d_drop(dentry);

	if (namelist)
		free_rdstate(namelist);

	unlock_dentry(dentry);
	print_exit_status(err);
	return err;
}
Exemplo n.º 19
0
/*
 * our custom d_alloc_root work-alike
 *
 * we can't use d_alloc_root if we want to use our own interpose function
 * unchanged, so we simply call our own "fake" d_alloc_root
 */
static struct dentry *sdcardfs_d_alloc_root(struct super_block *sb)
{
	struct dentry *ret = NULL;

	if (sb) {
		static const struct qstr name = {
			.name = "/",
			.len = 1
		};

		ret = d_alloc(NULL, &name);
		if (ret) {
			d_set_d_op(ret, &sdcardfs_ci_dops);
			ret->d_sb = sb;
			ret->d_parent = ret;
		}
	}
	return ret;
}
#endif

DEFINE_MUTEX(sdcardfs_super_list_lock);
LIST_HEAD(sdcardfs_super_list);
EXPORT_SYMBOL_GPL(sdcardfs_super_list_lock);
EXPORT_SYMBOL_GPL(sdcardfs_super_list);

/*
 * There is no need to lock the sdcardfs_super_info's rwsem as there is no
 * way anyone can have a reference to the superblock at this point in time.
 */
static int sdcardfs_read_super(struct super_block *sb, const char *dev_name,
						void *raw_data, int silent)
{
	int err = 0;
	int debug;
	struct super_block *lower_sb;
	struct path lower_path;
	struct sdcardfs_sb_info *sb_info;
	struct inode *inode;

	printk(KERN_INFO "sdcardfs version 2.0\n");

	if (!dev_name) {
		printk(KERN_ERR
		       "sdcardfs: read_super: missing dev_name argument\n");
		err = -EINVAL;
		goto out;
	}

	printk(KERN_INFO "sdcardfs: dev_name -> %s\n", dev_name);
	printk(KERN_INFO "sdcardfs: options -> %s\n", (char *)raw_data);

	/* parse lower path */
	err = kern_path(dev_name, LOOKUP_FOLLOW | LOOKUP_DIRECTORY,
			&lower_path);
	if (err) {
		printk(KERN_ERR	"sdcardfs: error accessing lower directory '%s'\n", dev_name);
		goto out;
	}

	/* allocate superblock private data */
	sb->s_fs_info = kzalloc(sizeof(struct sdcardfs_sb_info), GFP_KERNEL);
	if (!SDCARDFS_SB(sb)) {
		printk(KERN_CRIT "sdcardfs: read_super: out of memory\n");
		err = -ENOMEM;
		goto out_free;
	}

	sb_info = sb->s_fs_info;
	/* parse options */
	err = parse_options(sb, raw_data, silent, &debug, &sb_info->options);
	if (err) {
		printk(KERN_ERR	"sdcardfs: invalid options\n");
		goto out_freesbi;
	}

	/* set the lower superblock field of upper superblock */
	lower_sb = lower_path.dentry->d_sb;
	atomic_inc(&lower_sb->s_active);
	sdcardfs_set_lower_super(sb, lower_sb);

	/* inherit maxbytes from lower file system */
	sb->s_maxbytes = lower_sb->s_maxbytes;

	/*
	 * Our c/m/atime granularity is 1 ns because we may stack on file
	 * systems whose granularity is as good.
	 */
	sb->s_time_gran = 1;

	sb->s_magic = SDCARDFS_SUPER_MAGIC;
	sb->s_op = &sdcardfs_sops;

	/* get a new inode and allocate our root dentry */
	inode = sdcardfs_iget(sb, lower_path.dentry->d_inode, 0);
	if (IS_ERR(inode)) {
		err = PTR_ERR(inode);
		goto out_sput;
	}
	sb->s_root = d_make_root(inode);
 	if (!sb->s_root) {
 		err = -ENOMEM;
		goto out_iput;
 	}
	d_set_d_op(sb->s_root, &sdcardfs_ci_dops);

	/* link the upper and lower dentries */
	sb->s_root->d_fsdata = NULL;
	err = new_dentry_private_data(sb->s_root);
	if (err)
		goto out_freeroot;

	/* set the lower dentries for s_root */
	sdcardfs_set_lower_path(sb->s_root, &lower_path);

	/*
	 * No need to call interpose because we already have a positive
	 * dentry, which was instantiated by d_make_root.  Just need to
	 * d_rehash it.
	 */
	d_rehash(sb->s_root);

