Exemplo n.º 1
0
void
adj_extreme(int nlhs, mxArray * plhs[], int nrhs, const mxArray * prhs[])
{
	dd_PolyhedraPtr P;
	dd_ErrorType err;
	dd_MatrixPtr H,V;
	dd_SetFamilyPtr A;
	
	if (nrhs  == 1 && nlhs == 2 && mxIsStruct(prhs[0])) {
		dd_set_global_constants();  /* First, this must be called. */
		H = FT_get_H_MatrixPtr(prhs[0]);		

		P = dd_DDMatrix2Poly(H, &err); /* compute the second representation */
		if (err == dd_NoError) {
			V = dd_CopyGenerators(P);
			A = dd_CopyAdjacency(P);
			plhs[0] = FT_set_V_MatrixPtr(V);
			plhs[1] = FT_set_SetFamilyPtr(A);
			dd_FreeMatrix(V);
			dd_FreeSetFamily(A);
		} else {
    			dd_WriteErrorMessages(stdout,err);
    			mexErrMsgTxt("CDD returned an error, see above(!) for details");    			
  		}
		dd_FreeMatrix(H);
  		dd_FreePolyhedra(P);
  		return;
	} else {
		mexErrMsgTxt("adj_extreme expects an H input struct and produces a V output struct and the adjacency struct");
	}
}
Exemplo n.º 2
0
void
hull(int nlhs, mxArray * plhs[], int nrhs, const mxArray * prhs[])
{
	dd_PolyhedraPtr P;
	dd_ErrorType err;
	dd_MatrixPtr H,V;
	
	if (nrhs  == 1 && nlhs == 1 && mxIsStruct(prhs[0])) {
		V = FT_get_V_MatrixPtr(prhs[0]);		
		dd_set_global_constants();  /* First, this must be called. */

		P = dd_DDMatrix2Poly(V, &err); /* compute the second representation */
		if (err == dd_NoError) {
			H = dd_CopyInequalities(P);
			plhs[0] = FT_set_H_MatrixPtr(H);
			dd_FreeMatrix(H);
		} else {
    			dd_WriteErrorMessages(stdout,err);
    			mexErrMsgTxt("CDD returned an error, see above(!) for details");
  		}
		dd_FreeMatrix(V);
  		dd_FreePolyhedra(P);
  		return;
	} else {
		mexErrMsgTxt("hull expects a V input struct and produces an H output struct");
	}
}
Exemplo n.º 3
0
void
reduce_v(int nlhs, mxArray * plhs[], int nrhs, const mxArray * prhs[])
{
	dd_ErrorType err;
	dd_MatrixPtr V,V1;
	dd_rowset red;
	
	if (nrhs  == 1 && nlhs >= 1 && nlhs <= 2 && mxIsStruct(prhs[0])) {
		dd_set_global_constants();  /* First, this must be called. */
		V = FT_get_V_MatrixPtr(prhs[0]);		
		red = dd_RedundantRows(V, &err); /* find redundant rows */
		if (err == dd_NoError) {
			/* remove the red rows */
			V1 = dd_MatrixSubmatrix(V, red);
			plhs[0] = FT_set_V_MatrixPtr(V1);
			dd_FreeMatrix(V1);
			if (nlhs == 2) {
				plhs[1] = FT_set_Set(red);
			}
		} else {
    			dd_WriteErrorMessages(stdout,err);
    			mexErrMsgTxt("CDD returned an error, see above(!) for details");
  		}
		dd_FreeMatrix(V);
		set_free(red);
  		return;
	} else {
		mexErrMsgTxt("reduce_v expects an V input struct and produces a V output struct and an optional vector of removed vertices");
	}
}
Exemplo n.º 4
0
void
solve_lp(int nlhs, mxArray * plhs[], int nrhs, const mxArray * prhs[])
{
	/* The original LP data  m x n matrix 
	   = | b   -A  |
	     | c0  c^T |,

	where the LP to be solved is to
	maximize  c^T x  +   c0
	subj. to
	     A   x  <=  b.
	*/

	dd_ErrorType error=dd_NoError;
	dd_LPSolverType solver=dd_CrissCross; /* either DualSimplex or CrissCross */
	dd_LPPtr lp;   /* pointer to LP data structure that is not visible by user. */
  
	dd_set_global_constants(); /* First, this must be called once to use cddlib. */


	/* Input an LP using the cdd library  */
	lp = MB_get_LP_MatrixPtr(prhs[0]);

    
	/* Solve the LP by cdd LP solver. */
	dd_LPSolve(lp,solver,&error);
	if (error!=dd_NoError) dd_WriteErrorMessages(stdout, error);
	
	/* Take the solution. */
	plhs[0] = MB_set_LPsol_MatrixPtr(lp);


	/* Free allocated spaces. */
	dd_FreeLPData(lp);
}
Exemplo n.º 5
0
void
adjacency(int nlhs, mxArray * plhs[], int nrhs, const mxArray * prhs[])
{
	dd_PolyhedraPtr P;
	dd_ErrorType err;
	dd_MatrixPtr V;
	dd_SetFamilyPtr A;
	
		
	if (mxIsStruct(prhs[0])) {
		V = FT_get_V_MatrixPtr(prhs[0]);		
		dd_set_global_constants();  /* First, this must be called. */

