Exemplo n.º 1
0
/* Subroutine */ int dgesvxx_(char *fact, char *trans, integer *n, integer *
                              nrhs, doublereal *a, integer *lda, doublereal *af, integer *ldaf,
                              integer *ipiv, char *equed, doublereal *r__, doublereal *c__,
                              doublereal *b, integer *ldb, doublereal *x, integer *ldx, doublereal *
                              rcond, doublereal *rpvgrw, doublereal *berr, integer *n_err_bnds__,
                              doublereal *err_bnds_norm__, doublereal *err_bnds_comp__, integer *
                              nparams, doublereal *params, doublereal *work, integer *iwork,
                              integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, af_dim1, af_offset, b_dim1, b_offset, x_dim1,
            x_offset, err_bnds_norm_dim1, err_bnds_norm_offset,
            err_bnds_comp_dim1, err_bnds_comp_offset, i__1;
    doublereal d__1, d__2;

    /* Local variables */
    integer j;
    doublereal amax;
    doublereal rcmin, rcmax;
    logical equil;
    doublereal colcnd;
    logical nofact;
    doublereal bignum;
    integer infequ;
    logical colequ;
    doublereal rowcnd;
    logical notran;
    doublereal smlnum;
    logical rowequ;

    /*     -- LAPACK driver routine (version 3.2)                          -- */
    /*     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- */
    /*     -- Jason Riedy of Univ. of California Berkeley.                 -- */
    /*     -- November 2008                                                -- */

    /*     -- LAPACK is a software package provided by Univ. of Tennessee, -- */
    /*     -- Univ. of California Berkeley and NAG Ltd.                    -- */

    /*     Purpose */
    /*     ======= */

    /*     DGESVXX uses the LU factorization to compute the solution to a */
    /*     double precision system of linear equations  A * X = B,  where A is an */
    /*     N-by-N matrix and X and B are N-by-NRHS matrices. */

    /*     If requested, both normwise and maximum componentwise error bounds */
    /*     are returned. DGESVXX will return a solution with a tiny */
    /*     guaranteed error (O(eps) where eps is the working machine */
    /*     precision) unless the matrix is very ill-conditioned, in which */
    /*     case a warning is returned. Relevant condition numbers also are */
    /*     calculated and returned. */

    /*     DGESVXX accepts user-provided factorizations and equilibration */
    /*     factors; see the definitions of the FACT and EQUED options. */
    /*     Solving with refinement and using a factorization from a previous */
    /*     DGESVXX call will also produce a solution with either O(eps) */
    /*     errors or warnings, but we cannot make that claim for general */
    /*     user-provided factorizations and equilibration factors if they */
    /*     differ from what DGESVXX would itself produce. */

    /*     Description */
    /*     =========== */

    /*     The following steps are performed: */

    /*     1. If FACT = 'E', double precision scaling factors are computed to equilibrate */
    /*     the system: */

    /*       TRANS = 'N':  diag(R)*A*diag(C)     *inv(diag(C))*X = diag(R)*B */
    /*       TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B */
    /*       TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B */

    /*     Whether or not the system will be equilibrated depends on the */
    /*     scaling of the matrix A, but if equilibration is used, A is */
    /*     overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N') */
    /*     or diag(C)*B (if TRANS = 'T' or 'C'). */

    /*     2. If FACT = 'N' or 'E', the LU decomposition is used to factor */
    /*     the matrix A (after equilibration if FACT = 'E') as */

    /*       A = P * L * U, */

    /*     where P is a permutation matrix, L is a unit lower triangular */
    /*     matrix, and U is upper triangular. */

    /*     3. If some U(i,i)=0, so that U is exactly singular, then the */
    /*     routine returns with INFO = i. Otherwise, the factored form of A */
    /*     is used to estimate the condition number of the matrix A (see */
    /*     argument RCOND). If the reciprocal of the condition number is less */
    /*     than machine precision, the routine still goes on to solve for X */
    /*     and compute error bounds as described below. */

    /*     4. The system of equations is solved for X using the factored form */
    /*     of A. */

    /*     5. By default (unless PARAMS(LA_LINRX_ITREF_I) is set to zero), */
    /*     the routine will use iterative refinement to try to get a small */
    /*     error and error bounds.  Refinement calculates the residual to at */
    /*     least twice the working precision. */

    /*     6. If equilibration was used, the matrix X is premultiplied by */
    /*     diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so */
    /*     that it solves the original system before equilibration. */

    /*     Arguments */
    /*     ========= */

    /*     Some optional parameters are bundled in the PARAMS array.  These */
    /*     settings determine how refinement is performed, but often the */
    /*     defaults are acceptable.  If the defaults are acceptable, users */
    /*     can pass NPARAMS = 0 which prevents the source code from accessing */
    /*     the PARAMS argument. */

    /*     FACT    (input) CHARACTER*1 */
    /*     Specifies whether or not the factored form of the matrix A is */
    /*     supplied on entry, and if not, whether the matrix A should be */
    /*     equilibrated before it is factored. */
    /*       = 'F':  On entry, AF and IPIV contain the factored form of A. */
    /*               If EQUED is not 'N', the matrix A has been */
    /*               equilibrated with scaling factors given by R and C. */
    /*               A, AF, and IPIV are not modified. */
    /*       = 'N':  The matrix A will be copied to AF and factored. */
    /*       = 'E':  The matrix A will be equilibrated if necessary, then */
    /*               copied to AF and factored. */

    /*     TRANS   (input) CHARACTER*1 */
    /*     Specifies the form of the system of equations: */
    /*       = 'N':  A * X = B     (No transpose) */
    /*       = 'T':  A**T * X = B  (Transpose) */
    /*       = 'C':  A**H * X = B  (Conjugate Transpose = Transpose) */

    /*     N       (input) INTEGER */
    /*     The number of linear equations, i.e., the order of the */
    /*     matrix A.  N >= 0. */

    /*     NRHS    (input) INTEGER */
    /*     The number of right hand sides, i.e., the number of columns */
    /*     of the matrices B and X.  NRHS >= 0. */

    /*     A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
    /*     On entry, the N-by-N matrix A.  If FACT = 'F' and EQUED is */
    /*     not 'N', then A must have been equilibrated by the scaling */
    /*     factors in R and/or C.  A is not modified if FACT = 'F' or */
    /*     'N', or if FACT = 'E' and EQUED = 'N' on exit. */

    /*     On exit, if EQUED .ne. 'N', A is scaled as follows: */
    /*     EQUED = 'R':  A := diag(R) * A */
    /*     EQUED = 'C':  A := A * diag(C) */
    /*     EQUED = 'B':  A := diag(R) * A * diag(C). */

    /*     LDA     (input) INTEGER */
    /*     The leading dimension of the array A.  LDA >= max(1,N). */

    /*     AF      (input or output) DOUBLE PRECISION array, dimension (LDAF,N) */
    /*     If FACT = 'F', then AF is an input argument and on entry */
    /*     contains the factors L and U from the factorization */
    /*     A = P*L*U as computed by DGETRF.  If EQUED .ne. 'N', then */
    /*     AF is the factored form of the equilibrated matrix A. */

    /*     If FACT = 'N', then AF is an output argument and on exit */
    /*     returns the factors L and U from the factorization A = P*L*U */
    /*     of the original matrix A. */

    /*     If FACT = 'E', then AF is an output argument and on exit */
    /*     returns the factors L and U from the factorization A = P*L*U */
    /*     of the equilibrated matrix A (see the description of A for */
    /*     the form of the equilibrated matrix). */

    /*     LDAF    (input) INTEGER */
    /*     The leading dimension of the array AF.  LDAF >= max(1,N). */

    /*     IPIV    (input or output) INTEGER array, dimension (N) */
    /*     If FACT = 'F', then IPIV is an input argument and on entry */
    /*     contains the pivot indices from the factorization A = P*L*U */
    /*     as computed by DGETRF; row i of the matrix was interchanged */
    /*     with row IPIV(i). */