	/* setup permission policy */
	sb_info->obbpath_s = kzalloc(PATH_MAX, GFP_KERNEL);
	mutex_lock(&sdcardfs_super_list_lock);
	if(sb_info->options.multiuser) {
		setup_derived_state(sb->s_root->d_inode, PERM_PRE_ROOT, sb_info->options.fs_user_id, AID_ROOT, false, sb->s_root->d_inode);
		snprintf(sb_info->obbpath_s, PATH_MAX, "%s/obb", dev_name);
		/*err =  prepare_dir(sb_info->obbpath_s,
					sb_info->options.fs_low_uid,
					sb_info->options.fs_low_gid, 00755);*/
	} else {
		setup_derived_state(sb->s_root->d_inode, PERM_ROOT, sb_info->options.fs_user_id, AID_ROOT, false, sb->s_root->d_inode);
		snprintf(sb_info->obbpath_s, PATH_MAX, "%s/Android/obb", dev_name);
	}
	fix_derived_permission(sb->s_root->d_inode);
	sb_info->sb = sb;
	list_add(&sb_info->list, &sdcardfs_super_list);
	mutex_unlock(&sdcardfs_super_list_lock);

	if (!silent)
		printk(KERN_INFO "sdcardfs: mounted on top of %s type %s\n",
				dev_name, lower_sb->s_type->name);
	goto out; /* all is well */

	/* no longer needed: free_dentry_private_data(sb->s_root); */
out_freeroot:
	dput(sb->s_root);
out_iput:
	iput(inode);
out_sput:
	/* drop refs we took earlier */
	atomic_dec(&lower_sb->s_active);
out_freesbi:
	kfree(SDCARDFS_SB(sb));
	sb->s_fs_info = NULL;
out_free:
	path_put(&lower_path);

out:
	return err;
}
Exemplo n.º 20
0
/*
 * There is no need to lock the wrapfs_super_info's rwsem as there is no
 * way anyone can have a reference to the superblock at this point in time.
 */
static int wrapfs_read_super(struct super_block *sb, void *raw_data, int silent)
{
	int err = 0;
	struct super_block *lower_sb;
	struct path lower_path;
	char *dev_name = (char *) raw_data;
	struct inode *inode;

	if (!dev_name) {
		printk(KERN_ERR
		       "wrapfs: read_super: missing dev_name argument\n");
		err = -EINVAL;
		goto out;
	}

	/* parse lower path */
	err = kern_path(dev_name, LOOKUP_FOLLOW | LOOKUP_DIRECTORY,
			&lower_path);
	if (err) {
		printk(KERN_ERR	"wrapfs: error accessing "
		       "lower directory '%s'\n", dev_name);
		goto out;
	}

	/* allocate superblock private data */
	sb->s_fs_info = kzalloc(sizeof(struct wrapfs_sb_info), GFP_KERNEL);
	if (!WRAPFS_SB(sb)) {
		printk(KERN_CRIT "wrapfs: read_super: out of memory\n");
		err = -ENOMEM;
		goto out_free;
	}

	/* set the lower superblock field of upper superblock */
	lower_sb = lower_path.dentry->d_sb;
	atomic_inc(&lower_sb->s_active);
	wrapfs_set_lower_super(sb, lower_sb);

	/* inherit maxbytes from lower file system */
	sb->s_maxbytes = lower_sb->s_maxbytes;

	/*
	 * Our c/m/atime granularity is 1 ns because we may stack on file
	 * systems whose granularity is as good.
	 */
	sb->s_time_gran = 1;

	sb->s_op = &wrapfs_sops;

	/* get a new inode and allocate our root dentry */
	inode = wrapfs_iget(sb, lower_path.dentry->d_inode);
	if (IS_ERR(inode)) {
		err = PTR_ERR(inode);
		goto out_sput;
	}
	sb->s_root = d_alloc_root(inode);
	if (!sb->s_root) {
		err = -ENOMEM;
		goto out_iput;
	}
	d_set_d_op(sb->s_root, &wrapfs_dops);

	/* link the upper and lower dentries */
	sb->s_root->d_fsdata = NULL;
	err = new_dentry_private_data(sb->s_root);
	if (err)
		goto out_freeroot;

	/* if get here: cannot have error */

	/* set the lower dentries for s_root */
	wrapfs_set_lower_path(sb->s_root, &lower_path);