		P = dd_DDMatrix2Poly(V, &err); /* compute the second representation */
		if (err == dd_NoError) {
			A = dd_CopyInputAdjacency(P);
			plhs[0] = FT_set_SetFamilyPtr(A);
			dd_FreeSetFamily(A);
		} else {
    			dd_WriteErrorMessages(stdout,err);
    			mexErrMsgTxt("CDD returned an error, see above(!) for details");
  		}
		dd_FreeMatrix(V);
  		dd_FreePolyhedra(P);
	}
}
Exemplo n.º 6
0
void implicit_linear(int nlhs, mxArray * plhs[], int nrhs, const mxArray * prhs[])
{
    dd_MatrixPtr H;
    dd_rowset rows;
    dd_ErrorType err;
    if (nrhs  == 1 && nlhs <= 2 && mxIsStruct(prhs[0])) {
        H = FT_get_H_MatrixPtr(prhs[0]);		
        dd_set_global_constants();  /* First, this must be called. */
        rows = dd_ImplicitLinearityRows(H, &err);

        if (err == dd_NoError) {
            int total, element, i;
            double* pr;

            total = set_card(rows);
            plhs[0] = mxCreateDoubleMatrix(total, 1, mxREAL);
            pr = mxGetPr(plhs[0]);
            
            for (i=1, element=0; i<=rows[0]; i++){
                if (set_member(i, rows)) {
                    pr[element++] = (double)i;
                }
            }
        } else {
            dd_WriteErrorMessages(stdout,err);
            mexErrMsgTxt("CDD returned an error, see above(!) for details");
        }
        dd_FreeMatrix(H);
        set_free(rows);
        return;
    } else {
        mexErrMsgTxt("hull expects a V input struct and produces an H output struct");
    }
    
}
Exemplo n.º 7
0
dd_LPPtr MB_get_LP_MatrixPtr(const mxArray * in)
{
	mxArray * tmpobj;
	dd_MatrixPtr A;
	int j;
	double * value;
	dd_ErrorType error=dd_NoError;
	dd_LPPtr lp;
	
	dd_set_global_constants(); /* First, this must be called once to use cddlib. */
	
	if (A=FT_get_H_MatrixPtr(in)) {
		/* set objective */
		if ((tmpobj = mxGetField(in, 0, "obj")) &&
		    (mxGetNumberOfDimensions(tmpobj) <= 2) && 
		    (mxGetM(tmpobj) == 1)) {
		    	value = mxGetPr(tmpobj);
  			A->objective = dd_LPmin;
  			dd_set_d(A->rowvec[0], 0.0); /* there is no constant term */
  			for (j = 1; j < A->colsize; j++)
  				dd_set_d(A->rowvec[j],value[j-1]);
  			lp=dd_Matrix2LP(A, &error);
  			dd_FreeMatrix(A);
			return lp;
  		}else{
  			mexErrMsgTxt("Error in the setting of LP objective.");
  		}
	}else{
		mexErrMsgTxt("Error in the setting of LP matrix.");
	}
	return 0;
}
Exemplo n.º 8
0
int main( int argc, char* argv[])
{
	/* Due to a bug in some standard C libraries that have shipped with
	 * MPW, zero is passed to MLMain below.  (If you build this program
	 * as an MPW tool, you can change the zero to argc.)
	 */
    dd_set_global_constants();  /* First, this must be called to use cddlib. */

	argc = argc; /* suppress warning */
	return MLMain( 0, argv);
}
Exemplo n.º 9
0
/*
 * Find the extreme vertices between lower_bound and upper_bound of the convex
 * hull of ineqs.
 *
 * ineqs: row-major order matrix of total length nrow*ncols
 * nrows: Number of rows in matrix
 * ncols: Number of columns in matrix
 * lower_bound: lower bound of solution space on x-axis
 * upper_bound: upper bound of solution space on y-axis
 * output size: Set to size of result
 *
 * Returns array representing 3 by (output_size/3) matrix, where each row is:
 *   x_i, y_i, l_i
 * Where x_i, y_i are the coordinates of the vertex, and l_i is the index of
 * the input inequality that constrains the solution space *to the right* of
 * vertex i.
 */
double *extreme_vertices(const double *ineqs, const size_t nrows,
                         const size_t ncols, float lower_bound,
                         float upper_bound, /*OUT*/ size_t * output_size)
{

  /* Preconditions */
  assert(ineqs != NULL);
  assert(ncols == 3);
  assert(output_size != NULL);

  /* Check for approx equal lower and upper bound */
  if (abs(lower_bound - upper_bound) < EPS)
    return NULL;

  assert(lower_bound <= upper_bound);

  /*
   * Initialize library
   * TODO: Do we want to do this on every call?
   */
  dd_set_global_constants();
  dd_ErrorType err;
  dd_MatrixPtr generators;
  dd_MatrixPtr m =
      init_ineq_doubles(ineqs, nrows, ncols, lower_bound, upper_bound);
  dd_SetFamilyPtr incidence;

  /* Outputs */
  dd_PolyhedraPtr poly = dd_DDMatrix2Poly(m, &err);
  if (err != dd_NoError) {
    return NULL;
  }

  /* Get generators */
  generators = dd_CopyGenerators(poly);