    /*     If FACT = 'N', then IPIV is an output argument and on exit */
    /*     contains the pivot indices from the factorization A = P*L*U */
    /*     of the original matrix A. */

    /*     If FACT = 'E', then IPIV is an output argument and on exit */
    /*     contains the pivot indices from the factorization A = P*L*U */
    /*     of the equilibrated matrix A. */

    /*     EQUED   (input or output) CHARACTER*1 */
    /*     Specifies the form of equilibration that was done. */
    /*       = 'N':  No equilibration (always true if FACT = 'N'). */
    /*       = 'R':  Row equilibration, i.e., A has been premultiplied by */
    /*               diag(R). */
    /*       = 'C':  Column equilibration, i.e., A has been postmultiplied */
    /*               by diag(C). */
    /*       = 'B':  Both row and column equilibration, i.e., A has been */
    /*               replaced by diag(R) * A * diag(C). */
    /*     EQUED is an input argument if FACT = 'F'; otherwise, it is an */
    /*     output argument. */

    /*     R       (input or output) DOUBLE PRECISION array, dimension (N) */
    /*     The row scale factors for A.  If EQUED = 'R' or 'B', A is */
    /*     multiplied on the left by diag(R); if EQUED = 'N' or 'C', R */
    /*     is not accessed.  R is an input argument if FACT = 'F'; */
    /*     otherwise, R is an output argument.  If FACT = 'F' and */
    /*     EQUED = 'R' or 'B', each element of R must be positive. */
    /*     If R is output, each element of R is a power of the radix. */
    /*     If R is input, each element of R should be a power of the radix */
    /*     to ensure a reliable solution and error estimates. Scaling by */
    /*     powers of the radix does not cause rounding errors unless the */
    /*     result underflows or overflows. Rounding errors during scaling */
    /*     lead to refining with a matrix that is not equivalent to the */
    /*     input matrix, producing error estimates that may not be */
    /*     reliable. */

    /*     C       (input or output) DOUBLE PRECISION array, dimension (N) */
    /*     The column scale factors for A.  If EQUED = 'C' or 'B', A is */
    /*     multiplied on the right by diag(C); if EQUED = 'N' or 'R', C */
    /*     is not accessed.  C is an input argument if FACT = 'F'; */
    /*     otherwise, C is an output argument.  If FACT = 'F' and */
    /*     EQUED = 'C' or 'B', each element of C must be positive. */
    /*     If C is output, each element of C is a power of the radix. */
    /*     If C is input, each element of C should be a power of the radix */
    /*     to ensure a reliable solution and error estimates. Scaling by */
    /*     powers of the radix does not cause rounding errors unless the */
    /*     result underflows or overflows. Rounding errors during scaling */
    /*     lead to refining with a matrix that is not equivalent to the */
    /*     input matrix, producing error estimates that may not be */
    /*     reliable. */

    /*     B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */
    /*     On entry, the N-by-NRHS right hand side matrix B. */
    /*     On exit, */
    /*     if EQUED = 'N', B is not modified; */
    /*     if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by */
    /*        diag(R)*B; */
    /*     if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is */
    /*        overwritten by diag(C)*B. */

    /*     LDB     (input) INTEGER */
    /*     The leading dimension of the array B.  LDB >= max(1,N). */

    /*     X       (output) DOUBLE PRECISION array, dimension (LDX,NRHS) */
    /*     If INFO = 0, the N-by-NRHS solution matrix X to the original */
    /*     system of equations.  Note that A and B are modified on exit */
    /*     if EQUED .ne. 'N', and the solution to the equilibrated system is */
    /*     inv(diag(C))*X if TRANS = 'N' and EQUED = 'C' or 'B', or */
    /*     inv(diag(R))*X if TRANS = 'T' or 'C' and EQUED = 'R' or 'B'. */

    /*     LDX     (input) INTEGER */
    /*     The leading dimension of the array X.  LDX >= max(1,N). */

    /*     RCOND   (output) DOUBLE PRECISION */
    /*     Reciprocal scaled condition number.  This is an estimate of the */
    /*     reciprocal Skeel condition number of the matrix A after */
    /*     equilibration (if done).  If this is less than the machine */
    /*     precision (in particular, if it is zero), the matrix is singular */
    /*     to working precision.  Note that the error may still be small even */
    /*     if this number is very small and the matrix appears ill- */
    /*     conditioned. */

    /*     RPVGRW  (output) DOUBLE PRECISION */
    /*     Reciprocal pivot growth.  On exit, this contains the reciprocal */
    /*     pivot growth factor norm(A)/norm(U). The "max absolute element" */
    /*     norm is used.  If this is much less than 1, then the stability of */
    /*     the LU factorization of the (equilibrated) matrix A could be poor. */
    /*     This also means that the solution X, estimated condition numbers, */
    /*     and error bounds could be unreliable. If factorization fails with */
    /*     0<INFO<=N, then this contains the reciprocal pivot growth factor */
    /*     for the leading INFO columns of A.  In DGESVX, this quantity is */
    /*     returned in WORK(1). */

    /*     BERR    (output) DOUBLE PRECISION array, dimension (NRHS) */
    /*     Componentwise relative backward error.  This is the */
    /*     componentwise relative backward error of each solution vector X(j) */
    /*     (i.e., the smallest relative change in any element of A or B that */
    /*     makes X(j) an exact solution). */

    /*     N_ERR_BNDS (input) INTEGER */
    /*     Number of error bounds to return for each right hand side */
    /*     and each type (normwise or componentwise).  See ERR_BNDS_NORM and */
    /*     ERR_BNDS_COMP below. */

    /*     ERR_BNDS_NORM  (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS) */
    /*     For each right-hand side, this array contains information about */
    /*     various error bounds and condition numbers corresponding to the */
    /*     normwise relative error, which is defined as follows: */

    /*     Normwise relative error in the ith solution vector: */
    /*             max_j (abs(XTRUE(j,i) - X(j,i))) */
    /*            ------------------------------ */
    /*                  max_j abs(X(j,i)) */

    /*     The array is indexed by the type of error information as described */
    /*     below. There currently are up to three pieces of information */
    /*     returned. */

    /*     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith */
    /*     right-hand side. */

    /*     The second index in ERR_BNDS_NORM(:,err) contains the following */
    /*     three fields: */
    /*     err = 1 "Trust/don't trust" boolean. Trust the answer if the */
    /*              reciprocal condition number is less than the threshold */
    /*              sqrt(n) * dlamch('Epsilon'). */

    /*     err = 2 "Guaranteed" error bound: The estimated forward error, */
    /*              almost certainly within a factor of 10 of the true error */
    /*              so long as the next entry is greater than the threshold */
    /*              sqrt(n) * dlamch('Epsilon'). This error bound should only */
    /*              be trusted if the previous boolean is true. */

    /*     err = 3  Reciprocal condition number: Estimated normwise */
    /*              reciprocal condition number.  Compared with the threshold */
    /*              sqrt(n) * dlamch('Epsilon') to determine if the error */
    /*              estimate is "guaranteed". These reciprocal condition */
    /*              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */
    /*              appropriately scaled matrix Z. */
    /*              Let Z = S*A, where S scales each row by a power of the */
    /*              radix so all absolute row sums of Z are approximately 1. */

    /*     See Lapack Working Note 165 for further details and extra */
    /*     cautions. */

    /*     ERR_BNDS_COMP  (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS) */
    /*     For each right-hand side, this array contains information about */
    /*     various error bounds and condition numbers corresponding to the */
    /*     componentwise relative error, which is defined as follows: */

    /*     Componentwise relative error in the ith solution vector: */
    /*                    abs(XTRUE(j,i) - X(j,i)) */
    /*             max_j ---------------------- */
    /*                         abs(X(j,i)) */

