Exemplo n.º 1
0
// PCA These calls to debug are rather sketchy because they may allocate memory. Fortunately they only occur if an error occurs.
int set_child_group(job_t *j, process_t *p, int print_errors)
{
    int res = 0;

    if (job_get_flag(j, JOB_CONTROL))
    {
        if (!j->pgid)
        {
            j->pgid = p->pid;
        }

        if (setpgid(p->pid, j->pgid))
        {
            if (getpgid(p->pid) != j->pgid && print_errors)
            {
                char pid_buff[128];
                char job_id_buff[128];
                char getpgid_buff[128];
                char job_pgid_buff[128];

                format_long_safe(pid_buff, p->pid);
                format_long_safe(job_id_buff, j->job_id);
                format_long_safe(getpgid_buff, getpgid(p->pid));
                format_long_safe(job_pgid_buff, j->pgid);

                debug_safe(1,
                           "Could not send process %s, '%s' in job %s, '%s' from group %s to group %s",
                           pid_buff,
                           p->argv0_cstr(),
                           job_id_buff,
                           j->command_cstr(),
                           getpgid_buff,
                           job_pgid_buff);

                safe_perror("setpgid");
                res = -1;
            }
        }
    }
    else
    {
        j->pgid = getpid();
    }

    if (job_get_flag(j, JOB_TERMINAL) && job_get_flag(j, JOB_FOREGROUND))
    {
        if (tcsetpgrp(0, j->pgid) && print_errors)
        {
            char job_id_buff[128];
            format_long_safe(job_id_buff, j->job_id);
            debug_safe(1, "Could not send job %s ('%s') to foreground", job_id_buff, j->command_cstr());
            safe_perror("tcsetpgrp");
            res = -1;
        }
    }

    return res;
}
Exemplo n.º 2
0
/**
   This function is a wrapper around fork. If the fork calls fails
   with EAGAIN, it is retried FORK_LAPS times, with a very slight
   delay between each lap. If fork fails even then, the process will
   exit with an error message.
*/
pid_t execute_fork(bool wait_for_threads_to_die)
{
    ASSERT_IS_MAIN_THREAD();

    if (wait_for_threads_to_die || JOIN_THREADS_BEFORE_FORK)
    {
        /* Make sure we have no outstanding threads before we fork. This is a pretty sketchy thing to do here, both because exec.cpp shouldn't have to know about iothreads, and because the completion handlers may do unexpected things. */
        iothread_drain_all();
    }

    pid_t pid;
    struct timespec pollint;
    int i;

    g_fork_count++;

    for (i=0; i<FORK_LAPS; i++)
    {
        pid = fork();
        if (pid >= 0)
        {
            return pid;
        }

        if (errno != EAGAIN)
        {
            break;
        }

        pollint.tv_sec = 0;
        pollint.tv_nsec = FORK_SLEEP_TIME;

        /*
          Don't sleep on the final lap - sleeping might change the
          value of errno, which will break the error reporting below.
        */
        if (i != FORK_LAPS-1)
        {
            nanosleep(&pollint, NULL);
        }
    }

    debug_safe(0, FORK_ERROR);
    safe_perror("fork");
    FATAL_EXIT();
    return 0;
}
Exemplo n.º 3
0
/// Perform output from builtins. May be called from a forked child, so don't do anything that may
/// allocate memory, etc.
bool do_builtin_io(const char *out, size_t outlen, const char *err, size_t errlen) {
    bool success = true;
    if (out && outlen) {
        if (write_loop(STDOUT_FILENO, out, outlen) < 0) {
            int e = errno;
            debug_safe(0, "Error while writing to stdout");
            safe_perror("write_loop");
            success = false;
            errno = e;
        }
    }

    if (err && errlen) {
        if (write_loop(STDERR_FILENO, err, errlen) < 0) {
            success = false;
        }
    }
    return success;
}
Exemplo n.º 4
0
/* Cover for debug_safe that can take an int. The format string should expect a %s */
static void debug_safe_int(int level, const char *format, int val)
{
    char buff[128];
    format_long_safe(buff, val);
    debug_safe(level, format, buff);
}
Exemplo n.º 5
0
/**
   Set up a childs io redirections. Should only be called by
   setup_child_process(). Does the following: First it closes any open
   file descriptors not related to the child by calling
   close_unused_internal_pipes() and closing the universal variable
   server file descriptor. It then goes on to perform all the
   redirections described by \c io.

