Exemplo n.º 1
0
Arquivo: clock.c Projeto: BruceYi/okl4
/**
 * The server entry point.
 */
void
clock_init(void)
{
    int r = 0;
    void *device;
    okl4_env_segment_t *timer_seg;

    /*
     * Setup resources for driver init - this should probably be weaved
     */
    resources[r].type = MEMORY_RESOURCE;
    timer_seg = okl4_env_get_segment("MAIN_TIMER_MEM0");

    if (timer_seg == NULL) {
        printf("couldn't find timer memory mapping\n");
        return;
    }
    resources[r++].resource.mem = (mem_space_t) timer_seg->virt_addr;

    struct okl4_env_device_irqs * timer_irqs = (struct okl4_env_device_irqs *)okl4_env_get("TIMER_DEV_IRQ_LIST");
    if (timer_irqs == NULL) {
        printf("couldn't find timer irq list\n");
        return;
    }

    /* Nano can only handle one interrupt anyway */
    resources[r].type = INTERRUPT_RESOURCE;
    resources[r++].resource.interrupt = timer_irqs->irqs[0];
    CLOCK_IRQ = timer_irqs->irqs[0];

    for (/*none*/; r < 8; r++)
    {
        resources[r].type = NO_RESOURCE;
    }
    
    /*
     * Allocate memory for the device
     */
    device = malloc(TIMER_DRIVER.size);
    if (device == NULL) {
        free(device);
        return;
    }
   
    /* Initialise the device state */
    {
        timer_device.resources = resources;
    }
    
    /* Create and enable the device */
    timer_device.di = setup_device_instance(&TIMER_DRIVER, device);
    device_setup(timer_device.di, timer_device.resources);
    
    timer_device.ti = (struct timer_interface *)device_get_interface(timer_device.di, 0);
    device_enable(timer_device.di);
    
    timer_device.frequency = timer_get_tick_frequency(timer_device.ti);
}
Exemplo n.º 2
0
/***********************************************************
 * Name:
 *	main	
 * Description:
 * 	Start Function of the Kernel	
 * Parameter:
 * ReturnValue:
 *	EXIT_SUCCESS	
 *
 **********************************************************/
void main() {

	/* Global Descriptor Table setup */
	gdt_setup();

	/* Interrupt Descriptor Table setup */
	idt_setup();

	/* Setup Interrupts */
	irq_setup();

	/* Setup Empty Devices */
	device_setup();

	/* Initialize Video Device -> Device does not send Interrupts */
	initializeDevice(0,(char *)0xB8000,DEVICE_VIDEO,NULL,IRQ_EMPTY);

	/* Initialize Keyboard Handler */
	initializeDevice(1,NULL,DEVICE_KEYBOARD,irq_keyboard_handler,IRQ_KEYBOARD);

	/* set Video Device for Console */
	setVideoDevice(getDevice(0,DEVICE_VIDEO));

	/* Initialize the Character Buffer */
	initLineBuffer();

	/* Clear Screen on Video Device */
	clear_screen();

	/* Printing OS Headers */
	printf("\t\t-------------------------\n", C437_GREEN);
	printf("\t\tWELLCOME TO "OS_NAME"\n", C437_GREEN);
	printf("\t\t-------------------------\n", C437_GREEN);

        printf("\t\t"OS_NAME" version "OS_VERSION", Copyright (C) 2012 Simon Sommer\n", C437_CYAN); 
    	printf("\t\t"OS_NAME" comes with ABSOLUTELY NO WARRANTY.\n", C437_CYAN);
    	printf("\t\tThis is free software, and you are\n", C437_CYAN); 
	printf("\t\twelcome to redistribute it under certain conditions.\n", C437_CYAN);

	/* Enable Full 4GB Memory */
	enableA20();
	printf("\t\tA20 GATE ACTIVATED\n", C437_GREEN);

	/* Gives Feedback of previus done Tasks */
	printf("\t\tGDT SETUP DONE\n", C437_GREEN);
	printf("\t\tIDT SETUP DONE\n", C437_GREEN);
	printf("\t\tIRQ SETUP DONE\n", C437_GREEN);