    /*     The array is indexed by the right-hand side i (on which the */
    /*     componentwise relative error depends), and the type of error */
    /*     information as described below. There currently are up to three */
    /*     pieces of information returned for each right-hand side. If */
    /*     componentwise accuracy is not requested (PARAMS(3) = 0.0), then */
    /*     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS .LT. 3, then at most */
    /*     the first (:,N_ERR_BNDS) entries are returned. */

    /*     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith */
    /*     right-hand side. */

    /*     The second index in ERR_BNDS_COMP(:,err) contains the following */
    /*     three fields: */
    /*     err = 1 "Trust/don't trust" boolean. Trust the answer if the */
    /*              reciprocal condition number is less than the threshold */
    /*              sqrt(n) * dlamch('Epsilon'). */

    /*     err = 2 "Guaranteed" error bound: The estimated forward error, */
    /*              almost certainly within a factor of 10 of the true error */
    /*              so long as the next entry is greater than the threshold */
    /*              sqrt(n) * dlamch('Epsilon'). This error bound should only */
    /*              be trusted if the previous boolean is true. */

    /*     err = 3  Reciprocal condition number: Estimated componentwise */
    /*              reciprocal condition number.  Compared with the threshold */
    /*              sqrt(n) * dlamch('Epsilon') to determine if the error */
    /*              estimate is "guaranteed". These reciprocal condition */
    /*              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */
    /*              appropriately scaled matrix Z. */
    /*              Let Z = S*(A*diag(x)), where x is the solution for the */
    /*              current right-hand side and S scales each row of */
    /*              A*diag(x) by a power of the radix so all absolute row */
    /*              sums of Z are approximately 1. */

    /*     See Lapack Working Note 165 for further details and extra */
    /*     cautions. */

    /*     NPARAMS (input) INTEGER */
    /*     Specifies the number of parameters set in PARAMS.  If .LE. 0, the */
    /*     PARAMS array is never referenced and default values are used. */

    /*     PARAMS  (input / output) DOUBLE PRECISION array, dimension NPARAMS */
    /*     Specifies algorithm parameters.  If an entry is .LT. 0.0, then */
    /*     that entry will be filled with default value used for that */
    /*     parameter.  Only positions up to NPARAMS are accessed; defaults */
    /*     are used for higher-numbered parameters. */

    /*       PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative */
    /*            refinement or not. */
    /*         Default: 1.0D+0 */
    /*            = 0.0 : No refinement is performed, and no error bounds are */
    /*                    computed. */
    /*            = 1.0 : Use the extra-precise refinement algorithm. */
    /*              (other values are reserved for future use) */

    /*       PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual */
    /*            computations allowed for refinement. */
    /*         Default: 10 */
    /*         Aggressive: Set to 100 to permit convergence using approximate */
    /*                     factorizations or factorizations other than LU. If */
    /*                     the factorization uses a technique other than */
    /*                     Gaussian elimination, the guarantees in */
    /*                     err_bnds_norm and err_bnds_comp may no longer be */
    /*                     trustworthy. */

    /*       PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code */
    /*            will attempt to find a solution with small componentwise */
    /*            relative error in the double-precision algorithm.  Positive */
    /*            is true, 0.0 is false. */
    /*         Default: 1.0 (attempt componentwise convergence) */

    /*     WORK    (workspace) DOUBLE PRECISION array, dimension (4*N) */

    /*     IWORK   (workspace) INTEGER array, dimension (N) */

    /*     INFO    (output) INTEGER */
    /*       = 0:  Successful exit. The solution to every right-hand side is */
    /*         guaranteed. */
    /*       < 0:  If INFO = -i, the i-th argument had an illegal value */
    /*       > 0 and <= N:  U(INFO,INFO) is exactly zero.  The factorization */
    /*         has been completed, but the factor U is exactly singular, so */
    /*         the solution and error bounds could not be computed. RCOND = 0 */
    /*         is returned. */
    /*       = N+J: The solution corresponding to the Jth right-hand side is */
    /*         not guaranteed. The solutions corresponding to other right- */
    /*         hand sides K with K > J may not be guaranteed as well, but */
    /*         only the first such right-hand side is reported. If a small */
    /*         componentwise error is not requested (PARAMS(3) = 0.0) then */
    /*         the Jth right-hand side is the first with a normwise error */
    /*         bound that is not guaranteed (the smallest J such */
    /*         that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0) */
    /*         the Jth right-hand side is the first with either a normwise or */
    /*         componentwise error bound that is not guaranteed (the smallest */
    /*         J such that either ERR_BNDS_NORM(J,1) = 0.0 or */
    /*         ERR_BNDS_COMP(J,1) = 0.0). See the definition of */
    /*         ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information */
    /*         about all of the right-hand sides check ERR_BNDS_NORM or */
    /*         ERR_BNDS_COMP. */

    /*     ================================================================== */

    /* Parameter adjustments */
    err_bnds_comp_dim1 = *nrhs;
    err_bnds_comp_offset = 1 + err_bnds_comp_dim1;
    err_bnds_comp__ -= err_bnds_comp_offset;
    err_bnds_norm_dim1 = *nrhs;
    err_bnds_norm_offset = 1 + err_bnds_norm_dim1;
    err_bnds_norm__ -= err_bnds_norm_offset;
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    af_dim1 = *ldaf;
    af_offset = 1 + af_dim1;
    af -= af_offset;
    --ipiv;
    --r__;
    --c__;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;
    x_dim1 = *ldx;
    x_offset = 1 + x_dim1;
    x -= x_offset;
    --berr;
    --params;
    --work;
    --iwork;

    /* Function Body */
    *info = 0;
    nofact = lsame_(fact, "N");
    equil = lsame_(fact, "E");
    notran = lsame_(trans, "N");
    smlnum = dlamch_("Safe minimum");
    bignum = 1. / smlnum;
    if (nofact || equil) {
        *(unsigned char *)equed = 'N';
        rowequ = FALSE_;
        colequ = FALSE_;
    } else {
        rowequ = lsame_(equed, "R") || lsame_(equed,
                                              "B");
        colequ = lsame_(equed, "C") || lsame_(equed,
                                              "B");
    }

    /*     Default is failure.  If an input parameter is wrong or */
    /*     factorization fails, make everything look horrible.  Only the */
    /*     pivot growth is set here, the rest is initialized in DGERFSX. */

    *rpvgrw = 0.;

    /*     Test the input parameters.  PARAMS is not tested until DGERFSX. */

    if (! nofact && ! equil && ! lsame_(fact, "F")) {
        *info = -1;
    } else if (! notran && ! lsame_(trans, "T") && !
               lsame_(trans, "C")) {
        *info = -2;
    } else if (*n < 0) {
        *info = -3;
    } else if (*nrhs < 0) {
        *info = -4;
    } else if (*lda < max(1,*n)) {
        *info = -6;
    } else if (*ldaf < max(1,*n)) {
        *info = -8;
    } else if (lsame_(fact, "F") && ! (rowequ || colequ
                                       || lsame_(equed, "N"))) {
        *info = -10;
    } else {
        if (rowequ) {
            rcmin = bignum;
            rcmax = 0.;
            i__1 = *n;
            for (j = 1; j <= i__1; ++j) {
                /* Computing MIN */
                d__1 = rcmin, d__2 = r__[j];
                rcmin = min(d__1,d__2);
                /* Computing MAX */
                d__1 = rcmax, d__2 = r__[j];
                rcmax = max(d__1,d__2);
            }
            if (rcmin <= 0.) {
                *info = -11;
            } else if (*n > 0) {
                rowcnd = max(rcmin,smlnum) / min(rcmax,bignum);
            } else {
                rowcnd = 1.;
            }
        }
        if (colequ && *info == 0) {
            rcmin = bignum;
            rcmax = 0.;
            i__1 = *n;
            for (j = 1; j <= i__1; ++j) {
                /* Computing MIN */
                d__1 = rcmin, d__2 = c__[j];
                rcmin = min(d__1,d__2);
                /* Computing MAX */
                d__1 = rcmax, d__2 = c__[j];
                rcmax = max(d__1,d__2);
            }
            if (rcmin <= 0.) {
                *info = -12;
            } else if (*n > 0) {
                colcnd = max(rcmin,smlnum) / min(rcmax,bignum);
            } else {
                colcnd = 1.;
            }
        }
        if (*info == 0) {
            if (*ldb < max(1,*n)) {
                *info = -14;
            } else if (*ldx < max(1,*n)) {
                *info = -16;
            }
        }
    }

    if (*info != 0) {
        i__1 = -(*info);
        xerbla_("DGESVXX", &i__1);
        return 0;
    }

    if (equil) {

        /*     Compute row and column scalings to equilibrate the matrix A. */

        dgeequb_(n, n, &a[a_offset], lda, &r__[1], &c__[1], &rowcnd, &colcnd,
                 &amax, &infequ);
        if (infequ == 0) {

