/* Subroutine */ int dget31_(doublereal *rmax, integer *lmax, integer *ninfo, integer *knt) { /* Initialized data */ static logical ltrans[2] = { FALSE_,TRUE_ }; /* System generated locals */ doublereal d__1, d__2, d__3, d__4, d__5, d__6, d__7, d__8, d__9, d__10, d__11, d__12, d__13; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ doublereal a[4] /* was [2][2] */, b[4] /* was [2][2] */, x[4] /* was [2][2] */, d1, d2, ca; integer ia, ib, na; doublereal wi; integer nw; doublereal wr; integer id1, id2, ica; doublereal den, vab[3], vca[5], vdd[4], eps; integer iwi; doublereal res, tmp; integer iwr; doublereal vwi[4], vwr[4]; integer info; doublereal unfl, smin, scale; integer ismin; doublereal vsmin[4], xnorm; extern /* Subroutine */ int dlaln2_(logical *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, doublereal * , doublereal *, integer *, doublereal *, doublereal *, integer *), dlabad_(doublereal *, doublereal *); extern doublereal dlamch_(char *); doublereal bignum; integer itrans; doublereal smlnum; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DGET31 tests DLALN2, a routine for solving */ /* (ca A - w D)X = sB */ /* where A is an NA by NA matrix (NA=1 or 2 only), w is a real (NW=1) or */ /* complex (NW=2) constant, ca is a real constant, D is an NA by NA real */ /* diagonal matrix, and B is an NA by NW matrix (when NW=2 the second */ /* column of B contains the imaginary part of the solution). The code */ /* returns X and s, where s is a scale factor, less than or equal to 1, */ /* which is chosen to avoid overflow in X. */ /* If any singular values of ca A-w D are less than another input */ /* parameter SMIN, they are perturbed up to SMIN. */ /* The test condition is that the scaled residual */ /* norm( (ca A-w D)*X - s*B ) / */ /* ( max( ulp*norm(ca A-w D), SMIN )*norm(X) ) */ /* should be on the order of 1. Here, ulp is the machine precision. */ /* Also, it is verified that SCALE is less than or equal to 1, and that */ /* XNORM = infinity-norm(X). */ /* Arguments */ /* ========== */ /* RMAX (output) DOUBLE PRECISION */ /* Value of the largest test ratio. */ /* LMAX (output) INTEGER */ /* Example number where largest test ratio achieved. */ /* NINFO (output) INTEGER array, dimension (3) */ /* NINFO(1) = number of examples with INFO less than 0 */ /* NINFO(2) = number of examples with INFO greater than 0 */ /* KNT (output) INTEGER */ /* Total number of examples tested. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Data statements .. */ /* Parameter adjustments */ --ninfo; /* Function Body */ /* .. */ /* .. Executable Statements .. */ /* Get machine parameters */ eps = dlamch_("P"); unfl = dlamch_("U"); smlnum = dlamch_("S") / eps; bignum = 1. / smlnum; dlabad_(&smlnum, &bignum); /* Set up test case parameters */ vsmin[0] = smlnum; vsmin[1] = eps; vsmin[2] = .01; vsmin[3] = 1. / eps; vab[0] = sqrt(smlnum); vab[1] = 1.; vab[2] = sqrt(bignum); vwr[0] = 0.; vwr[1] = .5; vwr[2] = 2.; vwr[3] = 1.; vwi[0] = smlnum; vwi[1] = eps; vwi[2] = 1.; vwi[3] = 2.; vdd[0] = sqrt(smlnum); vdd[1] = 1.; vdd[2] = 2.; vdd[3] = sqrt(bignum); vca[0] = 0.; vca[1] = sqrt(smlnum); vca[2] = eps; vca[3] = .5; vca[4] = 1.; *knt = 0; ninfo[1] = 0; ninfo[2] = 0; *lmax = 0; *rmax = 0.; /* Begin test loop */ for (id1 = 1; id1 <= 4; ++id1) { d1 = vdd[id1 - 1]; for (id2 = 1; id2 <= 4; ++id2) { d2 = vdd[id2 - 1]; for (ica = 1; ica <= 5; ++ica) { ca = vca[ica - 1]; for (itrans = 0; itrans <= 1; ++itrans) { for (ismin = 1; ismin <= 4; ++ismin) { smin = vsmin[ismin - 1]; na = 1; nw = 1; for (ia = 1; ia <= 3; ++ia) { a[0] = vab[ia - 1]; for (ib = 1; ib <= 3; ++ib) { b[0] = vab[ib - 1]; for (iwr = 1; iwr <= 4; ++iwr) { if (d1 == 1. && d2 == 1. && ca == 1.) { wr = vwr[iwr - 1] * a[0]; } else { wr = vwr[iwr - 1]; } wi = 0.; dlaln2_(<rans[itrans], &na, &nw, &smin, &ca, a, &c__2, &d1, &d2, b, &c__2, &wr, &wi, x, &c__2, &scale, & xnorm, &info); if (info < 0) { ++ninfo[1]; } if (info > 0) { ++ninfo[2]; } res = (d__1 = (ca * a[0] - wr * d1) * x[0] - scale * b[0], abs(d__1)); if (info == 0) { /* Computing MAX */ d__2 = eps * (d__1 = (ca * a[0] - wr * d1) * x[0], abs(d__1)); den = max(d__2,smlnum); } else { /* Computing MAX */ d__1 = smin * abs(x[0]); den = max(d__1,smlnum); } res /= den; if (abs(x[0]) < unfl && abs(b[0]) <= smlnum * (d__1 = ca * a[0] - wr * d1, abs(d__1))) { res = 0.; } if (scale > 1.) { res += 1. / eps; } res += (d__1 = xnorm - abs(x[0]), abs( d__1)) / max(smlnum,xnorm) / eps; if (info != 0 && info != 1) { res += 1. / eps; } ++(*knt); if (res > *rmax) { *lmax = *knt; *rmax = res; } /* L10: */ } /* L20: */ } /* L30: */ } na = 1; nw = 2; for (ia = 1; ia <= 3; ++ia) { a[0] = vab[ia - 1]; for (ib = 1; ib <= 3; ++ib) { b[0] = vab[ib - 1]; b[2] = vab[ib - 1] * -.5; for (iwr = 1; iwr <= 4; ++iwr) { if (d1 == 1. && d2 == 1. && ca == 1.) { wr = vwr[iwr - 1] * a[0]; } else { wr = vwr[iwr - 1]; } for (iwi = 1; iwi <= 4; ++iwi) { if (d1 == 1. && d2 == 1. && ca == 1.) { wi = vwi[iwi - 1] * a[0]; } else { wi = vwi[iwi - 1]; } dlaln2_(<rans[itrans], &na, &nw, & smin, &ca, a, &c__2, &d1, &d2, b, &c__2, &wr, &wi, x, &c__2, &scale, &xnorm, &info); if (info < 0) { ++ninfo[1]; } if (info > 0) { ++ninfo[2]; } res = (d__1 = (ca * a[0] - wr * d1) * x[0] + wi * d1 * x[2] - scale * b[0], abs(d__1)); res += (d__1 = -wi * d1 * x[0] + (ca * a[0] - wr * d1) * x[2] - scale * b[2], abs(d__1)); if (info == 0) { /* Computing MAX */ /* Computing MAX */ d__4 = (d__1 = ca * a[0] - wr * d1, abs(d__1)), d__5 = ( d__2 = d1 * wi, abs(d__2)) ; d__3 = eps * (max(d__4,d__5) * ( abs(x[0]) + abs(x[2]))); den = max(d__3,smlnum); } else { /* Computing MAX */ d__1 = smin * (abs(x[0]) + abs(x[ 2])); den = max(d__1,smlnum); } res /= den; if (abs(x[0]) < unfl && abs(x[2]) < unfl && abs(b[0]) <= smlnum * (d__1 = ca * a[0] - wr * d1, abs(d__1))) { res = 0.; } if (scale > 1.) { res += 1. / eps; } res += (d__1 = xnorm - abs(x[0]) - abs(x[2]), abs(d__1)) / max( smlnum,xnorm) / eps; if (info != 0 && info != 1) { res += 1. / eps; } ++(*knt); if (res > *rmax) { *lmax = *knt; *rmax = res; } /* L40: */ } /* L50: */ } /* L60: */ } /* L70: */ } na = 2; nw = 1; for (ia = 1; ia <= 3; ++ia) { a[0] = vab[ia - 1]; a[2] = vab[ia - 1] * -3.; a[1] = vab[ia - 1] * -7.; a[3] = vab[ia - 1] * 21.; for (ib = 1; ib <= 3; ++ib) { b[0] = vab[ib - 1]; b[1] = vab[ib - 1] * -2.; for (iwr = 1; iwr <= 4; ++iwr) { if (d1 == 1. && d2 == 1. && ca == 1.) { wr = vwr[iwr - 1] * a[0]; } else { wr = vwr[iwr - 1]; } wi = 0.; dlaln2_(<rans[itrans], &na, &nw, &smin, &ca, a, &c__2, &d1, &d2, b, &c__2, &wr, &wi, x, &c__2, &scale, & xnorm, &info); if (info < 0) { ++ninfo[1]; } if (info > 0) { ++ninfo[2]; } if (itrans == 1) { tmp = a[2]; a[2] = a[1]; a[1] = tmp; } res = (d__1 = (ca * a[0] - wr * d1) * x[0] + ca * a[2] * x[1] - scale * b[0] , abs(d__1)); res += (d__1 = ca * a[1] * x[0] + (ca * a[ 3] - wr * d2) * x[1] - scale * b[ 1], abs(d__1)); if (info == 0) { /* Computing MAX */ /* Computing MAX */ d__6 = (d__1 = ca * a[0] - wr * d1, abs(d__1)) + (d__2 = ca * a[2] , abs(d__2)), d__7 = (d__3 = ca * a[1], abs(d__3)) + (d__4 = ca * a[3] - wr * d2, abs( d__4)); /* Computing MAX */ d__8 = abs(x[0]), d__9 = abs(x[1]); d__5 = eps * (max(d__6,d__7) * max( d__8,d__9)); den = max(d__5,smlnum); } else { /* Computing MAX */ /* Computing MAX */ /* Computing MAX */ d__8 = (d__1 = ca * a[0] - wr * d1, abs(d__1)) + (d__2 = ca * a[2] , abs(d__2)), d__9 = (d__3 = ca * a[1], abs(d__3)) + (d__4 = ca * a[3] - wr * d2, abs( d__4)); d__6 = smin / eps, d__7 = max(d__8, d__9); /* Computing MAX */ d__10 = abs(x[0]), d__11 = abs(x[1]); d__5 = eps * (max(d__6,d__7) * max( d__10,d__11)); den = max(d__5,smlnum); } res /= den; if (abs(x[0]) < unfl && abs(x[1]) < unfl && abs(b[0]) + abs(b[1]) <= smlnum * ((d__1 = ca * a[0] - wr * d1, abs(d__1)) + (d__2 = ca * a[ 2], abs(d__2)) + (d__3 = ca * a[1] , abs(d__3)) + (d__4 = ca * a[3] - wr * d2, abs(d__4)))) { res = 0.; } if (scale > 1.) { res += 1. / eps; } /* Computing MAX */ d__2 = abs(x[0]), d__3 = abs(x[1]); res += (d__1 = xnorm - max(d__2,d__3), abs(d__1)) / max(smlnum,xnorm) / eps; if (info != 0 && info != 1) { res += 1. / eps; } ++(*knt); if (res > *rmax) { *lmax = *knt; *rmax = res; } /* L80: */ } /* L90: */ } /* L100: */ } na = 2; nw = 2; for (ia = 1; ia <= 3; ++ia) { a[0] = vab[ia - 1] * 2.; a[2] = vab[ia - 1] * -3.; a[1] = vab[ia - 1] * -7.; a[3] = vab[ia - 1] * 21.; for (ib = 1; ib <= 3; ++ib) { b[0] = vab[ib - 1]; b[1] = vab[ib - 1] * -2.; b[2] = vab[ib - 1] * 4.; b[3] = vab[ib - 1] * -7.; for (iwr = 1; iwr <= 4; ++iwr) { if (d1 == 1. && d2 == 1. && ca == 1.) { wr = vwr[iwr - 1] * a[0]; } else { wr = vwr[iwr - 1]; } for (iwi = 1; iwi <= 4; ++iwi) { if (d1 == 1. && d2 == 1. && ca == 1.) { wi = vwi[iwi - 1] * a[0]; } else { wi = vwi[iwi - 1]; } dlaln2_(<rans[itrans], &na, &nw, & smin, &ca, a, &c__2, &d1, &d2, b, &c__2, &wr, &wi, x, &c__2, &scale, &xnorm, &info); if (info < 0) { ++ninfo[1]; } if (info > 0) { ++ninfo[2]; } if (itrans == 1) { tmp = a[2]; a[2] = a[1]; a[1] = tmp; } res = (d__1 = (ca * a[0] - wr * d1) * x[0] + ca * a[2] * x[1] + wi * d1 * x[2] - scale * b[0], abs(d__1)); res += (d__1 = (ca * a[0] - wr * d1) * x[2] + ca * a[2] * x[3] - wi * d1 * x[0] - scale * b[2], abs(d__1)); res += (d__1 = ca * a[1] * x[0] + (ca * a[3] - wr * d2) * x[1] + wi * d2 * x[3] - scale * b[1], abs(d__1)); res += (d__1 = ca * a[1] * x[2] + (ca * a[3] - wr * d2) * x[3] - wi * d2 * x[1] - scale * b[3], abs(d__1)); if (info == 0) { /* Computing MAX */ /* Computing MAX */ d__8 = (d__1 = ca * a[0] - wr * d1, abs(d__1)) + (d__2 = ca * a[2], abs(d__2)) + ( d__3 = wi * d1, abs(d__3)) , d__9 = (d__4 = ca * a[1] , abs(d__4)) + (d__5 = ca * a[3] - wr * d2, abs( d__5)) + (d__6 = wi * d2, abs(d__6)); /* Computing MAX */ d__10 = abs(x[0]) + abs(x[1]), d__11 = abs(x[2]) + abs(x[ 3]); d__7 = eps * (max(d__8,d__9) * max(d__10,d__11)); den = max(d__7,smlnum); } else { /* Computing MAX */ /* Computing MAX */ /* Computing MAX */ d__10 = (d__1 = ca * a[0] - wr * d1, abs(d__1)) + (d__2 = ca * a[2], abs(d__2)) + ( d__3 = wi * d1, abs(d__3)) , d__11 = (d__4 = ca * a[ 1], abs(d__4)) + (d__5 = ca * a[3] - wr * d2, abs( d__5)) + (d__6 = wi * d2, abs(d__6)); d__8 = smin / eps, d__9 = max( d__10,d__11); /* Computing MAX */ d__12 = abs(x[0]) + abs(x[1]), d__13 = abs(x[2]) + abs(x[ 3]); d__7 = eps * (max(d__8,d__9) * max(d__12,d__13)); den = max(d__7,smlnum); } res /= den; if (abs(x[0]) < unfl && abs(x[1]) < unfl && abs(x[2]) < unfl && abs(x[3]) < unfl && abs(b[0]) + abs(b[1]) <= smlnum * (( d__1 = ca * a[0] - wr * d1, abs(d__1)) + (d__2 = ca * a[2] , abs(d__2)) + (d__3 = ca * a[ 1], abs(d__3)) + (d__4 = ca * a[3] - wr * d2, abs(d__4)) + ( d__5 = wi * d2, abs(d__5)) + ( d__6 = wi * d1, abs(d__6)))) { res = 0.; } if (scale > 1.) { res += 1. / eps; } /* Computing MAX */ d__2 = abs(x[0]) + abs(x[2]), d__3 = abs(x[1]) + abs(x[3]); res += (d__1 = xnorm - max(d__2,d__3), abs(d__1)) / max(smlnum, xnorm) / eps; if (info != 0 && info != 1) { res += 1. / eps; } ++(*knt); if (res > *rmax) { *lmax = *knt; *rmax = res; } /* L110: */ } /* L120: */ } /* L130: */ } /* L140: */ } /* L150: */ } /* L160: */ } /* L170: */ } /* L180: */ } /* L190: */ } return 0; /* End of DGET31 */ } /* dget31_ */