	/*
	 * No need to call interpose because we already have a positive
	 * dentry, which was instantiated by d_alloc_root.  Just need to
	 * d_rehash it.
	 */
	d_rehash(sb->s_root);
	if (!silent)
		printk(KERN_INFO
		       "wrapfs: mounted on top of %s type %s\n",
		       dev_name, lower_sb->s_type->name);
	goto out; /* all is well */

	/* no longer needed: free_dentry_private_data(sb->s_root); */
out_freeroot:
	dput(sb->s_root);
out_iput:
	iput(inode);
out_sput:
	/* drop refs we took earlier */
	atomic_dec(&lower_sb->s_active);
	kfree(WRAPFS_SB(sb));
	sb->s_fs_info = NULL;
out_free:
	path_put(&lower_path);

out:
	return err;
}
/*
 * RENAME
 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
 * different file handle for the same inode after a rename (e.g. when
 * moving to a different directory). A fail-safe method to do so would
 * be to look up old_dir/old_name, create a link to new_dir/new_name and
 * rename the old file using the sillyrename stuff. This way, the original
 * file in old_dir will go away when the last process iput()s the inode.
 *
 * FIXED.
 * 
 * It actually works quite well. One needs to have the possibility for
 * at least one ".nfs..." file in each directory the file ever gets
 * moved or linked to which happens automagically with the new
 * implementation that only depends on the dcache stuff instead of
 * using the inode layer
 *
 * Unfortunately, things are a little more complicated than indicated
 * above. For a cross-directory move, we want to make sure we can get
 * rid of the old inode after the operation.  This means there must be
 * no pending writes (if it's a file), and the use count must be 1.
 * If these conditions are met, we can drop the dentries before doing
 * the rename.
 */
static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
		      struct inode *new_dir, struct dentry *new_dentry)
{
	struct inode *old_inode = old_dentry->d_inode;
	struct inode *new_inode = new_dentry->d_inode;
	struct dentry *dentry = NULL, *rehash = NULL;
	int error = -EBUSY;

	/*
	 * To prevent any new references to the target during the rename,
	 * we unhash the dentry and free the inode in advance.
	 */
	if (!d_unhashed(new_dentry)) {
		d_drop(new_dentry);
		rehash = new_dentry;
	}

	dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
		 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
		 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
		 atomic_read(&new_dentry->d_count));

	/*
	 * First check whether the target is busy ... we can't
	 * safely do _any_ rename if the target is in use.
	 *
	 * For files, make a copy of the dentry and then do a 
	 * silly-rename. If the silly-rename succeeds, the
	 * copied dentry is hashed and becomes the new target.
	 */
	if (!new_inode)
		goto go_ahead;
	if (S_ISDIR(new_inode->i_mode))
		goto out;
	else if (atomic_read(&new_dentry->d_count) > 1) {
		int err;
		/* copy the target dentry's name */
		dentry = d_alloc(new_dentry->d_parent,
				 &new_dentry->d_name);
		if (!dentry)
			goto out;

		/* silly-rename the existing target ... */
		err = nfs_sillyrename(new_dir, new_dentry);
		if (!err) {
			new_dentry = rehash = dentry;
			new_inode = NULL;
			/* instantiate the replacement target */
			d_instantiate(new_dentry, NULL);
		}

		/* dentry still busy? */
		if (atomic_read(&new_dentry->d_count) > 1) {
#ifdef NFS_PARANOIA
			printk("nfs_rename: target %s/%s busy, d_count=%d\n",
			       new_dentry->d_parent->d_name.name,
			       new_dentry->d_name.name,
			       atomic_read(&new_dentry->d_count));
#endif
			goto out;
		}
	}

go_ahead:
	/*
	 * ... prune child dentries and writebacks if needed.
	 */
	if (atomic_read(&old_dentry->d_count) > 1) {
		nfs_wb_all(old_inode);
		shrink_dcache_parent(old_dentry);
	}

	if (new_inode)
		d_delete(new_dentry);

	nfs_zap_caches(new_dir);
	nfs_zap_caches(old_dir);
	error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
					   new_dir, &new_dentry->d_name);
out:
	if (rehash)
		d_rehash(rehash);
	if (!error && !S_ISDIR(old_inode->i_mode))
		d_move(old_dentry, new_dentry);