            /*     Equilibrate the matrix. */

            dlaqge_(n, n, &a[a_offset], lda, &r__[1], &c__[1], &rowcnd, &
                    colcnd, &amax, equed);
            rowequ = lsame_(equed, "R") || lsame_(equed,
                                                  "B");
            colequ = lsame_(equed, "C") || lsame_(equed,
                                                  "B");
        }

        /*     If the scaling factors are not applied, set them to 1.0. */

        if (! rowequ) {
            i__1 = *n;
            for (j = 1; j <= i__1; ++j) {
                r__[j] = 1.;
            }
        }
        if (! colequ) {
            i__1 = *n;
            for (j = 1; j <= i__1; ++j) {
                c__[j] = 1.;
            }
        }
    }

    /*     Scale the right-hand side. */

    if (notran) {
        if (rowequ) {
            dlascl2_(n, nrhs, &r__[1], &b[b_offset], ldb);
        }
    } else {
        if (colequ) {
            dlascl2_(n, nrhs, &c__[1], &b[b_offset], ldb);
        }
    }

    if (nofact || equil) {

        /*        Compute the LU factorization of A. */

        dlacpy_("Full", n, n, &a[a_offset], lda, &af[af_offset], ldaf);
        dgetrf_(n, n, &af[af_offset], ldaf, &ipiv[1], info);

        /*        Return if INFO is non-zero. */

        if (*info > 0) {

            /*           Pivot in column INFO is exactly 0 */
            /*           Compute the reciprocal pivot growth factor of the */
            /*           leading rank-deficient INFO columns of A. */

            *rpvgrw = dla_rpvgrw__(n, info, &a[a_offset], lda, &af[af_offset],
                                   ldaf);
            return 0;
        }
    }

    /*     Compute the reciprocal pivot growth factor RPVGRW. */

    *rpvgrw = dla_rpvgrw__(n, n, &a[a_offset], lda, &af[af_offset], ldaf);

    /*     Compute the solution matrix X. */

    dlacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);
    dgetrs_(trans, n, nrhs, &af[af_offset], ldaf, &ipiv[1], &x[x_offset], ldx,
            info);

    /*     Use iterative refinement to improve the computed solution and */
    /*     compute error bounds and backward error estimates for it. */

    dgerfsx_(trans, equed, n, nrhs, &a[a_offset], lda, &af[af_offset], ldaf, &
             ipiv[1], &r__[1], &c__[1], &b[b_offset], ldb, &x[x_offset], ldx,
             rcond, &berr[1], n_err_bnds__, &err_bnds_norm__[
                 err_bnds_norm_offset], &err_bnds_comp__[err_bnds_comp_offset],
             nparams, &params[1], &work[1], &iwork[1], info);

    /*     Scale solutions. */

    if (colequ && notran) {
        dlascl2_(n, nrhs, &c__[1], &x[x_offset], ldx);
    } else if (rowequ && ! notran) {
        dlascl2_(n, nrhs, &r__[1], &x[x_offset], ldx);
    }

    return 0;

    /*     End of DGESVXX */
} /* dgesvxx_ */
Exemplo n.º 2
0
/* Subroutine */ int ddrvge_(logical *dotype, integer *nn, integer *nval, 
	integer *nrhs, doublereal *thresh, logical *tsterr, integer *nmax, 
	doublereal *a, doublereal *afac, doublereal *asav, doublereal *b, 
	doublereal *bsav, doublereal *x, doublereal *xact, doublereal *s, 
	doublereal *work, doublereal *rwork, integer *iwork, integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 1988,1989,1990,1991 };
    static char transs[1*3] = "N" "T" "C";
    static char facts[1*3] = "F" "N" "E";
    static char equeds[1*4] = "N" "R" "C" "B";

    /* Format strings */
    static char fmt_9999[] = "(1x,a,\002, N =\002,i5,\002, type \002,i2,\002"
	    ", test(\002,i2,\002) =\002,g12.5)";
    static char fmt_9997[] = "(1x,a,\002, FACT='\002,a1,\002', TRANS='\002,a"
	    "1,\002', N=\002,i5,\002, EQUED='\002,a1,\002', type \002,i2,\002"
	    ", test(\002,i1,\002)=\002,g12.5)";
    static char fmt_9998[] = "(1x,a,\002, FACT='\002,a1,\002', TRANS='\002,a"
	    "1,\002', N=\002,i5,\002, type \002,i2,\002, test(\002,i1,\002)"
	    "=\002,g12.5)";

    /* System generated locals */
    address a__1[2];
    integer i__1, i__2, i__3, i__4, i__5[2];
    doublereal d__1;
    char ch__1[2];

    /* Builtin functions */
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);
    /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);

    /* Local variables */
    extern /* Subroutine */ int debchvxx_(doublereal *, char *);
    integer i__, k, n;
    doublereal *errbnds_c__, *errbnds_n__;
    integer k1, nb, in, kl, ku, nt, n_err_bnds__;
    extern doublereal dla_rpvgrw__(integer *, integer *, doublereal *, 
	    integer *, doublereal *, integer *);
    integer lda;
    char fact[1];
    integer ioff, mode;
    doublereal amax;
    char path[3];
    integer imat, info;
    doublereal *berr;
    char dist[1];
    doublereal rpvgrw_svxx__;
    char type__[1];
    integer nrun;
    extern /* Subroutine */ int dget01_(integer *, integer *, doublereal *, 
	    integer *, doublereal *, integer *, integer *, doublereal *, 
	    doublereal *), dget02_(char *, integer *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
	    integer *, doublereal *, doublereal *);
    integer ifact;
    extern /* Subroutine */ int dget04_(integer *, integer *, doublereal *, 
	    integer *, doublereal *, integer *, doublereal *, doublereal *);
    integer nfail, iseed[4], nfact;
    extern doublereal dget06_(doublereal *, doublereal *);
    extern /* Subroutine */ int dget07_(char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
	    integer *, doublereal *, integer *, doublereal *, logical *, 
	    doublereal *, doublereal *);
    extern logical lsame_(char *, char *);
    char equed[1];
    integer nbmin;
    doublereal rcond, roldc;
    integer nimat;
    doublereal roldi;
    extern /* Subroutine */ int dgesv_(integer *, integer *, doublereal *, 
	    integer *, integer *, doublereal *, integer *, integer *);
    doublereal anorm;
    integer itran;
    logical equil;
    doublereal roldo;
    char trans[1];
    integer izero, nerrs, lwork;
    logical zerot;
    char xtype[1];
    extern /* Subroutine */ int dlatb4_(char *, integer *, integer *, integer 
	    *, char *, integer *, integer *, doublereal *, integer *, 
	    doublereal *, char *), aladhd_(integer *, 
	    char *);
    extern doublereal dlamch_(char *), dlange_(char *, integer *, 
	    integer *, doublereal *, integer *, doublereal *);
    extern /* Subroutine */ int alaerh_(char *, char *, integer *, integer *, 
	    char *, integer *, integer *, integer *, integer *, integer *, 
	    integer *, integer *, integer *, integer *), dlaqge_(integer *, integer *, doublereal *, integer *, 
	    doublereal *, doublereal *, doublereal *, doublereal *, 
	    doublereal *, char *);
    logical prefac;
    doublereal colcnd, rcondc;
    logical nofact;
    integer iequed;
    extern /* Subroutine */ int dgeequ_(integer *, integer *, doublereal *, 
	    integer *, doublereal *, doublereal *, doublereal *, doublereal *, 
	     doublereal *, integer *);
    doublereal rcondi;
    extern /* Subroutine */ int dgetrf_(integer *, integer *, doublereal *, 
	    integer *, integer *, integer *), dgetri_(integer *, doublereal *, 
	     integer *, integer *, doublereal *, integer *, integer *), 
	    dlacpy_(char *, integer *, integer *, doublereal *, integer *, 
	    doublereal *, integer *), alasvm_(char *, integer *, 
	    integer *, integer *, integer *);
    doublereal cndnum, anormi, rcondo, ainvnm;
    extern doublereal dlantr_(char *, char *, char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *);
    extern /* Subroutine */ int dlarhs_(char *, char *, char *, char *, 
	    integer *, integer *, integer *, integer *, integer *, doublereal 
	    *, integer *, doublereal *, integer *, doublereal *, integer *, 
	    integer *, integer *);
    logical trfcon;
    doublereal anormo, rowcnd;
    extern /* Subroutine */ int dlaset_(char *, integer *, integer *, 
	    doublereal *, doublereal *, doublereal *, integer *), 
	    dgesvx_(char *, char *, integer *, integer *, doublereal *, 
	    integer *, doublereal *, integer *, integer *, char *, doublereal 
	    *, doublereal *, doublereal *, integer *, doublereal *, integer *, 
	     doublereal *, doublereal *, doublereal *, doublereal *, integer *
, integer *), dlatms_(integer *, integer *
, char *, integer *, char *, doublereal *, integer *, doublereal *
, doublereal *, integer *, integer *, char *, doublereal *, 
	    integer *, doublereal *, integer *), 
	    xlaenv_(integer *, integer *), derrvx_(char *, integer *);
    doublereal result[7], rpvgrw;
    extern /* Subroutine */ int dgesvxx_(char *, char *, integer *, integer *, 
	     doublereal *, integer *, doublereal *, integer *, integer *, 
	    char *, doublereal *, doublereal *, doublereal *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *, doublereal *, 
	     integer *, doublereal *, doublereal *, integer *, doublereal *, 
	    doublereal *, integer *, integer *);