  /* Get incidence */
  incidence = dd_CopyIncidence(poly);

  double *result =
      list_extreme_vertices(generators, incidence, nrows, m->rowsize - 1,
          output_size);

  dd_FreeMatrix(m);
  dd_FreeMatrix(generators);
  dd_FreePolyhedra(poly);
  dd_FreeSetFamily(incidence);
  dd_free_global_constants();

  return result;
}
Exemplo n.º 10
0
void 
file_ine(int nlhs, mxArray * plhs[], int nrhs, const mxArray * prhs[])
/* Ine file input, V output, similar to extreme */
{
    dd_PolyhedraPtr poly;
    dd_MatrixPtr M;
    dd_ErrorType err;
    char *inputfile;
    FILE *reading=NULL;
    dd_MatrixPtr A, G;
    dd_SetFamilyPtr GI,GA;
    int buflen, status;
    
    dd_set_global_constants();  /* First, this must be called. */
    if (nrhs  == 1 && nlhs <=2 && mxIsChar(prhs[0])) {
        /*  dd_SetInputFile(&reading,inputfile, &err); */
        buflen = mxGetN(prhs[0]) + 1;
        inputfile= mxCalloc(buflen, sizeof(char));
        status = mxGetString(prhs[0], inputfile, buflen);
        if ( (reading = fopen(inputfile,"r") )== NULL) {
            mxErrMsgTxt("Input file not found\n");
            return;
        }
        printf(" Input file opened. \n");    
        M=dd_PolyFile2Matrix(reading, &err);
        
        if (err==dd_NoError) {
            poly=dd_DDMatrix2Poly(M, &err); /* compute the second representation */
            if (err!=dd_NoError) {
                dd_WriteErrorMessages(stdout,err);
                mxErrMsgTxt("CDD internal error\n");
                return;
            }
            A=dd_CopyInequalities(poly);
            G=dd_CopyGenerators(poly);
            GI=dd_CopyInputIncidence(poly);
            GA=dd_CopyAdjacency(poly);
            plhs[0] = FT_set_V_MatrixPtr(G);
            plhs[1] = ZH_set_Vlist(GI,GA);
            dd_FreePolyhedra(poly);
            dd_FreeMatrix(M);
            return;
        }
    }
    else {
        mexErrMsgTxt("file-ine expects an file input");
    }
    return;
}
Exemplo n.º 11
0
void
copy_h(int nlhs, mxArray * plhs[], int nrhs, const mxArray * prhs[])
{
	dd_MatrixPtr H;
	
	if (nrhs  == 1 && nlhs == 1 && mxIsStruct(prhs[0])) {
		dd_set_global_constants();  /* First, this must be called. */
		H = FT_get_H_MatrixPtr(prhs[0]);		
		plhs[0] = FT_set_H_MatrixPtr(H);
		dd_FreeMatrix(H);
  		return;
	} else {
		mexErrMsgTxt("copy_h expects a H input struct and produces a H output struct");
	}
}
Exemplo n.º 12
0
int PASCAL WinMain( HINSTANCE hinstCurrent, HINSTANCE hinstPrevious, LPSTR lpszCmdLine, int nCmdShow)
{
	char  buff[512];
	char FAR * buff_start = buff;
	char FAR * argv[32];
	char FAR * FAR * argv_end = argv + 32;

    dd_set_global_constants();  /* First, this must be called to use cddlib. */

	hinstPrevious = hinstPrevious; /* suppress warning */

	if( !MLInitializeIcon( hinstCurrent, nCmdShow)) return 1;
	MLScanString( argv, &argv_end, &lpszCmdLine, &buff_start);
	return MLMain( argv_end - argv, argv);
}
Exemplo n.º 13
0
void
find_interior_DS(int nlhs, mxArray * plhs[], int nrhs, const mxArray * prhs[])
{
  /* uses Dual Simplex method */
	/* We would like to find an iterior point
	   for a polyhedron in H representation 
	     A   x  <=  b.
	*/

	dd_ErrorType error=dd_NoError;
	dd_LPSolverType solver=dd_DualSimplex;
	dd_LPPtr lp, lp1;   /* pointer to LP data structure that is not visible by user. */
	dd_MatrixPtr A;
	int j;  
  
	dd_set_global_constants(); /* First, this must be called once to use cddlib. */


	/* Input an LP using the cdd library  */
	/* lp = MB_get_LP_MatrixPtr(prhs[0]); */

	if (A=FT_get_H_MatrixPtr(prhs[0])) {
		/* set objective */
		A->objective = dd_LPmin;
		for (j = 0; j < A->colsize; j++)
			dd_set_d(A->rowvec[j],0.0);
		lp=dd_Matrix2LP(A, &error);
  		dd_FreeMatrix(A);
	}else{
		mexErrMsgTxt("Error in the setting of LP matrix.");
	}

	
	lp1=dd_MakeLPforInteriorFinding(lp);
	dd_LPSolve(lp1,solver,&error);
	if (error!=dd_NoError) dd_WriteErrorMessages(stdout, error);
	    
	/* Take the solution. */
	plhs[0] = MB_set_LPsol_MatrixPtr(lp1);


	/* Free allocated spaces. */
	dd_FreeLPData(lp);
	dd_FreeLPData(lp1);
}
Exemplo n.º 14
0
int main(int argc, char *argv[])
{
  dd_MatrixPtr M=NULL;
  dd_rowrange i,m;
  dd_ErrorType err=dd_NoError;
  dd_rowindex newpos;
  dd_rowset impl_linset,redset;
  time_t starttime, endtime;
  dd_DataFileType inputfile;
  FILE *reading=NULL;

  dd_set_global_constants();  /* First, this must be called. */

  if (argc>1) strcpy(inputfile,argv[1]);
  if (argc<=1 || !SetInputFile(&reading,argv[1])){
    dd_WriteProgramDescription(stdout);
    fprintf(stdout,"\ncddlib test program to check redundancy of an H/V-representation.\n");
    dd_SetInputFile(&reading,inputfile, &err);
  }
  if (err==dd_NoError) {
    M=dd_PolyFile2Matrix(reading, &err);
  }
  else {
    fprintf(stderr,"Input file not found\n");
    goto _L99;
  }

  if (err!=dd_NoError) goto _L99;

  m=M->rowsize;
  fprintf(stdout, "Canonicalize the matrix.\n");
    