	/* new dentry created? */
	if (dentry)
		dput(dentry);
	return error;
}
Exemplo n.º 22
0
static int
onload_alloc_file(tcp_helper_resource_t *thr, oo_sp ep_id, int flags,
                  int fd_type)
{
  struct qstr name = { .name = "" };
#ifdef EFX_HAVE_STRUCT_PATH
  struct path path;
#define my_dentry path.dentry
#else
  struct dentry *dentry;
#define my_dentry dentry
#endif
  struct file *file;
  int fd;
  struct inode *inode;
  ci_private_t *priv;
  struct file_operations *fops;

  fops = oo_fops_by_type(fd_type);
  if( fops == NULL )
    return -EINVAL;
  ci_assert_equal(fops->owner, THIS_MODULE);

  inode = new_inode(onload_mnt->mnt_sb);
  if( inode == NULL )
    return -ENOMEM;
#ifdef EFX_FSTYPE_HAS_MOUNT
  inode->i_ino = get_next_ino();
#endif
  if( fd_type == CI_PRIV_TYPE_NETIF )
    inode->i_mode = S_IRWXUGO;
  if( fd_type == CI_PRIV_TYPE_TCP_EP || fd_type == CI_PRIV_TYPE_UDP_EP )
    inode->i_mode = 
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,21)
        /* in 2.6.18 this flag makes us "socket" and sendmsg crashes;
         * see sock_from_file() */
                    S_IFSOCK |
#endif
                    S_IRWXUGO;
  else
    inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
  inode->i_uid = current_fsuid();
  inode->i_gid = current_fsgid();
  priv = &container_of(inode, struct onload_inode, vfs_inode)->priv;
  priv->thr = thr;
  priv->sock_id = ep_id;
  priv->fd_type = fd_type;

  fd = get_unused_fd();
  if( fd < 0 ) {
    iput(inode);
    return fd;
  }
  /*ci_log("[%d]%s(%d:%d) return %d priv=%p", current->pid, __func__,
         thr->id, ep_id, fd, priv);*/

#ifdef EFX_FSTYPE_HAS_MOUNT
#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,37)
  path.dentry = d_alloc(onload_mnt->mnt_sb->s_root, &name);
  if( path.dentry != NULL )
    path.dentry->d_op = &onloadfs_dentry_operations;
#else
  path.dentry = d_alloc_pseudo(onload_mnt->mnt_sb, &name);
#endif
#else /* EFX_FSTYPE_HAS_MOUNT */
#ifdef EFX_HAVE_D_DNAME
  my_dentry = d_alloc(onload_mnt->mnt_sb->s_root, &name);
#else
  {
    char str[32];
    name.len = onloadfs_name(&container_of(inode, struct onload_inode,
                                           vfs_inode)->priv,
                             str, sizeof(str));
    name.name = str;
    name.hash = inode->i_ino;
    my_dentry = d_alloc(onload_mnt->mnt_sb->s_root, &name);
  }
#endif
#endif /* EFX_FSTYPE_HAS_MOUNT */

  if( my_dentry == NULL ) {
    put_unused_fd(fd);
    iput(inode);
    return -ENOMEM;
  }

#if !defined(EFX_FSTYPE_HAS_MOUNT) || defined(EFX_OLD_MOUNT_PSEUDO)
  my_dentry->d_op = &onloadfs_dentry_operations;
#if !defined(EFX_HAVE_STRUCT_PATH) && defined(EFX_HAVE_D_DNAME)
  my_dentry->d_flags &= ~DCACHE_UNHASHED;
#endif
#endif
  d_instantiate(my_dentry, inode);
#ifndef EFX_HAVE_D_DNAME
  d_rehash(my_dentry);
#endif
  inode->i_fop = fops;

#ifdef EFX_HAVE_STRUCT_PATH
  path.mnt = mntget(onload_mnt);
  file = alloc_file(&path, FMODE_READ | FMODE_WRITE, fops);
#else
  file = alloc_file(onload_mnt, dentry, FMODE_READ | FMODE_WRITE, fops);
#endif
  if( file == NULL) {
#ifdef EFX_HAVE_STRUCT_PATH
    path_put(&path);
#else
    dput(dentry);
    iput(inode);
#endif
    put_unused_fd(fd);
    return -ENFILE;
  }

  priv->_filp = file;
  file->f_flags = O_RDWR | (flags & O_NONBLOCK);
  file->f_pos = 0;
  file->private_data = priv;

  if( flags & O_CLOEXEC ) {
    struct files_struct *files = current->files;
    struct fdtable *fdt;
    spin_lock(&files->file_lock);
    fdt = files_fdtable(files);
    rcu_assign_pointer(fdt->fd[fd], file);
    efx_set_close_on_exec(fd, fdt);
    spin_unlock(&files->file_lock);
  } else
    fd_install(fd, file);
  try_module_get(THIS_MODULE);