    /* Fortran I/O blocks */
    static cilist io___55 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___61 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___62 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___63 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___64 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___65 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___66 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___67 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___68 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___74 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___75 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___76 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___77 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___78 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___79 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___80 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___81 = { 0, 0, 0, fmt_9998, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DDRVGE tests the driver routines DGESV, -SVX, and -SVXX. */

/*  Note that this file is used only when the XBLAS are available, */
/*  otherwise ddrvge.f defines this subroutine. */

/*  Arguments */
/*  ========= */

/*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
/*          The matrix types to be used for testing.  Matrices of type j */
/*          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */
/*          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */

/*  NN      (input) INTEGER */
/*          The number of values of N contained in the vector NVAL. */

/*  NVAL    (input) INTEGER array, dimension (NN) */
/*          The values of the matrix column dimension N. */

/*  NRHS    (input) INTEGER */
/*          The number of right hand side vectors to be generated for */
/*          each linear system. */

/*  THRESH  (input) DOUBLE PRECISION */
/*          The threshold value for the test ratios.  A result is */
/*          included in the output file if RESULT >= THRESH.  To have */
/*          every test ratio printed, use THRESH = 0. */

/*  TSTERR  (input) LOGICAL */
/*          Flag that indicates whether error exits are to be tested. */

/*  NMAX    (input) INTEGER */
/*          The maximum value permitted for N, used in dimensioning the */
/*          work arrays. */

/*  A       (workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX) */

/*  AFAC    (workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX) */

/*  ASAV    (workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX) */

/*  B       (workspace) DOUBLE PRECISION array, dimension (NMAX*NRHS) */

/*  BSAV    (workspace) DOUBLE PRECISION array, dimension (NMAX*NRHS) */

/*  X       (workspace) DOUBLE PRECISION array, dimension (NMAX*NRHS) */

/*  XACT    (workspace) DOUBLE PRECISION array, dimension (NMAX*NRHS) */

/*  S       (workspace) DOUBLE PRECISION array, dimension (2*NMAX) */

/*  WORK    (workspace) DOUBLE PRECISION array, dimension */
/*                      (NMAX*max(3,NRHS)) */

/*  RWORK   (workspace) DOUBLE PRECISION array, dimension (2*NRHS+NMAX) */

/*  IWORK   (workspace) INTEGER array, dimension (2*NMAX) */

/*  NOUT    (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --iwork;
    --rwork;
    --work;
    --s;
    --xact;
    --x;
    --bsav;
    --b;
    --asav;
    --afac;
    --a;
    --nval;
    --dotype;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

/*     Initialize constants and the random number seed. */

    s_copy(path, "Double precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "GE", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }

/*     Test the error exits */

    if (*tsterr) {
	derrvx_(path, nout);
    }
    infoc_1.infot = 0;

/*     Set the block size and minimum block size for testing. */

    nb = 1;
    nbmin = 2;
    xlaenv_(&c__1, &nb);
    xlaenv_(&c__2, &nbmin);

/*     Do for each value of N in NVAL */

    i__1 = *nn;
    for (in = 1; in <= i__1; ++in) {
	n = nval[in];
	lda = max(n,1);
	*(unsigned char *)xtype = 'N';
	nimat = 11;
	if (n <= 0) {
	    nimat = 1;
	}

	i__2 = nimat;
	for (imat = 1; imat <= i__2; ++imat) {

/*           Do the tests only if DOTYPE( IMAT ) is true. */

	    if (! dotype[imat]) {
		goto L80;
	    }

/*           Skip types 5, 6, or 7 if the matrix size is too small. */

	    zerot = imat >= 5 && imat <= 7;
	    if (zerot && n < imat - 4) {
		goto L80;
	    }

/*           Set up parameters with DLATB4 and generate a test matrix */
/*           with DLATMS. */

	    dlatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &mode, &
		    cndnum, dist);
	    rcondc = 1. / cndnum;

	    s_copy(srnamc_1.srnamt, "DLATMS", (ftnlen)32, (ftnlen)6);
	    dlatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, &cndnum, &
		    anorm, &kl, &ku, "No packing", &a[1], &lda, &work[1], &
		    info);

/*           Check error code from DLATMS. */

	    if (info != 0) {
		alaerh_(path, "DLATMS", &info, &c__0, " ", &n, &n, &c_n1, &
			c_n1, &c_n1, &imat, &nfail, &nerrs, nout);
		goto L80;
	    }

/*           For types 5-7, zero one or more columns of the matrix to */
/*           test that INFO is returned correctly. */

	    if (zerot) {
		if (imat == 5) {
		    izero = 1;
		} else if (imat == 6) {
		    izero = n;
		} else {
		    izero = n / 2 + 1;
		}
		ioff = (izero - 1) * lda;
		if (imat < 7) {
		    i__3 = n;
		    for (i__ = 1; i__ <= i__3; ++i__) {
			a[ioff + i__] = 0.;
/* L20: */
		    }
		} else {
		    i__3 = n - izero + 1;
		    dlaset_("Full", &n, &i__3, &c_b20, &c_b20, &a[ioff + 1], &
			    lda);
		}
	    } else {
		izero = 0;
	    }