/* Subroutine */ int dlaqtr_(logical *ltran, logical *lreal, integer *n, doublereal *t, integer *ldt, doublereal *b, doublereal *w, doublereal *scale, doublereal *x, doublereal *work, integer *info) { /* System generated locals */ integer t_dim1, t_offset, i__1, i__2; doublereal d__1, d__2, d__3, d__4, d__5, d__6; /* Local variables */ doublereal d__[4] /* was [2][2] */; integer i__, j, k; doublereal v[4] /* was [2][2] */, z__; integer j1, j2, n1, n2; doublereal si, xj, sr, rec, eps, tjj, tmp; extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *, integer *); integer ierr; doublereal smin, xmax; extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, integer *); extern doublereal dasum_(integer *, doublereal *, integer *); extern /* Subroutine */ int daxpy_(integer *, doublereal *, doublereal *, integer *, doublereal *, integer *); integer jnext; doublereal sminw, xnorm; extern /* Subroutine */ int dlaln2_(logical *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, doublereal * , doublereal *, integer *, doublereal *, doublereal *, integer *); extern doublereal dlamch_(char *), dlange_(char *, integer *, integer *, doublereal *, integer *, doublereal *); extern integer idamax_(integer *, doublereal *, integer *); doublereal scaloc; extern /* Subroutine */ int dladiv_(doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *); doublereal bignum; logical notran; doublereal smlnum; /* -- LAPACK auxiliary routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DLAQTR solves the real quasi-triangular system */ /* op(T)*p = scale*c, if LREAL = .TRUE. */ /* or the complex quasi-triangular systems */ /* op(T + iB)*(p+iq) = scale*(c+id), if LREAL = .FALSE. */ /* in real arithmetic, where T is upper quasi-triangular. */ /* If LREAL = .FALSE., then the first diagonal block of T must be */ /* 1 by 1, B is the specially structured matrix */ /* B = [ b(1) b(2) ... b(n) ] */ /* [ w ] */ /* [ w ] */ /* [ . ] */ /* [ w ] */ /* op(A) = A or A', A' denotes the conjugate transpose of */ /* matrix A. */ /* On input, X = [ c ]. On output, X = [ p ]. */ /* [ d ] [ q ] */ /* This subroutine is designed for the condition number estimation */ /* in routine DTRSNA. */ /* Arguments */ /* ========= */ /* LTRAN (input) LOGICAL */ /* On entry, LTRAN specifies the option of conjugate transpose: */ /* = .FALSE., op(T+i*B) = T+i*B, */ /* = .TRUE., op(T+i*B) = (T+i*B)'. */ /* LREAL (input) LOGICAL */ /* On entry, LREAL specifies the input matrix structure: */ /* = .FALSE., the input is complex */ /* = .TRUE., the input is real */ /* N (input) INTEGER */ /* On entry, N specifies the order of T+i*B. N >= 0. */ /* T (input) DOUBLE PRECISION array, dimension (LDT,N) */ /* On entry, T contains a matrix in Schur canonical form. */ /* If LREAL = .FALSE., then the first diagonal block of T mu */ /* be 1 by 1. */ /* LDT (input) INTEGER */ /* The leading dimension of the matrix T. LDT >= max(1,N). */ /* B (input) DOUBLE PRECISION array, dimension (N) */ /* On entry, B contains the elements to form the matrix */ /* B as described above. */ /* If LREAL = .TRUE., B is not referenced. */ /* W (input) DOUBLE PRECISION */ /* On entry, W is the diagonal element of the matrix B. */ /* If LREAL = .TRUE., W is not referenced. */ /* SCALE (output) DOUBLE PRECISION */ /* On exit, SCALE is the scale factor. */ /* X (input/output) DOUBLE PRECISION array, dimension (2*N) */ /* On entry, X contains the right hand side of the system. */ /* On exit, X is overwritten by the solution. */ /* WORK (workspace) DOUBLE PRECISION array, dimension (N) */ /* INFO (output) INTEGER */ /* On exit, INFO is set to */ /* 0: successful exit. */ /* 1: the some diagonal 1 by 1 block has been perturbed by */ /* a small number SMIN to keep nonsingularity. */ /* 2: the some diagonal 2 by 2 block has been perturbed by */ /* a small number in DLALN2 to keep nonsingularity. */ /* NOTE: In the interests of speed, this routine does not */ /* check the inputs for errors. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Do not test the input parameters for errors */ /* Parameter adjustments */ t_dim1 = *ldt; t_offset = 1 + t_dim1; t -= t_offset; --b; --x; --work; /* Function Body */ notran = ! (*ltran); *info = 0; /* Quick return if possible */ if (*n == 0) { return 0; } /* Set constants to control overflow */ eps = dlamch_("P"); smlnum = dlamch_("S") / eps; bignum = 1. / smlnum; xnorm = dlange_("M", n, n, &t[t_offset], ldt, d__); if (! (*lreal)) { /* Computing MAX */ d__1 = xnorm, d__2 = abs(*w), d__1 = max(d__1,d__2), d__2 = dlange_( "M", n, &c__1, &b[1], n, d__); xnorm = max(d__1,d__2); } /* Computing MAX */ d__1 = smlnum, d__2 = eps * xnorm; smin = max(d__1,d__2); /* Compute 1-norm of each column of strictly upper triangular */ /* part of T to control overflow in triangular solver. */ work[1] = 0.; i__1 = *n; for (j = 2; j <= i__1; ++j) { i__2 = j - 1; work[j] = dasum_(&i__2, &t[j * t_dim1 + 1], &c__1); /* L10: */ } if (! (*lreal)) { i__1 = *n; for (i__ = 2; i__ <= i__1; ++i__) { work[i__] += (d__1 = b[i__], abs(d__1)); /* L20: */ } } n2 = *n << 1; n1 = *n; if (! (*lreal)) { n1 = n2; } k = idamax_(&n1, &x[1], &c__1); xmax = (d__1 = x[k], abs(d__1)); *scale = 1.; if (xmax > bignum) { *scale = bignum / xmax; dscal_(&n1, scale, &x[1], &c__1); xmax = bignum; } if (*lreal) { if (notran) { /* Solve T*p = scale*c */ jnext = *n; for (j = *n; j >= 1; --j) { if (j > jnext) { goto L30; } j1 = j; j2 = j; jnext = j - 1; if (j > 1) { if (t[j + (j - 1) * t_dim1] != 0.) { j1 = j - 1; jnext = j - 2; } } if (j1 == j2) { /* Meet 1 by 1 diagonal block */ /* Scale to avoid overflow when computing */ /* x(j) = b(j)/T(j,j) */ xj = (d__1 = x[j1], abs(d__1)); tjj = (d__1 = t[j1 + j1 * t_dim1], abs(d__1)); tmp = t[j1 + j1 * t_dim1]; if (tjj < smin) { tmp = smin; tjj = smin; *info = 1; } if (xj == 0.) { goto L30; } if (tjj < 1.) { if (xj > bignum * tjj) { rec = 1. / xj; dscal_(n, &rec, &x[1], &c__1); *scale *= rec; xmax *= rec; } } x[j1] /= tmp; xj = (d__1 = x[j1], abs(d__1)); /* Scale x if necessary to avoid overflow when adding a */ /* multiple of column j1 of T. */ if (xj > 1.) { rec = 1. / xj; if (work[j1] > (bignum - xmax) * rec) { dscal_(n, &rec, &x[1], &c__1); *scale *= rec; } } if (j1 > 1) { i__1 = j1 - 1; d__1 = -x[j1]; daxpy_(&i__1, &d__1, &t[j1 * t_dim1 + 1], &c__1, &x[1] , &c__1); i__1 = j1 - 1; k = idamax_(&i__1, &x[1], &c__1); xmax = (d__1 = x[k], abs(d__1)); } } else { /* Meet 2 by 2 diagonal block */ /* Call 2 by 2 linear system solve, to take */ /* care of possible overflow by scaling factor. */ d__[0] = x[j1]; d__[1] = x[j2]; dlaln2_(&c_false, &c__2, &c__1, &smin, &c_b21, &t[j1 + j1 * t_dim1], ldt, &c_b21, &c_b21, d__, &c__2, & c_b25, &c_b25, v, &c__2, &scaloc, &xnorm, &ierr); if (ierr != 0) { *info = 2; } if (scaloc != 1.) { dscal_(n, &scaloc, &x[1], &c__1); *scale *= scaloc; } x[j1] = v[0]; x[j2] = v[1]; /* Scale V(1,1) (= X(J1)) and/or V(2,1) (=X(J2)) */ /* to avoid overflow in updating right-hand side. */ /* Computing MAX */ d__1 = abs(v[0]), d__2 = abs(v[1]); xj = max(d__1,d__2); if (xj > 1.) { rec = 1. / xj; /* Computing MAX */ d__1 = work[j1], d__2 = work[j2]; if (max(d__1,d__2) > (bignum - xmax) * rec) { dscal_(n, &rec, &x[1], &c__1); *scale *= rec; } } /* Update right-hand side */ if (j1 > 1) { i__1 = j1 - 1; d__1 = -x[j1]; daxpy_(&i__1, &d__1, &t[j1 * t_dim1 + 1], &c__1, &x[1] , &c__1); i__1 = j1 - 1; d__1 = -x[j2]; daxpy_(&i__1, &d__1, &t[j2 * t_dim1 + 1], &c__1, &x[1] , &c__1); i__1 = j1 - 1; k = idamax_(&i__1, &x[1], &c__1); xmax = (d__1 = x[k], abs(d__1)); } } L30: ; } } else { /* Solve T'*p = scale*c */ jnext = 1; i__1 = *n; for (j = 1; j <= i__1; ++j) { if (j < jnext) { goto L40; } j1 = j; j2 = j; jnext = j + 1; if (j < *n) { if (t[j + 1 + j * t_dim1] != 0.) { j2 = j + 1; jnext = j + 2; } } if (j1 == j2) { /* 1 by 1 diagonal block */ /* Scale if necessary to avoid overflow in forming the */ /* right-hand side element by inner product. */ xj = (d__1 = x[j1], abs(d__1)); if (xmax > 1.) { rec = 1. / xmax; if (work[j1] > (bignum - xj) * rec) { dscal_(n, &rec, &x[1], &c__1); *scale *= rec; xmax *= rec; } } i__2 = j1 - 1; x[j1] -= ddot_(&i__2, &t[j1 * t_dim1 + 1], &c__1, &x[1], & c__1); xj = (d__1 = x[j1], abs(d__1)); tjj = (d__1 = t[j1 + j1 * t_dim1], abs(d__1)); tmp = t[j1 + j1 * t_dim1]; if (tjj < smin) { tmp = smin; tjj = smin; *info = 1; } if (tjj < 1.) { if (xj > bignum * tjj) { rec = 1. / xj; dscal_(n, &rec, &x[1], &c__1); *scale *= rec; xmax *= rec; } } x[j1] /= tmp; /* Computing MAX */ d__2 = xmax, d__3 = (d__1 = x[j1], abs(d__1)); xmax = max(d__2,d__3); } else { /* 2 by 2 diagonal block */ /* Scale if necessary to avoid overflow in forming the */ /* right-hand side elements by inner product. */ /* Computing MAX */ d__3 = (d__1 = x[j1], abs(d__1)), d__4 = (d__2 = x[j2], abs(d__2)); xj = max(d__3,d__4); if (xmax > 1.) { rec = 1. / xmax; /* Computing MAX */ d__1 = work[j2], d__2 = work[j1]; if (max(d__1,d__2) > (bignum - xj) * rec) { dscal_(n, &rec, &x[1], &c__1); *scale *= rec; xmax *= rec; } } i__2 = j1 - 1; d__[0] = x[j1] - ddot_(&i__2, &t[j1 * t_dim1 + 1], &c__1, &x[1], &c__1); i__2 = j1 - 1; d__[1] = x[j2] - ddot_(&i__2, &t[j2 * t_dim1 + 1], &c__1, &x[1], &c__1); dlaln2_(&c_true, &c__2, &c__1, &smin, &c_b21, &t[j1 + j1 * t_dim1], ldt, &c_b21, &c_b21, d__, &c__2, &c_b25, &c_b25, v, &c__2, &scaloc, &xnorm, &ierr); if (ierr != 0) { *info = 2; } if (scaloc != 1.) { dscal_(n, &scaloc, &x[1], &c__1); *scale *= scaloc; } x[j1] = v[0]; x[j2] = v[1]; /* Computing MAX */ d__3 = (d__1 = x[j1], abs(d__1)), d__4 = (d__2 = x[j2], abs(d__2)), d__3 = max(d__3,d__4); xmax = max(d__3,xmax); } L40: ; } } } else { /* Computing MAX */ d__1 = eps * abs(*w); sminw = max(d__1,smin); if (notran) { /* Solve (T + iB)*(p+iq) = c+id */ jnext = *n; for (j = *n; j >= 1; --j) { if (j > jnext) { goto L70; } j1 = j; j2 = j; jnext = j - 1; if (j > 1) { if (t[j + (j - 1) * t_dim1] != 0.) { j1 = j - 1; jnext = j - 2; } } if (j1 == j2) { /* 1 by 1 diagonal block */ /* Scale if necessary to avoid overflow in division */ z__ = *w; if (j1 == 1) { z__ = b[1]; } xj = (d__1 = x[j1], abs(d__1)) + (d__2 = x[*n + j1], abs( d__2)); tjj = (d__1 = t[j1 + j1 * t_dim1], abs(d__1)) + abs(z__); tmp = t[j1 + j1 * t_dim1]; if (tjj < sminw) { tmp = sminw; tjj = sminw; *info = 1; } if (xj == 0.) { goto L70; } if (tjj < 1.) { if (xj > bignum * tjj) { rec = 1. / xj; dscal_(&n2, &rec, &x[1], &c__1); *scale *= rec; xmax *= rec; } } dladiv_(&x[j1], &x[*n + j1], &tmp, &z__, &sr, &si); x[j1] = sr; x[*n + j1] = si; xj = (d__1 = x[j1], abs(d__1)) + (d__2 = x[*n + j1], abs( d__2)); /* Scale x if necessary to avoid overflow when adding a */ /* multiple of column j1 of T. */ if (xj > 1.) { rec = 1. / xj; if (work[j1] > (bignum - xmax) * rec) { dscal_(&n2, &rec, &x[1], &c__1); *scale *= rec; } } if (j1 > 1) { i__1 = j1 - 1; d__1 = -x[j1]; daxpy_(&i__1, &d__1, &t[j1 * t_dim1 + 1], &c__1, &x[1] , &c__1); i__1 = j1 - 1; d__1 = -x[*n + j1]; daxpy_(&i__1, &d__1, &t[j1 * t_dim1 + 1], &c__1, &x[* n + 1], &c__1); x[1] += b[j1] * x[*n + j1]; x[*n + 1] -= b[j1] * x[j1]; xmax = 0.; i__1 = j1 - 1; for (k = 1; k <= i__1; ++k) { /* Computing MAX */ d__3 = xmax, d__4 = (d__1 = x[k], abs(d__1)) + ( d__2 = x[k + *n], abs(d__2)); xmax = max(d__3,d__4); /* L50: */ } } } else { /* Meet 2 by 2 diagonal block */ d__[0] = x[j1]; d__[1] = x[j2]; d__[2] = x[*n + j1]; d__[3] = x[*n + j2]; d__1 = -(*w); dlaln2_(&c_false, &c__2, &c__2, &sminw, &c_b21, &t[j1 + j1 * t_dim1], ldt, &c_b21, &c_b21, d__, &c__2, & c_b25, &d__1, v, &c__2, &scaloc, &xnorm, &ierr); if (ierr != 0) { *info = 2; } if (scaloc != 1.) { i__1 = *n << 1; dscal_(&i__1, &scaloc, &x[1], &c__1); *scale = scaloc * *scale; } x[j1] = v[0]; x[j2] = v[1]; x[*n + j1] = v[2]; x[*n + j2] = v[3]; /* Scale X(J1), .... to avoid overflow in */ /* updating right hand side. */ /* Computing MAX */ d__1 = abs(v[0]) + abs(v[2]), d__2 = abs(v[1]) + abs(v[3]) ; xj = max(d__1,d__2); if (xj > 1.) { rec = 1. / xj; /* Computing MAX */ d__1 = work[j1], d__2 = work[j2]; if (max(d__1,d__2) > (bignum - xmax) * rec) { dscal_(&n2, &rec, &x[1], &c__1); *scale *= rec; } } /* Update the right-hand side. */ if (j1 > 1) { i__1 = j1 - 1; d__1 = -x[j1]; daxpy_(&i__1, &d__1, &t[j1 * t_dim1 + 1], &c__1, &x[1] , &c__1); i__1 = j1 - 1; d__1 = -x[j2]; daxpy_(&i__1, &d__1, &t[j2 * t_dim1 + 1], &c__1, &x[1] , &c__1); i__1 = j1 - 1; d__1 = -x[*n + j1]; daxpy_(&i__1, &d__1, &t[j1 * t_dim1 + 1], &c__1, &x[* n + 1], &c__1); i__1 = j1 - 1; d__1 = -x[*n + j2]; daxpy_(&i__1, &d__1, &t[j2 * t_dim1 + 1], &c__1, &x[* n + 1], &c__1); x[1] = x[1] + b[j1] * x[*n + j1] + b[j2] * x[*n + j2]; x[*n + 1] = x[*n + 1] - b[j1] * x[j1] - b[j2] * x[j2]; xmax = 0.; i__1 = j1 - 1; for (k = 1; k <= i__1; ++k) { /* Computing MAX */ d__3 = (d__1 = x[k], abs(d__1)) + (d__2 = x[k + * n], abs(d__2)); xmax = max(d__3,xmax); /* L60: */ } } } L70: ; } } else { /* Solve (T + iB)'*(p+iq) = c+id */ jnext = 1; i__1 = *n; for (j = 1; j <= i__1; ++j) { if (j < jnext) { goto L80; } j1 = j; j2 = j; jnext = j + 1; if (j < *n) { if (t[j + 1 + j * t_dim1] != 0.) { j2 = j + 1; jnext = j + 2; } } if (j1 == j2) { /* 1 by 1 diagonal block */ /* Scale if necessary to avoid overflow in forming the */ /* right-hand side element by inner product. */ xj = (d__1 = x[j1], abs(d__1)) + (d__2 = x[j1 + *n], abs( d__2)); if (xmax > 1.) { rec = 1. / xmax; if (work[j1] > (bignum - xj) * rec) { dscal_(&n2, &rec, &x[1], &c__1); *scale *= rec; xmax *= rec; } } i__2 = j1 - 1; x[j1] -= ddot_(&i__2, &t[j1 * t_dim1 + 1], &c__1, &x[1], & c__1); i__2 = j1 - 1; x[*n + j1] -= ddot_(&i__2, &t[j1 * t_dim1 + 1], &c__1, &x[ *n + 1], &c__1); if (j1 > 1) { x[j1] -= b[j1] * x[*n + 1]; x[*n + j1] += b[j1] * x[1]; } xj = (d__1 = x[j1], abs(d__1)) + (d__2 = x[j1 + *n], abs( d__2)); z__ = *w; if (j1 == 1) { z__ = b[1]; } /* Scale if necessary to avoid overflow in */ /* complex division */ tjj = (d__1 = t[j1 + j1 * t_dim1], abs(d__1)) + abs(z__); tmp = t[j1 + j1 * t_dim1]; if (tjj < sminw) { tmp = sminw; tjj = sminw; *info = 1; } if (tjj < 1.) { if (xj > bignum * tjj) { rec = 1. / xj; dscal_(&n2, &rec, &x[1], &c__1); *scale *= rec; xmax *= rec; } } d__1 = -z__; dladiv_(&x[j1], &x[*n + j1], &tmp, &d__1, &sr, &si); x[j1] = sr; x[j1 + *n] = si; /* Computing MAX */ d__3 = (d__1 = x[j1], abs(d__1)) + (d__2 = x[j1 + *n], abs(d__2)); xmax = max(d__3,xmax); } else { /* 2 by 2 diagonal block */ /* Scale if necessary to avoid overflow in forming the */ /* right-hand side element by inner product. */ /* Computing MAX */ d__5 = (d__1 = x[j1], abs(d__1)) + (d__2 = x[*n + j1], abs(d__2)), d__6 = (d__3 = x[j2], abs(d__3)) + ( d__4 = x[*n + j2], abs(d__4)); xj = max(d__5,d__6); if (xmax > 1.) { rec = 1. / xmax; /* Computing MAX */ d__1 = work[j1], d__2 = work[j2]; if (max(d__1,d__2) > (bignum - xj) / xmax) { dscal_(&n2, &rec, &x[1], &c__1); *scale *= rec; xmax *= rec; } } i__2 = j1 - 1; d__[0] = x[j1] - ddot_(&i__2, &t[j1 * t_dim1 + 1], &c__1, &x[1], &c__1); i__2 = j1 - 1; d__[1] = x[j2] - ddot_(&i__2, &t[j2 * t_dim1 + 1], &c__1, &x[1], &c__1); i__2 = j1 - 1; d__[2] = x[*n + j1] - ddot_(&i__2, &t[j1 * t_dim1 + 1], & c__1, &x[*n + 1], &c__1); i__2 = j1 - 1; d__[3] = x[*n + j2] - ddot_(&i__2, &t[j2 * t_dim1 + 1], & c__1, &x[*n + 1], &c__1); d__[0] -= b[j1] * x[*n + 1]; d__[1] -= b[j2] * x[*n + 1]; d__[2] += b[j1] * x[1]; d__[3] += b[j2] * x[1]; dlaln2_(&c_true, &c__2, &c__2, &sminw, &c_b21, &t[j1 + j1 * t_dim1], ldt, &c_b21, &c_b21, d__, &c__2, & c_b25, w, v, &c__2, &scaloc, &xnorm, &ierr); if (ierr != 0) { *info = 2; } if (scaloc != 1.) { dscal_(&n2, &scaloc, &x[1], &c__1); *scale = scaloc * *scale; } x[j1] = v[0]; x[j2] = v[1]; x[*n + j1] = v[2]; x[*n + j2] = v[3]; /* Computing MAX */ d__5 = (d__1 = x[j1], abs(d__1)) + (d__2 = x[*n + j1], abs(d__2)), d__6 = (d__3 = x[j2], abs(d__3)) + ( d__4 = x[*n + j2], abs(d__4)), d__5 = max(d__5, d__6); xmax = max(d__5,xmax); } L80: ; } } } return 0; /* End of DLAQTR */ } /* dlaqtr_ */