	/* Enable Iterrupts */
	__asm__ __volatile__ ("sti");
	printf("\t\tINTERRUPTS ENABLED\n", C437_GREEN);

	while(1);

	/* TODO: Malloc and Free Debug and Final Test */
}
Exemplo n.º 3
0
static dev_node_t *serial_attach(dev_locator_t *loc)
{
    u_int io;
    u_char irq;
    int line;
    struct serial_struct serial;
    struct pci_dev *pdev;
    dev_node_t *node;

    MOD_INC_USE_COUNT;

    if (loc->bus != LOC_PCI) goto err_out;
    pdev = pci_find_slot (loc->b.pci.bus, loc->b.pci.devfn);
    if (!pdev) goto err_out;
    if (pci_enable_device(pdev)) goto err_out;

    printk(KERN_INFO "serial_attach(bus %d, fn %d)\n", pdev->bus->number, pdev->devfn);
    io = pci_resource_start (pdev, 0);
    irq = pdev->irq;
    if (!(pci_resource_flags(pdev, 0) & IORESOURCE_IO)) {
        printk(KERN_NOTICE "serial_cb: PCI base address 0 is not IO\n");
        goto err_out;
    }
    device_setup(pdev, io);
    memset(&serial, 0, sizeof(serial));
    serial.port = io;
    serial.irq = irq;
    serial.flags = ASYNC_SKIP_TEST | ASYNC_SHARE_IRQ;

    /* Some devices seem to need extra time */
    __set_current_state(TASK_UNINTERRUPTIBLE);
    schedule_timeout(HZ/50);

    line = register_serial(&serial);
    if (line < 0) {
        printk(KERN_NOTICE "serial_cb: register_serial() at 0x%04x, "
               "irq %d failed\n", serial.port, serial.irq);
        goto err_out;
    }

    node = kmalloc(sizeof(dev_node_t), GFP_KERNEL);
    if (!node)
        goto err_out_unregister;
    sprintf(node->dev_name, "ttyS%d", line);
    node->major = TTY_MAJOR;
    node->minor = 0x40 + line;
    node->next = NULL;
    return node;

err_out_unregister:
    unregister_serial(line);
err_out:
    MOD_DEC_USE_COUNT;
    return NULL;
}
Exemplo n.º 4
0
static bool _io_init(spi_device_t *dev, struct gpio_pin *cs)
{
	do
	{
		if (!gpio_configure(cs))
			break;
		gpio_set(cs);

		if (!device_open(dev))
			break;

		device_setup(dev, SPI_DEVICE_PARAMETER_CLOCK, 1000000UL);
		device_setup(dev, SPI_DEVICE_PARAMETER_BITS, SPI_8_BIT);
		device_setup(dev, SPI_DEVICE_PARAMETER_PHASE, SPI_PHASE_0);
		device_setup(dev, SPI_DEVICE_PARAMETER_POLARITY, SPI_POLARITY_0);
		device_setup(dev, SPI_DEVICE_PARAMETER_MODE, SPI_MODE_MASTER);
		device_setup(dev, SPI_DEVICE_PARAMETER_DIRECTION, SPI_DIRECTION_1LINE);

		if (!device_configure(dev))
			break;

		return true;
	} while (0);

	return false;
}
Exemplo n.º 5
0
Arquivo: main.c Projeto: jbruchon/elks
void start_kernel(void)
{
    seg_t base, end;

/* We set the idle task as #0, and init_task() will be task #1 */

    sched_init();	/* This block of functions don't need console */
    setup_arch(&base, &end);
    mm_init(base, end);
    buffer_init();
    inode_init();
    init_IRQ();
    tty_init();

    init_console();

#if (CONFIG_BOGOMIPS == 0)
    calibrate_delay();
#endif

    device_setup();

#ifdef CONFIG_SOCKET
    sock_init();
#endif

    fs_init();

    mm_stat(base, end);
    printk("ELKS version %s\n", system_utsname.release);

    kfork_proc(init_task);
    wake_up_process(&task[1]);

    /*
     * We are now the idle task. We won't run unless no other process can run.
     */
    while (1) {
        schedule();