  ci_assert_equal(file->f_op, fops);
  return fd;
}

void onload_priv_free(ci_private_t *priv)
{
  if( priv->_filp->f_vfsmnt != onload_mnt)
    ci_free(priv);
  /* inode will free the priv automatically */
}


int
oo_create_fd(tcp_helper_endpoint_t* ep, int flags, int fd_type)
{
  int fd;
  tcp_helper_resource_t *trs = ep->thr;
  citp_waitable_obj *wo = SP_TO_WAITABLE_OBJ(&trs->netif, ep->id);

  efab_thr_ref(trs);
  fd = onload_alloc_file(trs, ep->id, flags, fd_type);
  if( fd < 0 ) {
    efab_thr_release(trs);
    OO_DEBUG_ERR(ci_log("%s: onload_alloc_file failed (%d)", __FUNCTION__, fd));
    return fd;
  }
  ci_atomic32_and(&wo-> waitable.sb_aflags,
                  ~(CI_SB_AFLAG_ORPHAN | CI_SB_AFLAG_TCP_IN_ACCEPTQ));

  return fd;
}
Exemplo n.º 23
0
DENT_T *
vnode_iop_lookup(
    INODE_T *dir,
    struct dentry *dent,
    struct nameidata *nd
)
{
    char *name;
    mdki_boolean_t rele = FALSE;
    int err;
    VNODE_T *dvp;
    VNODE_T *rt_vnode;                  /* returned vnode */
    INODE_T *rt_inode = NULL;           /* returned inode ptr */
    DENT_T * real_dentry;
    DENT_T *found_dentry = dent;
    VATTR_T *vap;
    struct lookup_ctx ctx;
    CALL_DATA_T cd;

    ASSERT_I_SEM_MINE(dir);
    /* We can find our parent entry via the dentry provided to us. */
    ASSERT(dent->d_parent->d_inode == dir);

    if (dent->d_name.len > NAME_MAX)
        return ERR_PTR(-ENAMETOOLONG);
    name = /* drop the const */(char *) dent->d_name.name;
    mdki_linux_init_call_data(&cd);

    /* We pass along the dentry, as well as the parent inode so that
     * mvop_linux_lookup_* has everything it needs, even if it is passed in
     * the realvp, and it gets back a negative dentry.
     */
    dvp = ITOV(dir);
    ctx.dentrypp = &found_dentry;
    ctx.flags = LOOKUP_CTX_VALID;

    err = VOP_LOOKUP(dvp, name, &rt_vnode, (struct pathname *)NULL,
                     VNODE_LF_LOOKUP, NULL, &cd, &ctx);
    err = mdki_errno_unix_to_linux(err);

    if (!err) {
        ASSERT(rt_vnode != NULL);
        if (MDKI_INOISCLRVN(VTOI(rt_vnode))) {
            /* unwrap to the real object */
            ASSERT(CVN_TO_DENT(rt_vnode));
            rt_inode = CVN_TO_INO(rt_vnode);
            if (MDKI_INOISMVFS(rt_inode)) {
                VN_HOLD(ITOV(rt_inode));
                VN_RELE(rt_vnode);
                rt_vnode = ITOV(rt_inode);
            } else {
                igrab(rt_inode);
                VN_RELE(rt_vnode);
                rt_vnode = NULL;
            }
        } else
            rt_inode = VTOI(rt_vnode);
    }
    if (!err && (found_dentry != dent)) {
        mdki_linux_destroy_call_data(&cd);
        /* The hold was granted in makeloopnode() in the 'nocover' case. */
        if (rt_vnode != NULL)
            VN_RELE(rt_vnode);
        else
            iput(rt_inode);
        /*
         * found_dentry is the real socket/block/char device node's dentry.
         * See mvop_linux_lookup_component().
         *
         * For sockets, we use a dentry in our tree (we fill in the
         * provided dentry "dent") linked to the inode of the real
         * object.  This lets file name operations work in our
         * namespace, and lets socket connections all work (as they're
         * keyed off of the inode address) from inside to outside &
         * v.v.
         *
         * We also do this for VCHR, VBLK devices, and it seems to work OK
         * (e.g. make a node the same as /dev/tty, you can write to it)
         */
        switch (found_dentry->d_inode->i_mode & S_IFMT) {
          case S_IFSOCK:
          case S_IFCHR:
          case S_IFBLK:
            ASSERT(dent->d_inode == NULL);
            MDKI_SET_DOPS(dent, &vnode_shadow_dentry_ops);
            igrab(found_dentry->d_inode);
            VNODE_D_ADD(dent, found_dentry->d_inode);
            VNODE_DPUT(found_dentry);
            found_dentry = NULL; /* tell caller to use original dentry */
            break;
          default:
            /* use returned dentry */
            break;
        }
        return(found_dentry);
    }