/*           Save a copy of the matrix A in ASAV. */

	    dlacpy_("Full", &n, &n, &a[1], &lda, &asav[1], &lda);

	    for (iequed = 1; iequed <= 4; ++iequed) {
		*(unsigned char *)equed = *(unsigned char *)&equeds[iequed - 
			1];
		if (iequed == 1) {
		    nfact = 3;
		} else {
		    nfact = 1;
		}

		i__3 = nfact;
		for (ifact = 1; ifact <= i__3; ++ifact) {
		    *(unsigned char *)fact = *(unsigned char *)&facts[ifact - 
			    1];
		    prefac = lsame_(fact, "F");
		    nofact = lsame_(fact, "N");
		    equil = lsame_(fact, "E");

		    if (zerot) {
			if (prefac) {
			    goto L60;
			}
			rcondo = 0.;
			rcondi = 0.;

		    } else if (! nofact) {

/*                    Compute the condition number for comparison with */
/*                    the value returned by DGESVX (FACT = 'N' reuses */
/*                    the condition number from the previous iteration */
/*                    with FACT = 'F'). */

			dlacpy_("Full", &n, &n, &asav[1], &lda, &afac[1], &
				lda);
			if (equil || iequed > 1) {

/*                       Compute row and column scale factors to */
/*                       equilibrate the matrix A. */

			    dgeequ_(&n, &n, &afac[1], &lda, &s[1], &s[n + 1], 
				    &rowcnd, &colcnd, &amax, &info);
			    if (info == 0 && n > 0) {
				if (lsame_(equed, "R")) 
					{
				    rowcnd = 0.;
				    colcnd = 1.;
				} else if (lsame_(equed, "C")) {
				    rowcnd = 1.;
				    colcnd = 0.;
				} else if (lsame_(equed, "B")) {
				    rowcnd = 0.;
				    colcnd = 0.;
				}

/*                          Equilibrate the matrix. */

				dlaqge_(&n, &n, &afac[1], &lda, &s[1], &s[n + 
					1], &rowcnd, &colcnd, &amax, equed);
			    }
			}

/*                    Save the condition number of the non-equilibrated */
/*                    system for use in DGET04. */

			if (equil) {
			    roldo = rcondo;
			    roldi = rcondi;
			}

/*                    Compute the 1-norm and infinity-norm of A. */

			anormo = dlange_("1", &n, &n, &afac[1], &lda, &rwork[
				1]);
			anormi = dlange_("I", &n, &n, &afac[1], &lda, &rwork[
				1]);

/*                    Factor the matrix A. */

			dgetrf_(&n, &n, &afac[1], &lda, &iwork[1], &info);

/*                    Form the inverse of A. */

			dlacpy_("Full", &n, &n, &afac[1], &lda, &a[1], &lda);
			lwork = *nmax * max(3,*nrhs);
			dgetri_(&n, &a[1], &lda, &iwork[1], &work[1], &lwork, 
				&info);

/*                    Compute the 1-norm condition number of A. */

			ainvnm = dlange_("1", &n, &n, &a[1], &lda, &rwork[1]);
			if (anormo <= 0. || ainvnm <= 0.) {
			    rcondo = 1.;
			} else {
			    rcondo = 1. / anormo / ainvnm;
			}

/*                    Compute the infinity-norm condition number of A. */

			ainvnm = dlange_("I", &n, &n, &a[1], &lda, &rwork[1]);
			if (anormi <= 0. || ainvnm <= 0.) {
			    rcondi = 1.;
			} else {
			    rcondi = 1. / anormi / ainvnm;
			}
		    }

		    for (itran = 1; itran <= 3; ++itran) {
			for (i__ = 1; i__ <= 7; ++i__) {
			    result[i__ - 1] = 0.;
			}

/*                    Do for each value of TRANS. */

			*(unsigned char *)trans = *(unsigned char *)&transs[
				itran - 1];
			if (itran == 1) {
			    rcondc = rcondo;
			} else {
			    rcondc = rcondi;
			}

/*                    Restore the matrix A. */

			dlacpy_("Full", &n, &n, &asav[1], &lda, &a[1], &lda);

/*                    Form an exact solution and set the right hand side. */

			s_copy(srnamc_1.srnamt, "DLARHS", (ftnlen)32, (ftnlen)
				6);
			dlarhs_(path, xtype, "Full", trans, &n, &n, &kl, &ku, 
				nrhs, &a[1], &lda, &xact[1], &lda, &b[1], &
				lda, iseed, &info);
			*(unsigned char *)xtype = 'C';
			dlacpy_("Full", &n, nrhs, &b[1], &lda, &bsav[1], &lda);

			if (nofact && itran == 1) {

/*                       --- Test DGESV  --- */

/*                       Compute the LU factorization of the matrix and */
/*                       solve the system. */

			    dlacpy_("Full", &n, &n, &a[1], &lda, &afac[1], &
				    lda);
			    dlacpy_("Full", &n, nrhs, &b[1], &lda, &x[1], &
				    lda);

			    s_copy(srnamc_1.srnamt, "DGESV ", (ftnlen)32, (
				    ftnlen)6);
			    dgesv_(&n, nrhs, &afac[1], &lda, &iwork[1], &x[1], 
				     &lda, &info);

/*                       Check error code from DGESV . */

			    if (info != izero) {
				alaerh_(path, "DGESV ", &info, &izero, " ", &
					n, &n, &c_n1, &c_n1, nrhs, &imat, &
					nfail, &nerrs, nout);
				goto L50;
			    }

/*                       Reconstruct matrix from factors and compute */
/*                       residual. */

			    dget01_(&n, &n, &a[1], &lda, &afac[1], &lda, &
				    iwork[1], &rwork[1], result);
			    nt = 1;
			    if (izero == 0) {

/*                          Compute residual of the computed solution. */

				dlacpy_("Full", &n, nrhs, &b[1], &lda, &work[
					1], &lda);
				dget02_("No transpose", &n, &n, nrhs, &a[1], &
					lda, &x[1], &lda, &work[1], &lda, &
					rwork[1], &result[1]);

/*                          Check solution from generated exact solution. */

				dget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, 
					 &rcondc, &result[2]);
				nt = 3;
			    }

/*                       Print information about the tests that did not */
/*                       pass the threshold. */

			    i__4 = nt;
			    for (k = 1; k <= i__4; ++k) {
				if (result[k - 1] >= *thresh) {
				    if (nfail == 0 && nerrs == 0) {
					aladhd_(nout, path);
				    }
				    io___55.ciunit = *nout;
				    s_wsfe(&io___55);
				    do_fio(&c__1, "DGESV ", (ftnlen)6);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&result[k - 1], (
					    ftnlen)sizeof(doublereal));
				    e_wsfe();
				    ++nfail;
				}
/* L30: */
			    }
			    nrun += nt;
			}

/*                    --- Test DGESVX --- */

			if (! prefac) {
			    dlaset_("Full", &n, &n, &c_b20, &c_b20, &afac[1], 
				    &lda);
			}
			dlaset_("Full", &n, nrhs, &c_b20, &c_b20, &x[1], &lda);
			if (iequed > 1 && n > 0) {

/*                       Equilibrate the matrix if FACT = 'F' and */
/*                       EQUED = 'R', 'C', or 'B'. */

			    dlaqge_(&n, &n, &a[1], &lda, &s[1], &s[n + 1], &
				    rowcnd, &colcnd, &amax, equed);
			}

/*                    Solve the system and compute the condition number */
/*                    and error bounds using DGESVX. */

			s_copy(srnamc_1.srnamt, "DGESVX", (ftnlen)32, (ftnlen)
				6);
			dgesvx_(fact, trans, &n, nrhs, &a[1], &lda, &afac[1], 
				&lda, &iwork[1], equed, &s[1], &s[n + 1], &b[
				1], &lda, &x[1], &lda, &rcond, &rwork[1], &
				rwork[*nrhs + 1], &work[1], &iwork[n + 1], &
				info);

/*                    Check the error code from DGESVX. */

			if (info == n + 1) {
			    goto L50;
			}
			if (info != izero) {
/* Writing concatenation */
			    i__5[0] = 1, a__1[0] = fact;
			    i__5[1] = 1, a__1[1] = trans;
			    s_cat(ch__1, a__1, i__5, &c__2, (ftnlen)2);
			    alaerh_(path, "DGESVX", &info, &izero, ch__1, &n, 
				    &n, &c_n1, &c_n1, nrhs, &imat, &nfail, &
				    nerrs, nout);
			    goto L50;
			}