   \param io the list of IO redirections for the child

   \return 0 on sucess, -1 on failiure
*/
static int handle_child_io(const io_chain_t &io_chain)
{
    for (size_t idx = 0; idx < io_chain.size(); idx++)
    {
        const io_data_t *io = io_chain.at(idx).get();
        int tmp;

        if (io->io_mode == IO_FD && io->fd == static_cast<const io_fd_t*>(io)->old_fd)
        {
            continue;
        }

        switch (io->io_mode)
        {
            case IO_CLOSE:
            {
                if (log_redirections) fprintf(stderr, "%d: close %d\n", getpid(), io->fd);
                if (close(io->fd))
                {
                    debug_safe_int(0, "Failed to close file descriptor %s", io->fd);
                    safe_perror("close");
                }
                break;
            }

            case IO_FILE:
            {
                // Here we definitely do not want to set CLO_EXEC because our child needs access
                CAST_INIT(const io_file_t *, io_file, io);
                if ((tmp=open(io_file->filename_cstr,
                              io_file->flags, OPEN_MASK))==-1)
                {
                    if ((io_file->flags & O_EXCL) &&
                            (errno ==EEXIST))
                    {
                        debug_safe(1, NOCLOB_ERROR, io_file->filename_cstr);
                    }
                    else
                    {
                        debug_safe(1, FILE_ERROR, io_file->filename_cstr);
                        safe_perror("open");
                    }

                    return -1;
                }
                else if (tmp != io->fd)
                {
                    /*
                      This call will sometimes fail, but that is ok,
                      this is just a precausion.
                    */
                    close(io->fd);

                    if (dup2(tmp, io->fd) == -1)
                    {
                        debug_safe_int(1,  FD_ERROR, io->fd);
                        safe_perror("dup2");
                        return -1;
                    }
                    exec_close(tmp);
                }
                break;
            }

            case IO_FD:
            {
                int old_fd = static_cast<const io_fd_t *>(io)->old_fd;
                if (log_redirections) fprintf(stderr, "%d: fd dup %d to %d\n", getpid(), old_fd, io->fd);

                /*
                  This call will sometimes fail, but that is ok,
                  this is just a precausion.
                */
                close(io->fd);


                if (dup2(old_fd, io->fd) == -1)
                {
                    debug_safe_int(1, FD_ERROR, io->fd);
                    safe_perror("dup2");
                    return -1;
                }
                break;
            }

            case IO_BUFFER:
            case IO_PIPE:
            {
                CAST_INIT(const io_pipe_t *, io_pipe, io);
                /* If write_pipe_idx is 0, it means we're connecting to the read end (first pipe fd). If it's 1, we're connecting to the write end (second pipe fd). */
                unsigned int write_pipe_idx = (io_pipe->is_input ? 0 : 1);
                /*
                        debug( 0,
                             L"%ls %ls on fd %d (%d %d)",
                             write_pipe?L"write":L"read",
                             (io->io_mode == IO_BUFFER)?L"buffer":L"pipe",
                             io->fd,
                             io->pipe_fd[0],
                             io->pipe_fd[1]);
                */
                if (log_redirections) fprintf(stderr, "%d: %s dup %d to %d\n", getpid(), io->io_mode == IO_BUFFER ? "buffer" : "pipe", io_pipe->pipe_fd[write_pipe_idx], io->fd);
                if (dup2(io_pipe->pipe_fd[write_pipe_idx], io->fd) != io->fd)
                {
                    debug_safe(1, LOCAL_PIPE_ERROR);
                    safe_perror("dup2");
                    return -1;
                }

                if (io_pipe->pipe_fd[0] >= 0)
                    exec_close(io_pipe->pipe_fd[0]);
                if (io_pipe->pipe_fd[1] >= 0)
                    exec_close(io_pipe->pipe_fd[1]);
                break;
            }

        }
    }

    return 0;

}
Exemplo n.º 6
0
void safe_report_exec_error(int err, const char *actual_cmd, const char *const *argv,
                            const char *const *envv) {
    debug_safe(0, "Failed to execute process '%s'. Reason:", actual_cmd);

    switch (err) {
        case E2BIG: {
            char sz1[128], sz2[128];

            long arg_max = -1;

            size_t sz = 0;
            const char *const *p;
            for (p = argv; *p; p++) {
                sz += strlen(*p) + 1;
            }

            for (p = envv; *p; p++) {
                sz += strlen(*p) + 1;
            }

            format_size_safe(sz1, sz);
            arg_max = sysconf(_SC_ARG_MAX);

            if (arg_max > 0) {
                format_size_safe(sz2, static_cast<unsigned long long>(arg_max));
                debug_safe(0,
                           "The total size of the argument and environment lists %s exceeds the "
                           "operating system limit of %s.",
                           sz1, sz2);
            } else {
                debug_safe(0,
                           "The total size of the argument and environment lists (%s) exceeds the "
                           "operating system limit.",
                           sz1);
            }

            debug_safe(0, "Try running the command again with fewer arguments.");
            break;
        }

        case ENOEXEC: {
            const char *err = safe_strerror(errno);
            debug_safe(0, "exec: %s", err);