  time(&starttime);
  dd_MatrixCanonicalize(&M, &impl_linset, &redset, &newpos, &err);
  time(&endtime);
  
  if (err!=dd_NoError) goto _L99;

  fprintf(stdout, "Implicit linearity rows are:"); set_fwrite(stdout, impl_linset);

  fprintf(stdout, "\nRedundant rows are:"); set_fwrite(stdout, redset);
  fprintf(stdout, "\n");
  
  fprintf(stdout, "Nonredundant representation:\n");
  fprintf(stdout, "The new row positions are as follows (orig:new).\nEach redundant row has the new number 0.\nEach deleted duplicated row has a number nagative of the row that\nrepresents its equivalence class.\n");
  
  for (i=1; i<=m; i++){
   fprintf(stdout, " %ld:%ld",i, newpos[i]); 
  }
  fprintf(stdout, "\n");
  dd_WriteMatrix(stdout, M);
  
  dd_WriteTimes(stdout,starttime,endtime);

  set_free(redset);
  set_free(impl_linset);
  dd_FreeMatrix(M);
  free(newpos);

_L99:;
  if (err!=dd_NoError) dd_WriteErrorMessages(stderr,err);
  return 0;
}
Exemplo n.º 15
0
int main(int argc, char *argv[])
{
  dd_PolyhedraPtr poly;
  dd_LPPtr lp;
  dd_MatrixPtr M,A;
  dd_ErrorType err=dd_NoError;
  dd_DataFileType inputfile,outputfile;
  FILE *reading=NULL, *writing;

  dd_set_global_constants();  /* First, this must be called. */

  if (argc>1) strcpy(inputfile,argv[1]);
  if (argc<=1 || !SetInputFile(&reading,argv[1])){
    dd_WriteProgramDescription(stdout);
    dd_SetInputFile(&reading,inputfile, &err);
  }
  if (err==dd_NoError) {
    M=dd_PolyFile2Matrix(reading, &err);
  }
  else {
    printf("Input file not found\n");
    goto _L99;
  }

  if (err!=dd_NoError) goto _L99;

  if (M->objective==dd_LPnone){ /* do representation conversion */
    poly=dd_DDMatrix2Poly2(M, dd_LexMin, &err);
    /* equivalent to poly=dd_DDMatrix2Poly2(M, &err) when the second argument is set to dd_LexMin. */
    if (err!=dd_NoError) goto _L99;

    dd_SetWriteFileName(inputfile, outputfile, 'o', poly->representation);
    SetWriteFile(&writing, outputfile);
    dd_WriteProgramDescription(writing);
    dd_WriteRunningMode(writing, poly);
    switch (poly->representation) {
    case dd_Inequality:
      fprintf(writing, "ext_file: Generators\n");
      A=dd_CopyGenerators(poly);
      dd_WriteMatrix(writing,A);
      dd_FreeMatrix(A);
      break;

    case dd_Generator:
      fprintf(writing, "ine_file: Inequalities\n");
      A=dd_CopyInequalities(poly);
      dd_WriteMatrix(writing,A);
      dd_FreeMatrix(A);
      break;

    default:
      break;
    }
    dd_WriteDDTimes(writing,poly);
    fclose(writing);

    dd_SetWriteFileName(inputfile, outputfile, 'a', poly->representation);
    SetWriteFile(&writing, outputfile);
    dd_WriteAdjacency(writing,poly);
    fclose(writing);

    dd_SetWriteFileName(inputfile, outputfile, 'j', poly->representation);
    SetWriteFile(&writing, outputfile);
    dd_WriteInputAdjacency(writing,poly);
    fclose(writing);

    dd_SetWriteFileName(inputfile, outputfile, 'i', poly->representation);
    SetWriteFile(&writing, outputfile);
    dd_WriteIncidence(writing,poly);
    fclose(writing);

    dd_SetWriteFileName(inputfile, outputfile, 'n', poly->representation);
    SetWriteFile(&writing, outputfile);
    dd_WriteInputIncidence(writing,poly);
    fclose(writing);

    dd_FreeMatrix(M);
    dd_FreePolyhedra(poly);

  } else { /* solve the LP */
    lp=dd_Matrix2LP(M, &err);  if (err!=dd_NoError) goto _L99;
    dd_LPSolve(lp,dd_DualSimplex,&err);  if (err!=dd_NoError) goto _L99;

    dd_SetWriteFileName(inputfile, outputfile, 's', M->representation);
    SetWriteFile(&writing, outputfile);
    dd_WriteLPResult(writing, lp, err);
    fclose(writing);

    dd_FreeMatrix(M);
    dd_FreeLPData(lp);
  }
_L99:
  if (err!=dd_NoError) dd_WriteErrorMessages(stdout,err);
  return 0;
}
Exemplo n.º 16
0
int main(int argc, char *argv[])
{
  /* The original LP data m x n matrix 
     = | b   -A  |
       | c0  c^T |,
   
  where the LP to be solved is to
  maximize  c^T x  +   c0
  subj. to
            A   x  <=  b.
  */
        
  dd_ErrorType err=dd_NoError;
  dd_LPSolverType solver=dd_DualSimplex; 
     /* either DualSimplex or CrissCross */
  dd_LPPtr lp,lp1;   
    /* pointer to LP data structure that is not visible by user. */
  dd_LPSolutionPtr lps,lps1; 
    /* pointer to LP solution data that is visible by user. */

  dd_MatrixPtr M;
  dd_colrange j;
  dd_DataFileType inputfile;

  dd_set_global_constants();

  printf("\n--- Solving an LP with dd_LPSolve, and Finding an Interior Point  ---\n");