#ifdef CONFIG_IDLE_HALT
        idle_halt ();
#endif
    }
}
Exemplo n.º 6
0
Arquivo: main.c Projeto: lkundrak/elks
void start_kernel(void)
{
    seg_t base, end;

/* We set the scheduler up as task #0, and this as task #1 */

    setup_arch(&base, &end);
    mm_init(base, end);
    init_IRQ();
    init_console();

#if 0
    calibrate_delay();
#endif

    setup_mm();			/* Architecture specifics */
    tty_init();
    buffer_init();

#ifdef CONFIG_SOCKET
    sock_init();
#endif

    device_setup();
    inode_init();
    fs_init();
    sched_init();

    printk("ELKS version %s\n", system_utsname.release);

    task[0].t_kstackm = KSTACK_MAGIC;
    task[0].next_run = task[0].prev_run = &task[0];
    kfork_proc(&task[1], init_task);

    /* 
     * We are now the idle task. We won't run unless no other process can run.
     */
    while (1){
        schedule();
    }

}
Exemplo n.º 7
0
Arquivo: main.c Projeto: fachat/XD2031
/////////////////////////////////////////////////////////////////////////////
// Main-Funktion
/////////////////////////////////////////////////////////////////////////////
int main(int argc, const char *argv[])
{

	// Initializations
	//
	// first some basic hardware infrastructure
	
	timer_init();			// Timer Interrupt initialisieren
	led_init();

	provider_init();		// needs to be in the beginning, as other
					// modules like serial register here

	term_init();			// does not need endpoint/provider yet
					// but can take up to a buffer of text


#ifdef __AVR__
	stdout = &term_stdout;          // redirect stdout
#else
	device_setup(argc, argv);
#endif

	// server communication
	uarthw_init();			// first hardware
	provider_t *serial = serial_init();	// then logic layer

	// now prepare for terminal etc
	// (note: in the future the assign parameter could be used
	// to distinguish different UARTs for example)
	void *epdata = serial->prov_assign(NAMEINFO_UNUSED_DRIVE, NULL);
	term_endpoint.provider = serial;
	term_endpoint.provdata = epdata;

	// and set as default
	provider_set_default(serial, epdata);

	// debug output via "terminal"
	term_set_endpoint(&term_endpoint);

	// init file handling (active open calls)
	file_init();
	// buffer structures
	buffer_init();
	// direct buffer handling
	direct_init();
	// relfile handling
	relfile_init();
	// init main channel handling
	channel_init();

	// before we init any busses, we init the runtime config code
	// note it gets the provider to register a listener for X command line params
	rtconfig_init(&term_endpoint);

	// bus init	
	// first the general bus (with bus counter)
	bus_init();		

	// this call initializes the device-specific hardware
	// e.g. IEEE488 and IEC busses on xs1541, plus SD card on petSD and so on
	// it also handles the interrupt initialization if necessary
	device_init();

#ifdef HAS_EEPROM
	// read bus-independent settings from non volatile memory
	nv_restore_common_config();
#endif

	// enable interrupts
	enable_interrupts();

	// sync with the server
	serial_sync();		

	// pull in command line config options from server
	// also send directory charset
	rtconfig_pullconfig(argc, argv);

#ifdef USE_FAT
	// register fat provider
	provider_register("FAT", &fat_provider);
	//provider_assign(0, "FAT", "/");		// might be overwritten when fetching X-commands
	//provider_assign(1, "FAT", "/");		// from the server, but useful for standalone-mode
#endif

	// show our version...
  	ListVersion();
	// ... and some system info
	term_printf((" %u Bytes free"), BytesFree());
	term_printf((", %d kHz"), FreqKHz());
#ifdef __AVR__
	fuse_info();
#endif
	term_putcrlf();
	term_putcrlf();


	while (1)  			// Mainloop-Begin
	{
		// keep data flowing on the serial line
		main_delay();

		if (!is_locked) 
			device_loop();