/*                    Compare WORK(1) from DGESVX with the computed */
/*                    reciprocal pivot growth factor RPVGRW */

			if (info != 0) {
			    rpvgrw = dlantr_("M", "U", "N", &info, &info, &
				    afac[1], &lda, &work[1]);
			    if (rpvgrw == 0.) {
				rpvgrw = 1.;
			    } else {
				rpvgrw = dlange_("M", &n, &info, &a[1], &lda, 
					&work[1]) / rpvgrw;
			    }
			} else {
			    rpvgrw = dlantr_("M", "U", "N", &n, &n, &afac[1], 
				    &lda, &work[1]);
			    if (rpvgrw == 0.) {
				rpvgrw = 1.;
			    } else {
				rpvgrw = dlange_("M", &n, &n, &a[1], &lda, &
					work[1]) / rpvgrw;
			    }
			}
			result[6] = (d__1 = rpvgrw - work[1], abs(d__1)) / 
				max(work[1],rpvgrw) / dlamch_("E");

			if (! prefac) {

/*                       Reconstruct matrix from factors and compute */
/*                       residual. */

			    dget01_(&n, &n, &a[1], &lda, &afac[1], &lda, &
				    iwork[1], &rwork[(*nrhs << 1) + 1], 
				    result);
			    k1 = 1;
			} else {
			    k1 = 2;
			}

			if (info == 0) {
			    trfcon = FALSE_;

/*                       Compute residual of the computed solution. */

			    dlacpy_("Full", &n, nrhs, &bsav[1], &lda, &work[1]
, &lda);
			    dget02_(trans, &n, &n, nrhs, &asav[1], &lda, &x[1]
, &lda, &work[1], &lda, &rwork[(*nrhs << 
				    1) + 1], &result[1]);

/*                       Check solution from generated exact solution. */

			    if (nofact || prefac && lsame_(equed, "N")) {
				dget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, 
					 &rcondc, &result[2]);
			    } else {
				if (itran == 1) {
				    roldc = roldo;
				} else {
				    roldc = roldi;
				}
				dget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, 
					 &roldc, &result[2]);
			    }

/*                       Check the error bounds from iterative */
/*                       refinement. */

			    dget07_(trans, &n, nrhs, &asav[1], &lda, &b[1], &
				    lda, &x[1], &lda, &xact[1], &lda, &rwork[
				    1], &c_true, &rwork[*nrhs + 1], &result[3]
);
			} else {
			    trfcon = TRUE_;
			}

/*                    Compare RCOND from DGESVX with the computed value */
/*                    in RCONDC. */

			result[5] = dget06_(&rcond, &rcondc);

/*                    Print information about the tests that did not pass */
/*                    the threshold. */

			if (! trfcon) {
			    for (k = k1; k <= 7; ++k) {
				if (result[k - 1] >= *thresh) {
				    if (nfail == 0 && nerrs == 0) {
					aladhd_(nout, path);
				    }
				    if (prefac) {
					io___61.ciunit = *nout;
					s_wsfe(&io___61);
					do_fio(&c__1, "DGESVX", (ftnlen)6);
					do_fio(&c__1, fact, (ftnlen)1);
					do_fio(&c__1, trans, (ftnlen)1);
					do_fio(&c__1, (char *)&n, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, equed, (ftnlen)1);
					do_fio(&c__1, (char *)&imat, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&k, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&result[k - 1], 
						(ftnlen)sizeof(doublereal));
					e_wsfe();
				    } else {
					io___62.ciunit = *nout;
					s_wsfe(&io___62);
					do_fio(&c__1, "DGESVX", (ftnlen)6);
					do_fio(&c__1, fact, (ftnlen)1);
					do_fio(&c__1, trans, (ftnlen)1);
					do_fio(&c__1, (char *)&n, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&imat, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&k, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&result[k - 1], 
						(ftnlen)sizeof(doublereal));
					e_wsfe();
				    }
				    ++nfail;
				}
/* L40: */
			    }
			    nrun = nrun + 7 - k1;
			} else {
			    if (result[0] >= *thresh && ! prefac) {
				if (nfail == 0 && nerrs == 0) {
				    aladhd_(nout, path);
				}
				if (prefac) {
				    io___63.ciunit = *nout;
				    s_wsfe(&io___63);
				    do_fio(&c__1, "DGESVX", (ftnlen)6);
				    do_fio(&c__1, fact, (ftnlen)1);
				    do_fio(&c__1, trans, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, equed, (ftnlen)1);
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&c__1, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&result[0], (ftnlen)
					    sizeof(doublereal));
				    e_wsfe();
				} else {
				    io___64.ciunit = *nout;
				    s_wsfe(&io___64);
				    do_fio(&c__1, "DGESVX", (ftnlen)6);
				    do_fio(&c__1, fact, (ftnlen)1);
				    do_fio(&c__1, trans, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&c__1, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&result[0], (ftnlen)
					    sizeof(doublereal));
				    e_wsfe();
				}
				++nfail;
				++nrun;
			    }
			    if (result[5] >= *thresh) {
				if (nfail == 0 && nerrs == 0) {
				    aladhd_(nout, path);
				}
				if (prefac) {
				    io___65.ciunit = *nout;
				    s_wsfe(&io___65);
				    do_fio(&c__1, "DGESVX", (ftnlen)6);
				    do_fio(&c__1, fact, (ftnlen)1);
				    do_fio(&c__1, trans, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, equed, (ftnlen)1);
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&c__6, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&result[5], (ftnlen)
					    sizeof(doublereal));
				    e_wsfe();
				} else {
				    io___66.ciunit = *nout;
				    s_wsfe(&io___66);
				    do_fio(&c__1, "DGESVX", (ftnlen)6);
				    do_fio(&c__1, fact, (ftnlen)1);
				    do_fio(&c__1, trans, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&c__6, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&result[5], (ftnlen)
					    sizeof(doublereal));
				    e_wsfe();
				}
				++nfail;
				++nrun;
			    }
			    if (result[6] >= *thresh) {
				if (nfail == 0 && nerrs == 0) {
				    aladhd_(nout, path);
				}
				if (prefac) {
				    io___67.ciunit = *nout;
				    s_wsfe(&io___67);
				    do_fio(&c__1, "DGESVX", (ftnlen)6);
				    do_fio(&c__1, fact, (ftnlen)1);
				    do_fio(&c__1, trans, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, equed, (ftnlen)1);
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&c__7, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&result[6], (ftnlen)
					    sizeof(doublereal));
				    e_wsfe();
				} else {
				    io___68.ciunit = *nout;
				    s_wsfe(&io___68);
				    do_fio(&c__1, "DGESVX", (ftnlen)6);
				    do_fio(&c__1, fact, (ftnlen)1);
				    do_fio(&c__1, trans, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&c__7, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&result[6], (ftnlen)
					    sizeof(doublereal));
				    e_wsfe();
				}
				++nfail;
				++nrun;
			    }

			}

/*                    --- Test DGESVXX --- */

/*                    Restore the matrices A and B. */

			dlacpy_("Full", &n, &n, &asav[1], &lda, &a[1], &lda);
			dlacpy_("Full", &n, nrhs, &bsav[1], &lda, &b[1], &lda);
			if (! prefac) {
			    dlaset_("Full", &n, &n, &c_b20, &c_b20, &afac[1], 
				    &lda);
			}
			dlaset_("Full", &n, nrhs, &c_b20, &c_b20, &x[1], &lda);
			if (iequed > 1 && n > 0) {

/*                       Equilibrate the matrix if FACT = 'F' and */
/*                       EQUED = 'R', 'C', or 'B'. */

			    dlaqge_(&n, &n, &a[1], &lda, &s[1], &s[n + 1], &
				    rowcnd, &colcnd, &amax, equed);
			}