/* Input an LP using the cdd library  */
  dd_SetInputFile(&reading,inputfile,&err);
  if (err!=dd_NoError) goto _L99;
  M=dd_PolyFile2Matrix(reading, &err);
  if (err!=dd_NoError) goto _L99;
  /* dd_WriteMatrix(stdout, M);  */
  lp=dd_Matrix2LP(M, &err);
  if (err!=dd_NoError) goto _L99;

/* Solve the LP by cdd LP solver. */
  printf("\n--- Running dd_LPSolve ---\n");
  solver=dd_DualSimplex;
  dd_LPSolve(lp, solver, &err);  /* Solve the LP */
  if (err!=dd_NoError) goto _L99;

/* Write the LP solutions by cdd LP reporter. */
/*  dd_WriteLPResult(stdout, lp, err); */
/*  dd_WriteLPResult(writing, lp, err); */

/* One can access the solutions by loading them.  See dd_WriteLPResult
   for outputing the results correctly. */
  lps=dd_CopyLPSolution(lp);
  if (lps->LPS==dd_Optimal){
    printf("Optimal solution found:\n");
    printf("  primal_solution\n");
    for (j=1; j<lps->d; j++) {
      printf("  %3ld : ",j);
      dd_WriteNumber(stdout,lps->sol[j]);
      printf("\n");
    }
    printf("  dual_solution\n");
    for (j=1; j<lps->d; j++){
      if (lps->nbindex[j+1]>0) {
        printf("  %3ld : ",lps->nbindex[j+1]);
        dd_WriteNumber(stdout,lps->dsol[j]); printf("\n");
      }
    }
    printf("  optimal_value : "); dd_WriteNumber(stdout,lps->optvalue);
    printf("\n");
  }

/* Find an interior point with cdd LP library. */
  printf("\n--- Running dd_FindInteriorPoint ---\n");
  lp1=dd_MakeLPforInteriorFinding(lp);
  printf("The LP to be solved for finding an interior point:\n");  
  dd_WriteLP(stdout,lp1);
  dd_LPSolve(lp1,solver,&err);
  if (err!=dd_NoError) goto _L99;

  /* Write an interior point. */
  lps1=dd_CopyLPSolution(lp1);
  if (dd_Positive(lps1->optvalue)){
    printf("\nAn interior point found: (");
    for (j=1; j <(lps1->d)-1; j++) {
      dd_WriteNumber(stdout,lps1->sol[j]);
    }
    printf(")\n");
  }
  if (dd_Negative(lps1->optvalue)) 
    printf("\nThe feasible region is empty.\n");
  if (dd_EqualToZero(lps1->optvalue)) 
    printf("\nThe feasible region is nonempty but has no interior point.\n");

/* Free allocated spaces. */
  dd_FreeLPSolution(lps);
  dd_FreeLPData(lp);
  dd_FreeLPSolution(lps1);
  dd_FreeLPData(lp1);
  dd_FreeMatrix(M);

_L99:;
  if (err!=dd_NoError) dd_WriteErrorMessages(stdout, err);
  dd_free_global_constants();  /* At the end, this should be called. */
  return 0;
}
Exemplo n.º 17
0
void init_library()
{
    dd_set_global_constants();dd_debug = false;
}
Exemplo n.º 18
0
SEXP impliedLinearity(SEXP m, SEXP h)
{
    GetRNGstate();
    if (! isMatrix(m))
        error("'m' must be matrix");
    if (! isLogical(h))
        error("'h' must be logical");

    if (LENGTH(h) != 1)
        error("'h' must be scalar");

    if (! isString(m))
        error("'m' must be character");

    SEXP m_dim;
    PROTECT(m_dim = getAttrib(m, R_DimSymbol));
    int nrow = INTEGER(m_dim)[0];
    int ncol = INTEGER(m_dim)[1];
    UNPROTECT(1);

    if (nrow <= 1)
        error("no use if only one row");
    if (ncol <= 3)
        error("no use if only one col");

    for (int i = 0; i < nrow; i++) {
        const char *foo = CHAR(STRING_ELT(m, i));
        if (strlen(foo) != 1)
            error("column one of 'm' not zero-or-one valued");
        if (! (foo[0] == '0' || foo[0] == '1'))
            error("column one of 'm' not zero-or-one valued");
    }
    if (! LOGICAL(h)[0])
        for (int i = nrow; i < 2 * nrow; i++) {
            const char *foo = CHAR(STRING_ELT(m, i));
            if (strlen(foo) != 1)
                error("column two of 'm' not zero-or-one valued");
            if (! (foo[0] == '0' || foo[0] == '1'))
                error("column two of 'm' not zero-or-one valued");
        }

    dd_set_global_constants();

    /* note actual type of "value" is mpq_t (defined in cddmp.h) */
    mytype value;
    dd_init(value);

    dd_MatrixPtr mf = dd_CreateMatrix(nrow, ncol - 1);
    /* note our matrix has one more column than Fukuda's */

    /* representation */
    if(LOGICAL(h)[0])
        mf->representation = dd_Inequality;
    else
        mf->representation = dd_Generator;

    mf->numbtype = dd_Rational;

    /* linearity */
    for (int i = 0; i < nrow; i++) {
        const char *foo = CHAR(STRING_ELT(m, i));
        if (foo[0] == '1')
            set_addelem(mf->linset, i + 1);
        /* note conversion from zero-origin to one-origin indexing */
    }