    /* We need to pass back dentry ops even for negative dentries, I think.
     * Shadow inodes will have been taken care of in lookup_component.
     */
    if (dent->d_op != &vnode_shadow_dentry_ops) {
        if (dent->d_parent->d_op == &vnode_setview_dentry_ops)
            MDKI_SET_DOPS(dent, &vnode_setview_dentry_ops);
        else
            MDKI_SET_DOPS(dent, &vnode_dentry_ops);
    }
    vap = VATTR_ALLOC();
    if (vap == NULL) {
        err = -ENOMEM;
        goto alloc_err;
    }
    if (!err && MDKI_INOISMVFS(rt_inode)) {
        /* fetch attributes & place in inode */
        VATTR_SET_MASK(vap, AT_ALL);
        err = VOP_GETATTR(rt_vnode, vap, GETATTR_FLAG_UPDATE_ATTRS, &cd);
        err = mdki_errno_unix_to_linux(err);
        if (err == -EOPNOTSUPP)          /* ignore it */
            err = 0;
        else if (err)
            rele = TRUE;
        else if ((rt_vnode->v_flag & VLOOPROOT) != 0 &&
                 rt_inode == vnlayer_get_urdir_inode())
        {
            /* return the real root */
            VN_RELE(rt_vnode);
            VATTR_FREE(vap);
            mdki_linux_destroy_call_data(&cd);
            return VNODE_DGET(vnlayer_get_root_dentry());
        }
        else if (vnlayer_looproot_vp != NULL &&
                 rt_vnode == vnlayer_looproot_vp &&
                 (real_dentry = MVOP_DENT(rt_inode,
                                          &vnode_dentry_ops)) != NULL)
        {
            /* return the real /view */
            VN_RELE(rt_vnode);
            VATTR_FREE(vap);
            mdki_linux_destroy_call_data(&cd);
            return real_dentry;
        }
    }
    VATTR_FREE(vap);
alloc_err:
    mdki_linux_destroy_call_data(&cd);

