/* ** ** DGESL benchmark ** ** We would like to declare a[][lda], but c does not allow it. In this ** function, references to a[i][j] are written a[lda*i+j]. ** ** dgesl solves the double precision system ** a * x = b or trans(a) * x = b ** using the factors computed by dgeco or dgefa. ** ** on entry ** ** a double precision[n][lda] ** the output from dgeco or dgefa. ** ** lda integer ** the leading dimension of the array a . ** ** n integer ** the order of the matrix a . ** ** ipvt integer[n] ** the pivot vector from dgeco or dgefa. ** ** b double precision[n] ** the right hand side vector. ** ** job integer ** = 0 to solve a*x = b , ** = nonzero to solve trans(a)*x = b where ** trans(a) is the transpose. ** ** on return ** ** b the solution vector x . ** ** error condition ** ** a division by zero will occur if the input factor contains a ** zero on the diagonal. technically this indicates singularity ** but it is often caused by improper arguments or improper ** setting of lda . it will not occur if the subroutines are ** called correctly and if dgeco has set rcond .gt. 0.0 ** or dgefa has set info .eq. 0 . ** ** to compute inverse(a) * c where c is a matrix ** with p columns ** dgeco(a,lda,n,ipvt,rcond,z) ** if (!rcond is too small){ ** for (j=0,j<p,j++) ** dgesl(a,lda,n,ipvt,c[j][0],0); ** } ** ** linpack. this version dated 08/14/78 . ** cleve moler, university of new mexico, argonne national lab. ** ** functions ** ** blas daxpy,ddot */ static void dgesl(REAL *a,int lda,int n,int *ipvt,REAL *b,int job,int roll) { REAL t; int k,kb,l,nm1; if (roll) { nm1 = n - 1; if (job == 0) { /* job = 0 , solve a * x = b */ /* first solve l*y = b */ if (nm1 >= 1) for (k = 0; k < nm1; k++) { l = ipvt[k]; t = b[l]; if (l != k) { b[l] = b[k]; b[k] = t; } daxpy_r(n-(k+1),t,&a[lda*k+k+1],1,&b[k+1],1); } /* now solve u*x = y */ for (kb = 0; kb < n; kb++) { k = n - (kb + 1); b[k] = b[k]/a[lda*k+k]; t = -b[k]; daxpy_r(k,t,&a[lda*k+0],1,&b[0],1); } } else { /* job = nonzero, solve trans(a) * x = b */ /* first solve trans(u)*y = b */ for (k = 0; k < n; k++) { t = ddot_r(k,&a[lda*k+0],1,&b[0],1); b[k] = (b[k] - t)/a[lda*k+k]; } /* now solve trans(l)*x = y */ if (nm1 >= 1) for (kb = 1; kb < nm1; kb++) { k = n - (kb+1); b[k] = b[k] + ddot_r(n-(k+1),&a[lda*k+k+1],1,&b[k+1],1); l = ipvt[k]; if (l != k) { t = b[l]; b[l] = b[k]; b[k] = t; } } } } else { nm1 = n - 1; if (job == 0) { /* job = 0 , solve a * x = b */ /* first solve l*y = b */ if (nm1 >= 1) for (k = 0; k < nm1; k++) { l = ipvt[k]; t = b[l]; if (l != k) { b[l] = b[k]; b[k] = t; } daxpy_ur(n-(k+1),t,&a[lda*k+k+1],1,&b[k+1],1); } /* now solve u*x = y */ for (kb = 0; kb < n; kb++) { k = n - (kb + 1); b[k] = b[k]/a[lda*k+k]; t = -b[k]; daxpy_ur(k,t,&a[lda*k+0],1,&b[0],1); } } else { /* job = nonzero, solve trans(a) * x = b */ /* first solve trans(u)*y = b */ for (k = 0; k < n; k++) { t = ddot_ur(k,&a[lda*k+0],1,&b[0],1); b[k] = (b[k] - t)/a[lda*k+k]; } /* now solve trans(l)*x = y */ if (nm1 >= 1) for (kb = 1; kb < nm1; kb++) { k = n - (kb+1); b[k] = b[k] + ddot_ur(n-(k+1),&a[lda*k+k+1],1,&b[k+1],1); l = ipvt[k]; if (l != k) { t = b[l]; b[l] = b[k]; b[k] = t; } } } } }
void dgesl(int *a,int lda,int n,int *ipvt,int *b,int job,int roll) { int t; int k,kb,l,nm1; if (roll>=1) { nm1 = n - 1; if (job == 0) { if (nm1 >= 1) for (k = 0; k < nm1; k++) { l = ipvt[k]; t = b[l]; if (!(l == k)) { b[l] = b[k]; b[k] = t; } daxpy_r(n-(k+1),t,&a[lda*k+k+1],1,&b[k+1],1); } for (kb = 0; kb < n; kb++) { k = n - (kb + 1); b[k] = b[k]/a[lda*k+k]; t = -b[k]; daxpy_r(k,t,&a[lda*k+0],1,&b[0],1); } } else { for (k = 0; k < n; k++) { t = ddot_r(k,&a[lda*k+0],1,&b[0],1); b[k] = (b[k] - t)/a[lda*k+k]; } if (nm1 >= 1) for (kb = 1; kb < nm1; kb++) { k = n - (kb+1); b[k] = b[k] + ddot_r(n-(k+1),&a[lda*k+k+1],1,&b[k+1],1); l = ipvt[k]; if (!(l == k)) { t = b[l]; b[l] = b[k]; b[k] = t; } } } } else { nm1 = n - 1; if (job == 0) { if (nm1 >= 1) for (k = 0; k < nm1; k++) { l = ipvt[k]; t = b[l]; if (!(l == k)) { b[l] = b[k]; b[k] = t; } daxpy_ur(n-(k+1),t,&a[lda*k+k+1],1,&b[k+1],1); } for (kb = 0; kb < n; kb++) { k = n - (kb + 1); b[k] = b[k]/a[lda*k+k]; t = -b[k]; daxpy_ur(k,t,&a[lda*k+0],1,&b[0],1); } } else { for (k = 0; k < n; k++) { t = ddot_ur(k,&a[lda*k+0],1,&b[0],1); b[k] = (b[k] - t)/a[lda*k+k]; } if (nm1 >= 1) for (kb = 1; kb < nm1; kb++) { k = n - (kb+1); b[k] = b[k] + ddot_ur(n-(k+1),&a[lda*k+k+1],1,&b[k+1],1); l = ipvt[k]; if (!(l == k)) { t = b[l]; b[l] = b[k]; b[k] = t; } } } } }