    /* matrix */
    for (int j = 1, k = nrow; j < ncol; j++)
        for (int i = 0; i < nrow; i++, k++) {
            const char *rat_str = CHAR(STRING_ELT(m, k));
            if (mpq_set_str(value, rat_str, 10) == -1) {
                dd_FreeMatrix(mf);
                dd_clear(value);
                dd_free_global_constants();
                error("error converting string to GMP rational");
            }
            mpq_canonicalize(value);
            dd_set(mf->matrix[i][j - 1], value);
            /* note our matrix has one more column than Fukuda's */
        }

    dd_ErrorType err = dd_NoError;
    dd_rowset out = dd_ImplicitLinearityRows(mf, &err);

    if (err != dd_NoError) {
        rr_WriteErrorMessages(err);
        set_free(out);
        dd_FreeMatrix(mf);
        dd_clear(value);
        dd_free_global_constants();
        error("failed");
    }

    SEXP foo;
    PROTECT(foo = rr_set_fwrite(out));

    set_free(out);
    dd_FreeMatrix(mf);
    dd_clear(value);
    dd_free_global_constants();

    PutRNGstate();

    UNPROTECT(1);
    return foo;
}
Exemplo n.º 19
0
int main(int argc, char *argv[])
{
  dd_MatrixPtr M=NULL,M1=NULL,M2=NULL;
  dd_colrange j,s,d;
  dd_ErrorType err=dd_NoError;
  dd_rowset redset,impl_linset;
  dd_rowindex newpos;
  mytype val;
  dd_DataFileType inputfile;
  FILE *reading=NULL;

  dd_set_global_constants();  /* First, this must be called. */

  dd_init(val);
  if (argc>1) strcpy(inputfile,argv[1]);
  if (argc<=1 || !SetInputFile(&reading,argv[1])){
    dd_WriteProgramDescription(stdout);
    fprintf(stdout,"\ncddlib test program to apply Fourier's Elimination to an H-polyhedron.\n");
    dd_SetInputFile(&reading,inputfile, &err);
  }
  if (err==dd_NoError) {
    M=dd_PolyFile2Matrix(reading, &err);
  }
  else {
    fprintf(stderr,"Input file not found\n");
    goto _L99;
  }

  if (err!=dd_NoError) goto _L99;

  d=M->colsize;
  M2=dd_CopyMatrix(M);

  printf("How many variables to elminate? (max %ld): ",d-1);
  scanf("%ld",&s);
  
  if (s>0 && s < d){
    for (j=1; j<=s; j++){
      M1=dd_FourierElimination(M2, &err);
      printf("\nRemove the variable %ld.  The resulting redundant system.\n",d-j);
      dd_WriteMatrix(stdout, M1);

      dd_MatrixCanonicalize(&M1, &impl_linset, &redset, &newpos, &err);
      if (err!=dd_NoError) goto _L99;

      fprintf(stdout, "\nRedundant rows: ");
      set_fwrite(stdout, redset);

      dd_FreeMatrix(M2);
      M2=M1;
      set_free(redset);
      set_free(impl_linset);
      free(newpos);
    }

    printf("\nNonredundant representation:\n");
    dd_WriteMatrix(stdout, M1);
  } else {
    printf("Value out of range\n");
  }

  dd_FreeMatrix(M);
  dd_FreeMatrix(M1);
  dd_clear(val);

_L99:;
  /* if (err!=dd_NoError) dd_WriteErrorMessages(stderr,err); */
  dd_free_global_constants();  /* At the end, this should be called. */
  return 0;
}
Exemplo n.º 20
0
int main(int argc, char *argv[])
{
  dd_MatrixPtr M1=NULL,M2=NULL,M2row=NULL,M1plus=NULL;
  dd_colrange d1;
  dd_rowrange i,m1,m2,m1plus;
  dd_ErrorType err=dd_NoError,err1=dd_NoError,err2=dd_NoError;
  dd_rowset delset,rowset2;
  dd_Arow cvec; /* certificate */  

  time_t starttime, endtime;
  dd_DataFileType inputfile1,inputfile2;
  FILE *reading1=NULL,*reading2=NULL;

  dd_set_global_constants();  /* First, this must be called. */

  dd_WriteProgramDescription(stdout);
  fprintf(stdout,"\ncddlib test program to check redundancy of additional data.\n");
  if (argc>2){
    strcpy(inputfile1,argv[1]);
    strcpy(inputfile2,argv[2]);
  }
  /* 
  if (argc<=2){
    fprintf(stdout,"\nUsage:\n   redexter file1 file2\n");
	goto _L99;
  }
  */
  if (!SetInputFile(&reading1,argv[1])){
    fprintf(stdout,"\nSpecify file1.\n");
    dd_SetInputFile(&reading1,inputfile1, &err1);
  }
  if (!SetInputFile(&reading2,argv[2])){
    fprintf(stdout,"\nSpecify the secondary file.\n");
    dd_SetInputFile(&reading2,inputfile2, &err2);
  }
  if ((err1==dd_NoError) && (err2==dd_NoError)) {
    M1=dd_PolyFile2Matrix(reading1, &err1);
    M2=dd_PolyFile2Matrix(reading2, &err2);
  }
  else {
    fprintf(stderr,"Input file(s) not found\n");
    goto _L99;
  }

  if ((err1!=dd_NoError) || (err2!=dd_NoError)) goto _L99;

  m1=M1->rowsize;
  m2=M2->rowsize;
  set_initialize(&delset,m2);
  m1plus=m1+1;
  if (M1->representation==dd_Generator){
    d1=(M1->colsize)+1;
  } else {
    d1=M1->colsize;
  }
  dd_InitializeArow(d1,&cvec);

  fprintf(stdout, "\nThe first matrix\n");
  dd_WriteMatrix(stdout, M1);
  fprintf(stdout, "\nThe second matrix\n");
  dd_WriteMatrix(stdout, M2);
  