    /* It's an mnode-based object, set up a dentry for it */

    /* We don't return ENOENT.  For Linux, the negative dentry is enough */
    switch (err) {
      case -ENOENT:
        err = 0;
        ASSERT(rt_inode == NULL);
        VNODE_D_ADD(dent, rt_inode);
        break;
      case 0:
        /* We will consume the count on rt_inode as a reference for dent */
        /*
         * For VOB vnodes, we maintain two separate dentry trees for
         * the vnodes.  One tree is for setview-mode names (process
         * sets to a view context, then looks directly at the VOB
         * mountpoint without any cover vnodes in the path).  The
         * other tree is for view-extended naming into a VOB, with
         * dentries starting at the view tag and covering non-VOB
         * objects until crossing a mount point into a VOB.
         *
         * Mostly the system doesn't care, as long as it goes down the
         * tree from parent to child, since it will be traversing only one
         * of the dentry trees.  But when the cache misses, the system calls
         * this lookup method and wants to get a dentry in return.
         * There are standard interfaces ( d_splice_alias() in 2.6) 
         * which can find a good dentry  referencing the inode returned
         * by the file system's lookup method, but these methods don't 
         * work right when we have VOB directory vnodes with both setview 
         * and view-extended dentries.  We implement our own function
         * [vnlayer_inode2dentry_internal()] which knows the
         * distinctions and the rules for determining that an existing
         * attached dentry is valid for the lookup request.
         *
         * We have our own d_compare() function which forces all VOB
         * lookups to come to the inode lookup method (this function),
         * and then we get to choose the right dentry to return.  We
         * have our own lookup cache inside MVFS so we don't care that
         * the dentry cache is always missing on our names.
         *
         * If we have to make a new dentry, we may need to merge it
         * with an NFS-created temporary dentry using d_move()
         * (d_splice_alias() would do this for us, but we can't use it
         * for reasons listed above).
         */
        /*
         * We want to find the "right" dentry (if there is one), so
         * look for one that has a d_parent with the same dentry ops
         * (indicating it's in the same dentry tree).
         */
        if (S_ISDIR(rt_inode->i_mode)) {
            /*
             * It has been empirically shown that we have to check the 
             * parent of the dentry.  If the parent has been checked out
             * it is possible for the cache lookup to return an inode
             * from the tree below the old parent directory.  If this 
             * happens on a rename, the system will panic because the
             * Linux rename code checks the parent of the returned
             * dentry to see that it matches what it has for a parent.
             */
            found_dentry = vnlayer_inode2dentry_internal(rt_inode,
                                                         dent->d_parent, NULL,
                                                         dent->d_op);
        } else {
            /*
             * For non-directories, we also need to consider the
             * parent & the requested name so that
             * vnlayer_inode2dentry_internal() finds the right dentry.
             * (There may be multiple hard links; we want the one in
             * the same directory with the same name)
             */
            found_dentry = vnlayer_inode2dentry_internal(rt_inode,
                                                         dent->d_parent,
                                                         &dent->d_name,
                                                         dent->d_op);
        }
        if (found_dentry != NULL) {
            ASSERT(found_dentry->d_inode == rt_inode);
            /*
             * If the existing one is a disconnected dentry, we need
             * to move the old one to the new one (just like
             * d_splice_alias) to get the proper name/parent attached
             * in the dcache.
             */
            if ((found_dentry->d_flags & DCACHE_DISCONNECTED) != 0) {
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,7)
                ASSERT((dent->d_flags & DCACHE_UNHASHED) != 0);
#else
                ASSERT((dent->d_vfs_flags & DCACHE_UNHASHED) != 0);
#endif
                d_rehash(dent);
                d_move(found_dentry, dent);
            } 
            /* Release our count.  found_dentry also references inode. */
            iput(rt_inode);
            return found_dentry;
        }
        /*
         * Nothing suitable, wire it up to the proposed dentry.
         */
        VNODE_D_ADD(dent, rt_inode);
        break;
      default:
        /* some other error case */
        if (rele)
            VN_RELE(rt_vnode);
        break;
    }
    if (err)
        return ERR_PTR(err);
    else
        return NULL;
}
Exemplo n.º 24
0
static int hpfs_unlink(struct inode *dir, struct dentry *dentry)
{
	const unsigned char *name = dentry->d_name.name;
	unsigned len = dentry->d_name.len;
	struct quad_buffer_head qbh;
	struct hpfs_dirent *de;
	struct inode *inode = dentry->d_inode;
	dnode_secno dno;
	int r;
	int rep = 0;
	int err;

	hpfs_lock(dir->i_sb);
	hpfs_adjust_length(name, &len);
again:
	err = -ENOENT;
	de = map_dirent(dir, hpfs_i(dir)->i_dno, name, len, &dno, &qbh);
	if (!de)
		goto out;

	err = -EPERM;
	if (de->first)
		goto out1;

	err = -EISDIR;
	if (de->directory)
		goto out1;

	r = hpfs_remove_dirent(dir, dno, de, &qbh, 1);
	switch (r) {
	case 1:
		hpfs_error(dir->i_sb, "there was error when removing dirent");
		err = -EFSERROR;
		break;
	case 2:		/* no space for deleting, try to truncate file */

		err = -ENOSPC;
		if (rep++)
			break;

		dentry_unhash(dentry);
		if (!d_unhashed(dentry)) {
			hpfs_unlock(dir->i_sb);
			return -ENOSPC;
		}
		if (generic_permission(inode, MAY_WRITE) ||
		    !S_ISREG(inode->i_mode) ||
		    get_write_access(inode)) {
			d_rehash(dentry);
		} else {
			struct iattr newattrs;
			/*printk("HPFS: truncating file before delete.\n");*/
			newattrs.ia_size = 0;
			newattrs.ia_valid = ATTR_SIZE | ATTR_CTIME;
			err = notify_change(dentry, &newattrs);
			put_write_access(inode);
			if (!err)
				goto again;
		}
		hpfs_unlock(dir->i_sb);
		return -ENOSPC;
	default:
		drop_nlink(inode);
		err = 0;
	}
	goto out;

out1:
	hpfs_brelse4(&qbh);
out:
	if (!err)
		hpfs_update_directory_times(dir);
	hpfs_unlock(dir->i_sb);
	return err;
}
Exemplo n.º 25
0
/*
 * There is no need to lock the wrapfs_super_info's rwsem as there is no
 * way anyone can have a reference to the superblock at this point in time.
 */
static int wrapfs_read_super(struct super_block *sb, void *raw_data, int silent)
{
	int err = 0, i = 0;
	struct wrapfs_dentry_info *lower_root_info = NULL;
	struct inode *inode = NULL;
	if (!raw_data) {
		printk(KERN_ERR
			"u2fs: read_super: missing data argument\n");
		err = -EINVAL;
		goto out;
	}