/*                    Solve the system and compute the condition number */
/*                    and error bounds using DGESVXX. */

			s_copy(srnamc_1.srnamt, "DGESVXX", (ftnlen)32, (
				ftnlen)7);
			n_err_bnds__ = 3;

			dalloc3();
			
			dgesvxx_(fact, trans, &n, nrhs, &a[1], &lda, &afac[1], 
				 &lda, &iwork[1], equed, &s[1], &s[n + 1], &b[
				1], &lda, &x[1], &lda, &rcond, &rpvgrw_svxx__, 
				 berr, &n_err_bnds__, errbnds_n__, 
				errbnds_c__, &c__0, &c_b20, &work[1], &iwork[
				n + 1], &info);

			free3();

/*                    Check the error code from DGESVXX. */

			if (info == n + 1) {
			    goto L50;
			}
			if (info != izero) {
/* Writing concatenation */
			    i__5[0] = 1, a__1[0] = fact;
			    i__5[1] = 1, a__1[1] = trans;
			    s_cat(ch__1, a__1, i__5, &c__2, (ftnlen)2);
			    alaerh_(path, "DGESVXX", &info, &izero, ch__1, &n, 
				     &n, &c_n1, &c_n1, nrhs, &imat, &nfail, &
				    nerrs, nout);
			    goto L50;
			}

/*                    Compare rpvgrw_svxx from DGESVXX with the computed */
/*                    reciprocal pivot growth factor RPVGRW */

			if (info > 0 && info < n + 1) {
			    rpvgrw = dla_rpvgrw__(&n, &info, &a[1], &lda, &
				    afac[1], &lda);
			} else {
			    rpvgrw = dla_rpvgrw__(&n, &n, &a[1], &lda, &afac[
				    1], &lda);
			}
			result[6] = (d__1 = rpvgrw - rpvgrw_svxx__, abs(d__1))
				 / max(rpvgrw_svxx__,rpvgrw) / dlamch_("E");

			if (! prefac) {

/*                       Reconstruct matrix from factors and compute */
/*                       residual. */

			    dget01_(&n, &n, &a[1], &lda, &afac[1], &lda, &
				    iwork[1], &rwork[(*nrhs << 1) + 1], 
				    result);
			    k1 = 1;
			} else {
			    k1 = 2;
			}

			if (info == 0) {
			    trfcon = FALSE_;

/*                       Compute residual of the computed solution. */

			    dlacpy_("Full", &n, nrhs, &bsav[1], &lda, &work[1]
, &lda);
			    dget02_(trans, &n, &n, nrhs, &asav[1], &lda, &x[1]
, &lda, &work[1], &lda, &rwork[(*nrhs << 
				    1) + 1], &result[1]);

/*                       Check solution from generated exact solution. */

			    if (nofact || prefac && lsame_(equed, "N")) {
				dget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, 
					 &rcondc, &result[2]);
			    } else {
				if (itran == 1) {
				    roldc = roldo;
				} else {
				    roldc = roldi;
				}
				dget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, 
					 &roldc, &result[2]);
			    }
			} else {
			    trfcon = TRUE_;
			}

/*                    Compare RCOND from DGESVXX with the computed value */
/*                    in RCONDC. */

			result[5] = dget06_(&rcond, &rcondc);

/*                    Print information about the tests that did not pass */
/*                    the threshold. */

			if (! trfcon) {
			    for (k = k1; k <= 7; ++k) {
				if (result[k - 1] >= *thresh) {
				    if (nfail == 0 && nerrs == 0) {
					aladhd_(nout, path);
				    }
				    if (prefac) {
					io___74.ciunit = *nout;
					s_wsfe(&io___74);
					do_fio(&c__1, "DGESVXX", (ftnlen)7);
					do_fio(&c__1, fact, (ftnlen)1);
					do_fio(&c__1, trans, (ftnlen)1);
					do_fio(&c__1, (char *)&n, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, equed, (ftnlen)1);
					do_fio(&c__1, (char *)&imat, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&k, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&result[k - 1], 
						(ftnlen)sizeof(doublereal));
					e_wsfe();
				    } else {
					io___75.ciunit = *nout;
					s_wsfe(&io___75);
					do_fio(&c__1, "DGESVXX", (ftnlen)7);
					do_fio(&c__1, fact, (ftnlen)1);
					do_fio(&c__1, trans, (ftnlen)1);
					do_fio(&c__1, (char *)&n, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&imat, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&k, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&result[k - 1], 
						(ftnlen)sizeof(doublereal));
					e_wsfe();
				    }
				    ++nfail;
				}
/* L45: */
			    }
			    nrun = nrun + 7 - k1;
			} else {
			    if (result[0] >= *thresh && ! prefac) {
				if (nfail == 0 && nerrs == 0) {
				    aladhd_(nout, path);
				}
				if (prefac) {
				    io___76.ciunit = *nout;
				    s_wsfe(&io___76);
				    do_fio(&c__1, "DGESVXX", (ftnlen)7);
				    do_fio(&c__1, fact, (ftnlen)1);
				    do_fio(&c__1, trans, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, equed, (ftnlen)1);
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&c__1, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&result[0], (ftnlen)
					    sizeof(doublereal));
				    e_wsfe();
				} else {
				    io___77.ciunit = *nout;
				    s_wsfe(&io___77);
				    do_fio(&c__1, "DGESVXX", (ftnlen)7);
				    do_fio(&c__1, fact, (ftnlen)1);
				    do_fio(&c__1, trans, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&c__1, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&result[0], (ftnlen)
					    sizeof(doublereal));
				    e_wsfe();
				}
				++nfail;
				++nrun;
			    }
			    if (result[5] >= *thresh) {
				if (nfail == 0 && nerrs == 0) {
				    aladhd_(nout, path);
				}
				if (prefac) {
				    io___78.ciunit = *nout;
				    s_wsfe(&io___78);
				    do_fio(&c__1, "DGESVXX", (ftnlen)7);
				    do_fio(&c__1, fact, (ftnlen)1);
				    do_fio(&c__1, trans, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, equed, (ftnlen)1);
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&c__6, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&result[5], (ftnlen)
					    sizeof(doublereal));
				    e_wsfe();
				} else {
				    io___79.ciunit = *nout;
				    s_wsfe(&io___79);
				    do_fio(&c__1, "DGESVXX", (ftnlen)7);
				    do_fio(&c__1, fact, (ftnlen)1);
				    do_fio(&c__1, trans, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&c__6, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&result[5], (ftnlen)
					    sizeof(doublereal));
				    e_wsfe();
				}
				++nfail;
				++nrun;
			    }
			    if (result[6] >= *thresh) {
				if (nfail == 0 && nerrs == 0) {
				    aladhd_(nout, path);
				}
				if (prefac) {
				    io___80.ciunit = *nout;
				    s_wsfe(&io___80);
				    do_fio(&c__1, "DGESVXX", (ftnlen)7);
				    do_fio(&c__1, fact, (ftnlen)1);
				    do_fio(&c__1, trans, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, equed, (ftnlen)1);
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&c__7, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&result[6], (ftnlen)
					    sizeof(doublereal));
				    e_wsfe();
				} else {
				    io___81.ciunit = *nout;
				    s_wsfe(&io___81);
				    do_fio(&c__1, "DGESVXX", (ftnlen)7);
				    do_fio(&c__1, fact, (ftnlen)1);
				    do_fio(&c__1, trans, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&c__7, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&result[6], (ftnlen)
					    sizeof(doublereal));
				    e_wsfe();
				}
				++nfail;
				++nrun;
			    }

			}

L50:
			;
		    }
L60:
		    ;
		}
/* L70: */
	    }
L80:
	    ;
	}
/* L90: */
    }

/*     Print a summary of the results. */

    alasvm_(path, nout, &nfail, &nrun, &nerrs);

/*     Test Error Bounds from DGESVXX */
    debchvxx_(thresh, path);
    return 0;

/*     End of DDRVGE */

} /* ddrvge_ */