  printf("\nChecking whether each row of the second matrix is redundant w.r.t. the first.\n");

  time(&starttime);

  for (i=1; i<=m2; i++){
    set_initialize(&rowset2,m2);
	set_addelem(rowset2, i);
    set_compl(delset, rowset2);
    M2row=dd_MatrixSubmatrix(M2, delset);
	M1plus=dd_MatrixAppend(M1,M2row); 
	
    if (dd_Redundant(M1plus, m1plus, cvec, &err)) {
	  printf("%ld-th row: redundant\n", i);
	} else {
	  printf("%ld-th row: non-redundant\n A certificate:", i);
	  dd_WriteArow(stdout, cvec, d1);
	}

    dd_FreeMatrix(M1plus);
	dd_FreeMatrix(M2row);
    set_free(rowset2);
  }

  time(&endtime);

  dd_WriteTimes(stdout,starttime,endtime);

  set_free(delset);
  dd_FreeMatrix(M1);
  dd_FreeMatrix(M2);

_L99:;
  if (err1!=dd_NoError) dd_WriteErrorMessages(stderr,err1);
  if (err2!=dd_NoError) dd_WriteErrorMessages(stderr,err2);
  return 0;
}
Exemplo n.º 21
0
Arquivo: redund.c Projeto: cran/rcdd
SEXP redundant(SEXP m, SEXP h)
{
    GetRNGstate();
    if (! isString(m))
        error("'m' must be character");
    if (! isMatrix(m))
        error("'m' must be matrix");
    if (! isLogical(h))
        error("'h' must be logical");
    if (LENGTH(h) != 1)
        error("'h' must be scalar");

    SEXP m_dim;
    PROTECT(m_dim = getAttrib(m, R_DimSymbol));
    int nrow = INTEGER(m_dim)[0];
    int ncol = INTEGER(m_dim)[1];
    UNPROTECT(1);

#ifdef WOOF
    printf("nrow = %d\n", nrow);
    printf("ncol = %d\n", ncol);
#endif /* WOOF */

    if (nrow < 2)
        error("less than 2 rows, cannot be redundant");
    if (ncol <= 2)
        error("no cols in m[ , - c(1, 2)]");

    for (int i = 0; i < nrow; i++) {
        const char *foo = CHAR(STRING_ELT(m, i));
        if (strlen(foo) != 1)
            error("column one of 'm' not zero-or-one valued");
        if (! (foo[0] == '0' || foo[0] == '1'))
            error("column one of 'm' not zero-or-one valued");
    }
    if (! LOGICAL(h)[0])
        for (int i = nrow; i < 2 * nrow; i++) {
            const char *foo = CHAR(STRING_ELT(m, i));
            if (strlen(foo) != 1)
                error("column two of 'm' not zero-or-one valued");
            if (! (foo[0] == '0' || foo[0] == '1'))
                error("column two of 'm' not zero-or-one valued");
        }

    dd_set_global_constants();

    /* note actual type of "value" is mpq_t (defined in cddmp.h) */
    mytype value;
    dd_init(value);

    dd_MatrixPtr mf = dd_CreateMatrix(nrow, ncol - 1);
    /* note our matrix has one more column than Fukuda's */

    /* representation */
    if(LOGICAL(h)[0])
        mf->representation = dd_Inequality;
    else
        mf->representation = dd_Generator;

    mf->numbtype = dd_Rational;

    /* linearity */
    for (int i = 0; i < nrow; i++) {
        const char *foo = CHAR(STRING_ELT(m, i));
        if (foo[0] == '1')
            set_addelem(mf->linset, i + 1);
        /* note conversion from zero-origin to one-origin indexing */
    }

    /* matrix */
    for (int j = 1, k = nrow; j < ncol; j++)
        for (int i = 0; i < nrow; i++, k++) {
            const char *rat_str = CHAR(STRING_ELT(m, k));
            if (mpq_set_str(value, rat_str, 10) == -1)
                ERROR_WITH_CLEANUP_3("error converting string to GMP rational");
            mpq_canonicalize(value);
            dd_set(mf->matrix[i][j - 1], value);
            /* note our matrix has one more column than Fukuda's */
        }

    dd_rowset impl_linset, redset;
    dd_rowindex newpos;
    dd_ErrorType err = dd_NoError;

    dd_MatrixCanonicalize(&mf, &impl_linset, &redset, &newpos, &err);

    if (err != dd_NoError) {
        rr_WriteErrorMessages(err);
        ERROR_WITH_CLEANUP_6("failed");
    }

    int mrow = mf->rowsize;
    int mcol = mf->colsize;

    if (mcol + 1 != ncol)
        ERROR_WITH_CLEANUP_6("Cannot happen!  computed matrix has"
            " wrong number of columns");

#ifdef WOOF
    printf("mrow = %d\n", mrow);
    printf("mcol = %d\n", mcol);
#endif /* WOOF */

    SEXP bar;
    PROTECT(bar = allocMatrix(STRSXP, mrow, ncol));

    /* linearity output */
    for (int i = 0; i < mrow; i++)
        if (set_member(i + 1, mf->linset))
            SET_STRING_ELT(bar, i, mkChar("1"));
        else
            SET_STRING_ELT(bar, i, mkChar("0"));
    /* note conversion from zero-origin to one-origin indexing */