            debug_safe(0,
                       "The file '%s' is marked as an executable but could not be run by the "
                       "operating system.",
                       actual_cmd);
            break;
        }

        case ENOENT: {
            // ENOENT is returned by exec() when the path fails, but also returned by posix_spawn if
            // an open file action fails. These cases appear to be impossible to distinguish. We
            // address this by not using posix_spawn for file redirections, so all the ENOENTs we
            // find must be errors from exec().
            char interpreter_buff[128] = {}, *interpreter;
            interpreter = get_interpreter(actual_cmd, interpreter_buff, sizeof interpreter_buff);
            if (interpreter && 0 != access(interpreter, X_OK)) {
                debug_safe(0,
                           "The file '%s' specified the interpreter '%s', which is not an "
                           "executable command.",
                           actual_cmd, interpreter);
            } else {
                debug_safe(0, "The file '%s' does not exist or could not be executed.", actual_cmd);
            }
            break;
        }

        case ENOMEM: {
            debug_safe(0, "Out of memory");
            break;
        }

        default: {
            const char *err = safe_strerror(errno);
            debug_safe(0, "exec: %s", err);

            // debug(0, L"The file '%ls' is marked as an executable but could not be run by the
            // operating system.", p->actual_cmd);
            break;
        }
    }
}
Exemplo n.º 7
0
/**
   Set up a childs io redirections. Should only be called by
   setup_child_process(). Does the following: First it closes any open
   file descriptors not related to the child by calling
   close_unused_internal_pipes() and closing the universal variable
   server file descriptor. It then goes on to perform all the
   redirections described by \c io.

   \param io the list of IO redirections for the child

   \return 0 on sucess, -1 on failiure
*/
static int handle_child_io( io_data_t *io )
{

	close_unused_internal_pipes( io );

	for( ; io; io=io->next )
	{
		int tmp;

		if( io->io_mode == IO_FD && io->fd == io->param1.old_fd )
		{
			continue;
		}

		if( io->fd > 2 )
		{
			/* Make sure the fd used by this redirection is not used by e.g. a pipe.  */
			free_fd( io, io->fd );
		}
				
		switch( io->io_mode )
		{
			case IO_CLOSE:
			{
				if( close(io->fd) )
				{
					debug_safe_int( 0, "Failed to close file descriptor %s", io->fd );
					wperror( L"close" );
				}
				break;
			}

			case IO_FILE:
			{
                // Here we definitely do not want to set CLO_EXEC because our child needs access
				if( (tmp=open( io->filename_cstr,
						io->param2.flags, OPEN_MASK ) )==-1 )
				{
					if( ( io->param2.flags & O_EXCL ) &&
					    ( errno ==EEXIST ) )
					{
						debug_safe( 1, NOCLOB_ERROR, io->filename_cstr );
					}
					else
					{
						debug_safe( 1, FILE_ERROR, io->filename_cstr );				
						perror( "open" );
					}
					
					return -1;
				}
				else if( tmp != io->fd)
				{
					/*
					  This call will sometimes fail, but that is ok,
					  this is just a precausion.
					*/
					close(io->fd);
							
					if(dup2( tmp, io->fd ) == -1 )
					{
						debug_safe_int( 1,  FD_ERROR, io->fd );
						perror( "dup2" );
						return -1;
					}
					exec_close( tmp );
				}				
				break;
			}
			
			case IO_FD:
			{
				/*
				  This call will sometimes fail, but that is ok,
				  this is just a precausion.
				*/
				close(io->fd);

				if( dup2( io->param1.old_fd, io->fd ) == -1 )
				{
					debug_safe_int( 1, FD_ERROR, io->fd );
					wperror( L"dup2" );
					return -1;
				}
				break;
			}
			
			case IO_BUFFER:
			case IO_PIPE:
			{
				unsigned int write_pipe_idx = (io->is_input ? 0 : 1);
/*
				debug( 0,
					   L"%ls %ls on fd %d (%d %d)", 
					   write_pipe?L"write":L"read", 
					   (io->io_mode == IO_BUFFER)?L"buffer":L"pipe",
					   io->fd,
					   io->param1.pipe_fd[0],
					   io->param1.pipe_fd[1]);
*/
				if( dup2( io->param1.pipe_fd[write_pipe_idx], io->fd ) != io->fd )
				{
					debug_safe( 1, LOCAL_PIPE_ERROR );
					perror( "dup2" );
					return -1;
				}

				if( write_pipe_idx > 0 ) 
				{
					exec_close( io->param1.pipe_fd[0]);
					exec_close( io->param1.pipe_fd[1]);
				}
				else
				{
					exec_close( io->param1.pipe_fd[0] );
				}
				break;
			}
			
		}
	}

	return 0;
	
}