/* Subroutine */ int dlaqtr_(logical *ltran, logical *lreal, integer *n, doublereal *t, integer *ldt, doublereal *b, doublereal *w, doublereal *scale, doublereal *x, doublereal *work, integer *info) { /* -- LAPACK auxiliary routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University June 30, 1999 Purpose ======= DLAQTR solves the real quasi-triangular system op(T)*p = scale*c, if LREAL = .TRUE. or the complex quasi-triangular systems op(T + iB)*(p+iq) = scale*(c+id), if LREAL = .FALSE. in real arithmetic, where T is upper quasi-triangular. If LREAL = .FALSE., then the first diagonal block of T must be 1 by 1, B is the specially structured matrix B = [ b(1) b(2) ... b(n) ] [ w ] [ w ] [ . ] [ w ] op(A) = A or A', A' denotes the conjugate transpose of matrix A. On input, X = [ c ]. On output, X = [ p ]. [ d ] [ q ] This subroutine is designed for the condition number estimation in routine DTRSNA. Arguments ========= LTRAN (input) LOGICAL On entry, LTRAN specifies the option of conjugate transpose: = .FALSE., op(T+i*B) = T+i*B, = .TRUE., op(T+i*B) = (T+i*B)'. LREAL (input) LOGICAL On entry, LREAL specifies the input matrix structure: = .FALSE., the input is complex = .TRUE., the input is real N (input) INTEGER On entry, N specifies the order of T+i*B. N >= 0. T (input) DOUBLE PRECISION array, dimension (LDT,N) On entry, T contains a matrix in Schur canonical form. If LREAL = .FALSE., then the first diagonal block of T mu be 1 by 1. LDT (input) INTEGER The leading dimension of the matrix T. LDT >= max(1,N). B (input) DOUBLE PRECISION array, dimension (N) On entry, B contains the elements to form the matrix B as described above. If LREAL = .TRUE., B is not referenced. W (input) DOUBLE PRECISION On entry, W is the diagonal element of the matrix B. If LREAL = .TRUE., W is not referenced. SCALE (output) DOUBLE PRECISION On exit, SCALE is the scale factor. X (input/output) DOUBLE PRECISION array, dimension (2*N) On entry, X contains the right hand side of the system. On exit, X is overwritten by the solution. WORK (workspace) DOUBLE PRECISION array, dimension (N) INFO (output) INTEGER On exit, INFO is set to 0: successful exit. 1: the some diagonal 1 by 1 block has been perturbed by a small number SMIN to keep nonsingularity. 2: the some diagonal 2 by 2 block has been perturbed by a small number in DLALN2 to keep nonsingularity. NOTE: In the interests of speed, this routine does not check the inputs for errors. ===================================================================== Do not test the input parameters for errors Parameter adjustments */ /* Table of constant values */ static integer c__1 = 1; static logical c_false = FALSE_; static integer c__2 = 2; static doublereal c_b21 = 1.; static doublereal c_b25 = 0.; static logical c_true = TRUE_; /* System generated locals */ integer t_dim1, t_offset, i__1, i__2; doublereal d__1, d__2, d__3, d__4, d__5, d__6; /* Local variables */ extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *, integer *); static integer ierr; static doublereal smin, xmax, d__[4] /* was [2][2] */; static integer i__, j, k; static doublereal v[4] /* was [2][2] */, z__; extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, integer *); extern doublereal dasum_(integer *, doublereal *, integer *); extern /* Subroutine */ int daxpy_(integer *, doublereal *, doublereal *, integer *, doublereal *, integer *); static integer jnext, j1, j2; static doublereal sminw; static integer n1, n2; static doublereal xnorm; extern /* Subroutine */ int dlaln2_(logical *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, doublereal * , doublereal *, integer *, doublereal *, doublereal *, integer *); extern doublereal dlamch_(char *), dlange_(char *, integer *, integer *, doublereal *, integer *, doublereal *); static doublereal si, xj; extern integer idamax_(integer *, doublereal *, integer *); static doublereal scaloc, sr; extern /* Subroutine */ int dladiv_(doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *); static doublereal bignum; static logical notran; static doublereal smlnum, rec, eps, tjj, tmp; #define d___ref(a_1,a_2) d__[(a_2)*2 + a_1 - 3] #define t_ref(a_1,a_2) t[(a_2)*t_dim1 + a_1] #define v_ref(a_1,a_2) v[(a_2)*2 + a_1 - 3] t_dim1 = *ldt; t_offset = 1 + t_dim1 * 1; t -= t_offset; --b; --x; --work; /* Function Body */ notran = ! (*ltran); *info = 0; /* Quick return if possible */ if (*n == 0) { return 0; } /* Set constants to control overflow */ eps = dlamch_("P"); smlnum = dlamch_("S") / eps; bignum = 1. / smlnum; xnorm = dlange_("M", n, n, &t[t_offset], ldt, d__); if (! (*lreal)) { /* Computing MAX */ d__1 = xnorm, d__2 = abs(*w), d__1 = max(d__1,d__2), d__2 = dlange_( "M", n, &c__1, &b[1], n, d__); xnorm = max(d__1,d__2); } /* Computing MAX */ d__1 = smlnum, d__2 = eps * xnorm; smin = max(d__1,d__2); /* Compute 1-norm of each column of strictly upper triangular part of T to control overflow in triangular solver. */ work[1] = 0.; i__1 = *n; for (j = 2; j <= i__1; ++j) { i__2 = j - 1; work[j] = dasum_(&i__2, &t_ref(1, j), &c__1); /* L10: */ } if (! (*lreal)) { i__1 = *n; for (i__ = 2; i__ <= i__1; ++i__) { work[i__] += (d__1 = b[i__], abs(d__1)); /* L20: */ } } n2 = *n << 1; n1 = *n; if (! (*lreal)) { n1 = n2; } k = idamax_(&n1, &x[1], &c__1); xmax = (d__1 = x[k], abs(d__1)); *scale = 1.; if (xmax > bignum) { *scale = bignum / xmax; dscal_(&n1, scale, &x[1], &c__1); xmax = bignum; } if (*lreal) { if (notran) { /* Solve T*p = scale*c */ jnext = *n; for (j = *n; j >= 1; --j) { if (j > jnext) { goto L30; } j1 = j; j2 = j; jnext = j - 1; if (j > 1) { if (t_ref(j, j - 1) != 0.) { j1 = j - 1; jnext = j - 2; } } if (j1 == j2) { /* Meet 1 by 1 diagonal block Scale to avoid overflow when computing x(j) = b(j)/T(j,j) */ xj = (d__1 = x[j1], abs(d__1)); tjj = (d__1 = t_ref(j1, j1), abs(d__1)); tmp = t_ref(j1, j1); if (tjj < smin) { tmp = smin; tjj = smin; *info = 1; } if (xj == 0.) { goto L30; } if (tjj < 1.) { if (xj > bignum * tjj) { rec = 1. / xj; dscal_(n, &rec, &x[1], &c__1); *scale *= rec; xmax *= rec; } } x[j1] /= tmp; xj = (d__1 = x[j1], abs(d__1)); /* Scale x if necessary to avoid overflow when adding a multiple of column j1 of T. */ if (xj > 1.) { rec = 1. / xj; if (work[j1] > (bignum - xmax) * rec) { dscal_(n, &rec, &x[1], &c__1); *scale *= rec; } } if (j1 > 1) { i__1 = j1 - 1; d__1 = -x[j1]; daxpy_(&i__1, &d__1, &t_ref(1, j1), &c__1, &x[1], & c__1); i__1 = j1 - 1; k = idamax_(&i__1, &x[1], &c__1); xmax = (d__1 = x[k], abs(d__1)); } } else { /* Meet 2 by 2 diagonal block Call 2 by 2 linear system solve, to take care of possible overflow by scaling factor. */ d___ref(1, 1) = x[j1]; d___ref(2, 1) = x[j2]; dlaln2_(&c_false, &c__2, &c__1, &smin, &c_b21, &t_ref(j1, j1), ldt, &c_b21, &c_b21, d__, &c__2, &c_b25, & c_b25, v, &c__2, &scaloc, &xnorm, &ierr); if (ierr != 0) { *info = 2; } if (scaloc != 1.) { dscal_(n, &scaloc, &x[1], &c__1); *scale *= scaloc; } x[j1] = v_ref(1, 1); x[j2] = v_ref(2, 1); /* Scale V(1,1) (= X(J1)) and/or V(2,1) (=X(J2)) to avoid overflow in updating right-hand side. Computing MAX */ d__3 = (d__1 = v_ref(1, 1), abs(d__1)), d__4 = (d__2 = v_ref(2, 1), abs(d__2)); xj = max(d__3,d__4); if (xj > 1.) { rec = 1. / xj; /* Computing MAX */ d__1 = work[j1], d__2 = work[j2]; if (max(d__1,d__2) > (bignum - xmax) * rec) { dscal_(n, &rec, &x[1], &c__1); *scale *= rec; } } /* Update right-hand side */ if (j1 > 1) { i__1 = j1 - 1; d__1 = -x[j1]; daxpy_(&i__1, &d__1, &t_ref(1, j1), &c__1, &x[1], & c__1); i__1 = j1 - 1; d__1 = -x[j2]; daxpy_(&i__1, &d__1, &t_ref(1, j2), &c__1, &x[1], & c__1); i__1 = j1 - 1; k = idamax_(&i__1, &x[1], &c__1); xmax = (d__1 = x[k], abs(d__1)); } } L30: ; } } else { /* Solve T'*p = scale*c */ jnext = 1; i__1 = *n; for (j = 1; j <= i__1; ++j) { if (j < jnext) { goto L40; } j1 = j; j2 = j; jnext = j + 1; if (j < *n) { if (t_ref(j + 1, j) != 0.) { j2 = j + 1; jnext = j + 2; } } if (j1 == j2) { /* 1 by 1 diagonal block Scale if necessary to avoid overflow in forming the right-hand side element by inner product. */ xj = (d__1 = x[j1], abs(d__1)); if (xmax > 1.) { rec = 1. / xmax; if (work[j1] > (bignum - xj) * rec) { dscal_(n, &rec, &x[1], &c__1); *scale *= rec; xmax *= rec; } } i__2 = j1 - 1; x[j1] -= ddot_(&i__2, &t_ref(1, j1), &c__1, &x[1], &c__1); xj = (d__1 = x[j1], abs(d__1)); tjj = (d__1 = t_ref(j1, j1), abs(d__1)); tmp = t_ref(j1, j1); if (tjj < smin) { tmp = smin; tjj = smin; *info = 1; } if (tjj < 1.) { if (xj > bignum * tjj) { rec = 1. / xj; dscal_(n, &rec, &x[1], &c__1); *scale *= rec; xmax *= rec; } } x[j1] /= tmp; /* Computing MAX */ d__2 = xmax, d__3 = (d__1 = x[j1], abs(d__1)); xmax = max(d__2,d__3); } else { /* 2 by 2 diagonal block Scale if necessary to avoid overflow in forming the right-hand side elements by inner product. Computing MAX */ d__3 = (d__1 = x[j1], abs(d__1)), d__4 = (d__2 = x[j2], abs(d__2)); xj = max(d__3,d__4); if (xmax > 1.) { rec = 1. / xmax; /* Computing MAX */ d__1 = work[j2], d__2 = work[j1]; if (max(d__1,d__2) > (bignum - xj) * rec) { dscal_(n, &rec, &x[1], &c__1); *scale *= rec; xmax *= rec; } } i__2 = j1 - 1; d___ref(1, 1) = x[j1] - ddot_(&i__2, &t_ref(1, j1), &c__1, &x[1], &c__1); i__2 = j1 - 1; d___ref(2, 1) = x[j2] - ddot_(&i__2, &t_ref(1, j2), &c__1, &x[1], &c__1); dlaln2_(&c_true, &c__2, &c__1, &smin, &c_b21, &t_ref(j1, j1), ldt, &c_b21, &c_b21, d__, &c__2, &c_b25, & c_b25, v, &c__2, &scaloc, &xnorm, &ierr); if (ierr != 0) { *info = 2; } if (scaloc != 1.) { dscal_(n, &scaloc, &x[1], &c__1); *scale *= scaloc; } x[j1] = v_ref(1, 1); x[j2] = v_ref(2, 1); /* Computing MAX */ d__3 = (d__1 = x[j1], abs(d__1)), d__4 = (d__2 = x[j2], abs(d__2)), d__3 = max(d__3,d__4); xmax = max(d__3,xmax); } L40: ; } } } else { /* Computing MAX */ d__1 = eps * abs(*w); sminw = max(d__1,smin); if (notran) { /* Solve (T + iB)*(p+iq) = c+id */ jnext = *n; for (j = *n; j >= 1; --j) { if (j > jnext) { goto L70; } j1 = j; j2 = j; jnext = j - 1; if (j > 1) { if (t_ref(j, j - 1) != 0.) { j1 = j - 1; jnext = j - 2; } } if (j1 == j2) { /* 1 by 1 diagonal block Scale if necessary to avoid overflow in division */ z__ = *w; if (j1 == 1) { z__ = b[1]; } xj = (d__1 = x[j1], abs(d__1)) + (d__2 = x[*n + j1], abs( d__2)); tjj = (d__1 = t_ref(j1, j1), abs(d__1)) + abs(z__); tmp = t_ref(j1, j1); if (tjj < sminw) { tmp = sminw; tjj = sminw; *info = 1; } if (xj == 0.) { goto L70; } if (tjj < 1.) { if (xj > bignum * tjj) { rec = 1. / xj; dscal_(&n2, &rec, &x[1], &c__1); *scale *= rec; xmax *= rec; } } dladiv_(&x[j1], &x[*n + j1], &tmp, &z__, &sr, &si); x[j1] = sr; x[*n + j1] = si; xj = (d__1 = x[j1], abs(d__1)) + (d__2 = x[*n + j1], abs( d__2)); /* Scale x if necessary to avoid overflow when adding a multiple of