    /* matrix output */
    for (int j = 1, k = mrow; j < ncol; j++)
        for (int i = 0; i < mrow; i++, k++) {
            dd_set(value, mf->matrix[i][j - 1]);
            /* note our matrix has one more column than Fukuda's */
            char *zstr = NULL;
            zstr = mpq_get_str(zstr, 10, value);
            SET_STRING_ELT(bar, k, mkChar(zstr));
            free(zstr);
        }

    if (mf->representation == dd_Inequality) {
        SEXP attr_name, attr_value;
        PROTECT(attr_name = ScalarString(mkChar("representation")));
        PROTECT(attr_value = ScalarString(mkChar("H")));
        setAttrib(bar, attr_name, attr_value);
        UNPROTECT(2);
    }
    if (mf->representation == dd_Generator) {
        SEXP attr_name, attr_value;
        PROTECT(attr_name = ScalarString(mkChar("representation")));
        PROTECT(attr_value = ScalarString(mkChar("V")));
        setAttrib(bar, attr_name, attr_value);
        UNPROTECT(2);
    }

    int impl_size = set_card(impl_linset);
    int red_size = set_card(redset);

    int nresult = 1;
    int iresult = 1;

    SEXP baz = NULL;
    if (impl_size > 0) {
        PROTECT(baz = rr_set_fwrite(impl_linset));
        nresult++;
    }

    SEXP qux = NULL;
    if (red_size > 0) {
        PROTECT(qux = rr_set_fwrite(redset));
        nresult++;
    }

    SEXP fred = NULL;
    {
        PROTECT(fred = allocVector(INTSXP, nrow));
        for (int i = 1; i <= nrow; i++)
            INTEGER(fred)[i - 1] = newpos[i];
        nresult++;
    }

#ifdef WOOF
    fprintf(stderr, "impl_size = %d\n", impl_size);
    fprintf(stderr, "red_size = %d\n", red_size);
    fprintf(stderr, "nresult = %d\n", nresult);
    if (baz)
        fprintf(stderr, "LENGTH(baz) = %d\n", LENGTH(baz));
    if (qux)
        fprintf(stderr, "LENGTH(qux) = %d\n", LENGTH(qux));
#endif /* WOOF */

    SEXP result, resultnames;
    PROTECT(result = allocVector(VECSXP, nresult));
    PROTECT(resultnames = allocVector(STRSXP, nresult));

    SET_STRING_ELT(resultnames, 0, mkChar("output"));
    SET_VECTOR_ELT(result, 0, bar);
    if (baz) {
        SET_STRING_ELT(resultnames, iresult, mkChar("implied.linearity"));
        SET_VECTOR_ELT(result, iresult, baz);
        iresult++;
    }
    if (qux) {
        SET_STRING_ELT(resultnames, iresult, mkChar("redundant"));
        SET_VECTOR_ELT(result, iresult, qux);
        iresult++;
    }
    {
        SET_STRING_ELT(resultnames, iresult, mkChar("new.position"));
        SET_VECTOR_ELT(result, iresult, fred);
        iresult++;
    }
    namesgets(result, resultnames);

    set_free(redset);
    set_free(impl_linset);
    free(newpos);
    dd_FreeMatrix(mf);
    dd_clear(value);
    dd_free_global_constants();

    PutRNGstate();
    UNPROTECT(nresult + 2);
    return result;
}
Exemplo n.º 22
0
SEXP allfaces(SEXP hrep)
{
    GetRNGstate();
    if (! isMatrix(hrep))
        error("'hrep' must be matrix");
    if (! isString(hrep))
        error("'hrep' must be character");

    SEXP hrep_dim;
    PROTECT(hrep_dim = getAttrib(hrep, R_DimSymbol));
    int nrow = INTEGER(hrep_dim)[0];
    int ncol = INTEGER(hrep_dim)[1];
    UNPROTECT(1);

    if (nrow <= 0)
        error("no rows in 'hrep'");
    if (ncol <= 3)
        error("three or fewer cols in hrep");

    for (int i = 0; i < nrow; ++i) {
        const char *foo = CHAR(STRING_ELT(hrep, i));
        if (strlen(foo) != 1)
            error("column one of 'hrep' not zero-or-one valued");
        if (! (foo[0] == '0' || foo[0] == '1'))
            error("column one of 'hrep' not zero-or-one valued");
    }

    dd_set_global_constants();

    /* note actual type of "value" is mpq_t (defined in cddmp.h) */
    mytype value;
    dd_init(value);

    dd_MatrixPtr mf = dd_CreateMatrix(nrow, ncol - 1);
    /* note our matrix has one more column than Fukuda's */

    mf->representation = dd_Inequality;
    mf->numbtype = dd_Rational;

    /* linearity */
    for (int i = 0; i < nrow; ++i) {
        const char *foo = CHAR(STRING_ELT(hrep, i));
        if (foo[0] == '1')
            set_addelem(mf->linset, i + 1);
        /* note conversion from zero-origin to one-origin indexing */
    }

    /* matrix */
    for (int j = 1, k = nrow; j < ncol; ++j)
        for (int i = 0; i < nrow; ++i, ++k) {
            const char *rat_str = CHAR(STRING_ELT(hrep, k));
            if (mpq_set_str(value, rat_str, 10) == -1) {
                dd_FreeMatrix(mf);
                dd_clear(value);
                dd_free_global_constants();
                error("error converting string to GMP rational");
            }
            mpq_canonicalize(value);
            dd_set(mf->matrix[i][j - 1], value);
            /* note our matrix has one more column than Fukuda's */
        }

    SEXP result;
    PROTECT(result = FaceEnum(mf));

    dd_FreeMatrix(mf);
    dd_clear(value);
    dd_free_global_constants();

    if (result == R_NilValue)
        error("failed");

    PutRNGstate();

    UNPROTECT(1);
    return result;
}