		// send out log messages
		term_flush();
	}
}
Exemplo n.º 8
0
/*
 * Ok, the machine is now initialized. None of the devices
 * have been touched yet, but the CPU subsystem is up and
 * running, and memory and process management works.
 *
 * Now we can finally start doing some real work..
 */
static void __init do_basic_setup(void)
{
#ifdef CONFIG_BLK_DEV_INITRD
	int real_root_mountflags;
#endif

	/*
	 * Tell the world that we're going to be the grim
	 * reaper of innocent orphaned children.
	 *
	 * We don't want people to have to make incorrect
	 * assumptions about where in the task array this
	 * can be found.
	 */
	child_reaper = current;

#if defined(CONFIG_MTRR)	/* Do this after SMP initialization */
/*
 * We should probably create some architecture-dependent "fixup after
 * everything is up" style function where this would belong better
 * than in init/main.c..
 */
	mtrr_init();
#endif

#ifdef CONFIG_SYSCTL
	sysctl_init();
#endif

	/*
	 * Ok, at this point all CPU's should be initialized, so
	 * we can start looking into devices..
	 */
#ifdef CONFIG_PCI
	pci_init();
#endif
#ifdef CONFIG_SBUS
	sbus_init();
#endif
#if defined(CONFIG_PPC)
	powermac_init();
#endif
#ifdef CONFIG_MCA
	mca_init();
#endif
#ifdef CONFIG_ARCH_ACORN
	ecard_init();
#endif
#ifdef CONFIG_ZORRO
	zorro_init();
#endif
#ifdef CONFIG_DIO
	dio_init();
#endif
#ifdef CONFIG_TC
	tc_init();
#endif
#ifdef CONFIG_PS2
	ps2_dev_init();	/* PlayStation 2 devices */
#endif

	/* Networking initialization needs a process context */ 
	sock_init();

	/* Launch bdflush from here, instead of the old syscall way. */
	kernel_thread(bdflush, NULL, CLONE_FS | CLONE_FILES | CLONE_SIGHAND);
	/* Start the background pageout daemon. */
	kswapd_setup();
	kernel_thread(kswapd, NULL, CLONE_FS | CLONE_FILES | CLONE_SIGHAND);

#if CONFIG_AP1000
	/* Start the async paging daemon. */
	{
	  extern int asyncd(void *);	 
	  kernel_thread(asyncd, NULL, CLONE_FS | CLONE_FILES | CLONE_SIGHAND);
	}
#endif

#ifdef CONFIG_BLK_DEV_INITRD

	real_root_dev = ROOT_DEV;
	real_root_mountflags = root_mountflags;
	if (initrd_start && mount_initrd) root_mountflags &= ~MS_RDONLY;
	else mount_initrd =0;
#endif

	/* Set up devices .. */
	device_setup();

	/* .. executable formats .. */
	binfmt_setup();

	/* .. filesystems .. */
	filesystem_setup();

	/* Mount the root filesystem.. */
	mount_root();

#ifdef CONFIG_UMSDOS_FS
	{
		/*
			When mounting a umsdos fs as root, we detect
			the pseudo_root (/linux) and initialise it here.
			pseudo_root is defined in fs/umsdos/inode.c
		*/
		extern struct inode *pseudo_root;
		if (pseudo_root != NULL){
			current->fs->root = pseudo_root->i_sb->s_root;
			current->fs->pwd  = pseudo_root->i_sb->s_root;
		}
	}
#endif

#ifdef CONFIG_BLK_DEV_INITRD
	root_mountflags = real_root_mountflags;
	if (mount_initrd && ROOT_DEV != real_root_dev
	    && MAJOR(ROOT_DEV) == RAMDISK_MAJOR && MINOR(ROOT_DEV) == 0) {
		int error;
		int i, pid;

		pid = kernel_thread(do_linuxrc, "/linuxrc", SIGCHLD);
		if (pid>0)
			while (pid != wait(&i));
		if (MAJOR(real_root_dev) != RAMDISK_MAJOR
		     || MINOR(real_root_dev) != 0) {
			error = change_root(real_root_dev,"/initrd");
			if (error)
				printk(KERN_ERR "Change root to /initrd: "
				    "error %d\n",error);
		}
	}
#endif
}