column j1 of T. */ if (xj > 1.) { rec = 1. / xj; if (work[j1] > (bignum - xmax) * rec) { dscal_(&n2, &rec, &x[1], &c__1); *scale *= rec; } } if (j1 > 1) { i__1 = j1 - 1; d__1 = -x[j1]; daxpy_(&i__1, &d__1, &t_ref(1, j1), &c__1, &x[1], & c__1); i__1 = j1 - 1; d__1 = -x[*n + j1]; daxpy_(&i__1, &d__1, &t_ref(1, j1), &c__1, &x[*n + 1], &c__1); x[1] += b[j1] * x[*n + j1]; x[*n + 1] -= b[j1] * x[j1]; xmax = 0.; i__1 = j1 - 1; for (k = 1; k <= i__1; ++k) { /* Computing MAX */ d__3 = xmax, d__4 = (d__1 = x[k], abs(d__1)) + ( d__2 = x[k + *n], abs(d__2)); xmax = max(d__3,d__4); /* L50: */ } } } else { /* Meet 2 by 2 diagonal block */ d___ref(1, 1) = x[j1]; d___ref(2, 1) = x[j2]; d___ref(1, 2) = x[*n + j1]; d___ref(2, 2) = x[*n + j2]; d__1 = -(*w); dlaln2_(&c_false, &c__2, &c__2, &sminw, &c_b21, &t_ref(j1, j1), ldt, &c_b21, &c_b21, d__, &c__2, &c_b25, & d__1, v, &c__2, &scaloc, &xnorm, &ierr); if (ierr != 0) { *info = 2; } if (scaloc != 1.) { i__1 = *n << 1; dscal_(&i__1, &scaloc, &x[1], &c__1); *scale = scaloc * *scale; } x[j1] = v_ref(1, 1); x[j2] = v_ref(2, 1); x[*n + j1] = v_ref(1, 2); x[*n + j2] = v_ref(2, 2); /* Scale X(J1), .... to avoid overflow in updating right hand side. Computing MAX */ d__5 = (d__1 = v_ref(1, 1), abs(d__1)) + (d__2 = v_ref(1, 2), abs(d__2)), d__6 = (d__3 = v_ref(2, 1), abs( d__3)) + (d__4 = v_ref(2, 2), abs(d__4)); xj = max(d__5,d__6); if (xj > 1.) { rec = 1. / xj; /* Computing MAX */ d__1 = work[j1], d__2 = work[j2]; if (max(d__1,d__2) > (bignum - xmax) * rec) { dscal_(&n2, &rec, &x[1], &c__1); *scale *= rec; } } /* Update the right-hand side. */ if (j1 > 1) { i__1 = j1 - 1; d__1 = -x[j1]; daxpy_(&i__1, &d__1, &t_ref(1, j1), &c__1, &x[1], & c__1); i__1 = j1 - 1; d__1 = -x[j2]; daxpy_(&i__1, &d__1, &t_ref(1, j2), &c__1, &x[1], & c__1); i__1 = j1 - 1; d__1 = -x[*n + j1]; daxpy_(&i__1, &d__1, &t_ref(1, j1), &c__1, &x[*n + 1], &c__1); i__1 = j1 - 1; d__1 = -x[*n + j2]; daxpy_(&i__1, &d__1, &t_ref(1, j2), &c__1, &x[*n + 1], &c__1); x[1] = x[1] + b[j1] * x[*n + j1] + b[j2] * x[*n + j2]; x[*n + 1] = x[*n + 1] - b[j1] * x[j1] - b[j2] * x[j2]; xmax = 0.; i__1 = j1 - 1; for (k = 1; k <= i__1; ++k) { /* Computing MAX */ d__3 = (d__1 = x[k], abs(d__1)) + (d__2 = x[k + * n], abs(d__2)); xmax = max(d__3,xmax); /* L60: */ } } } L70: ; } } else { /* Solve (T + iB)'*(p+iq) = c+id */ jnext = 1; i__1 = *n; for (j = 1; j <= i__1; ++j) { if (j < jnext) { goto L80; } j1 = j; j2 = j; jnext = j + 1; if (j < *n) { if (t_ref(j + 1, j) != 0.) { j2 = j + 1; jnext = j + 2; } } if (j1 == j2) { /* 1 by 1 diagonal block Scale if necessary to avoid overflow in forming the right-hand side element by inner product. */ xj = (d__1 = x[j1], abs(d__1)) + (d__2 = x[j1 + *n], abs( d__2)); if (xmax > 1.) { rec = 1. / xmax; if (work[j1] > (bignum - xj) * rec) { dscal_(&n2, &rec, &x[1], &c__1); *scale *= rec; xmax *= rec; } } i__2 = j1 - 1; x[j1] -= ddot_(&i__2, &t_ref(1, j1), &c__1, &x[1], &c__1); i__2 = j1 - 1; x[*n + j1] -= ddot_(&i__2, &t_ref(1, j1), &c__1, &x[*n + 1], &c__1); if (j1 > 1) { x[j1] -= b[j1] * x[*n + 1]; x[*n + j1] += b[j1] * x[1]; } xj = (d__1 = x[j1], abs(d__1)) + (d__2 = x[j1 + *n], abs( d__2)); z__ = *w; if (j1 == 1) { z__ = b[1]; } /* Scale if necessary to avoid overflow in complex division */ tjj = (d__1 = t_ref(j1, j1), abs(d__1)) + abs(z__); tmp = t_ref(j1, j1); if (tjj < sminw) { tmp = sminw; tjj = sminw; *info = 1; } if (tjj < 1.) { if (xj > bignum * tjj) { rec = 1. / xj; dscal_(&n2, &rec, &x[1], &c__1); *scale *= rec; xmax *= rec; } } d__1 = -z__; dladiv_(&x[j1], &x[*n + j1], &tmp, &d__1, &sr, &si); x[j1] = sr; x[j1 + *n] = si; /* Computing MAX */ d__3 = (d__1 = x[j1], abs(d__1)) + (d__2 = x[j1 + *n], abs(d__2)); xmax = max(d__3,xmax); } else { /* 2 by 2 diagonal block Scale if necessary to avoid overflow in forming the right-hand side element by inner product. Computing MAX */ d__5 = (d__1 = x[j1], abs(d__1)) + (d__2 = x[*n + j1], abs(d__2)), d__6 = (d__3 = x[j2], abs(d__3)) + ( d__4 = x[*n + j2], abs(d__4)); xj = max(d__5,d__6); if (xmax > 1.) { rec = 1. / xmax; /* Computing MAX */ d__1 = work[j1], d__2 = work[j2]; if (max(d__1,d__2) > (bignum - xj) / xmax) { dscal_(&n2, &rec, &x[1], &c__1); *scale *= rec; xmax *= rec; } } i__2 = j1 - 1; d___ref(1, 1) = x[j1] - ddot_(&i__2, &t_ref(1, j1), &c__1, &x[1], &c__1); i__2 = j1 - 1; d___ref(2, 1) = x[j2] - ddot_(&i__2, &t_ref(1, j2), &c__1, &x[1], &c__1); i__2 = j1 - 1; d___ref(1, 2) = x[*n + j1] - ddot_(&i__2, &t_ref(1, j1), & c__1, &x[*n + 1], &c__1); i__2 = j1 - 1; d___ref(2, 2) = x[*n + j2] - ddot_(&i__2, &t_ref(1, j2), & c__1, &x[*n + 1], &c__1); d___ref(1, 1) = d___ref(1, 1) - b[j1] * x[*n + 1]; d___ref(2, 1) = d___ref(2, 1) - b[j2] * x[*n + 1]; d___ref(1, 2) = d___ref(1, 2) + b[j1] * x[1]; d___ref(2, 2) = d___ref(2, 2) + b[j2] * x[1]; dlaln2_(&c_true, &c__2, &c__2, &sminw, &c_b21, &t_ref(j1, j1), ldt, &c_b21, &c_b21, d__, &c__2, &c_b25, w, v, &c__2, &scaloc, &xnorm, &ierr); if (ierr != 0) { *info = 2; } if (scaloc != 1.) { dscal_(&n2, &scaloc, &x[1], &c__1); *scale = scaloc * *scale; } x[j1] = v_ref(1, 1); x[j2] = v_ref(2, 1); x[*n + j1] = v_ref(1, 2); x[*n + j2] = v_ref(2, 2); /* Computing MAX */ d__5 = (d__1 = x[j1], abs(d__1)) + (d__2 = x[*n + j1], abs(d__2)), d__6 = (d__3 = x[j2], abs(d__3)) + ( d__4 = x[*n + j2], abs(d__4)), d__5 = max(d__5, d__6); xmax = max(d__5,xmax); } L80: ; } } } return 0; /* End of DLAQTR */ } /* dlaqtr_ */