	/* allocate superblock private data */

	sb->s_fs_info = kzalloc(sizeof(struct wrapfs_sb_info), GFP_KERNEL);
	if (!WRAPFS_SB(sb)) {
		printk(KERN_CRIT "u2fs: read_super: out of memory\n");
		err = -ENOMEM;
		goto out_free;
	}

	atomic_set(&WRAPFS_SB(sb)->generation, 1);
	WRAPFS_SB(sb)->high_branch_id = -1;
/*      Parsing the Inputs      */
	lower_root_info = wrapfs_parse_options(sb, raw_data);
	if (IS_ERR(lower_root_info)) {
		printk(KERN_ERR
			"u2fs: read_super: error while parsing options"
			"(err = %ld)\n", PTR_ERR(lower_root_info));

		err = PTR_ERR(lower_root_info);
		lower_root_info = NULL;
		goto out_free;
	}

	/* set the lower superblock field of upper superblock */
	for (i = 0; i <= 1; i++) {
		struct dentry *d = lower_root_info->lower_paths[i].dentry;
		atomic_inc(&d->d_sb->s_active);
		wrapfs_set_lower_super_idx(sb, i, d->d_sb);
	}

	/* inherit maxbytes from highest priority branch */
	sb->s_maxbytes = wrapfs_lower_super_idx(sb, 0)->s_maxbytes;

	/*
	* Our c/m/atime granularity is 1 ns because we may stack on file
	* systems whose granularity is as good.
	*/
	sb->s_time_gran = 1;
	sb->s_op = &wrapfs_sops;

	/* get a new inode and allocate our root dentry */

	inode = wrapfs_new_iget(sb, iunique(sb, 1));
	if (IS_ERR(inode)) {
		err = PTR_ERR(inode);
		goto out_sput;
	}

	sb->s_root = d_alloc_root(inode);
	if (unlikely(!sb->s_root)) {
		err = -ENOMEM;
		goto out_iput;
	}

	d_set_d_op(sb->s_root, &wrapfs_dops);

	/* link the upper and lower dentries */
	sb->s_root->d_fsdata = NULL;
	err = new_dentry_private_data(sb->s_root);
	if (unlikely(err))
		goto out_freeroot;

	/* if get here: cannot have error */
	/* set the lower dentries for s_root */

	for (i = 0; i <= 1 ; i++) {
		struct dentry *d;
		struct vfsmount *m;
		d = lower_root_info->lower_paths[i].dentry;
		m = lower_root_info->lower_paths[i].mnt;
		wrapfs_set_lower_dentry_idx(sb->s_root, i, d);
		wrapfs_set_lower_mnt_idx(sb->s_root, i, m);
	}
	atomic_set(&WRAPFS_D(sb->s_root)->generation, 1);
	if (atomic_read(&inode->i_count) <= 1)
		wrapfs_fill_inode(sb->s_root, inode);
	/*
	* No need to call interpose because we already have a positive
	* dentry, which was instantiated by d_alloc_root.  Just need to
	* d_rehash it.
	*/
	d_rehash(sb->s_root);
	if (!silent)
		printk(KERN_INFO
			"u2fs: mounted on top of type\n");
	goto out;

	/* all is well */
	/* no longer needed: free_dentry_private_data(sb->s_root); */
out_freeroot:
	if (WRAPFS_D(sb->s_root)) {
		kfree(WRAPFS_D(sb->s_root)->lower_paths);
		free_dentry_private_data(sb->s_root);
	}
	dput(sb->s_root);
out_iput:
	iput(inode);
out_sput:
	/* drop refs we took earlier */
	if (lower_root_info && !IS_ERR(lower_root_info)) {
		for (i = 0; i <= 1; i++) {
			struct dentry *d;
			d = lower_root_info->lower_paths[i].dentry;
			atomic_dec(&d->d_sb->s_active);
			path_put(&lower_root_info->lower_paths[i]);
		}
		kfree(lower_root_info->lower_paths);
		kfree(lower_root_info);
		lower_root_info = NULL;
	}
out_free:
	kfree(WRAPFS_SB(sb)->data);
	kfree(WRAPFS_SB(sb));
	sb->s_fs_info = NULL;
out:
	if (lower_root_info && !IS_ERR(lower_root_info)) {
		kfree(lower_root_info->lower_paths);
		kfree(lower_root_info);
	}
	return err;
}