Exemplo n.º 1
0
Arquivo: zfs_vfsops.c Projeto: nwf/zfs
/*ARGSUSED*/
int
zfs_umount(struct super_block *sb)
{
	zfs_sb_t *zsb = sb->s_fs_info;
	objset_t *os;

	arc_remove_prune_callback(zsb->z_arc_prune);
	VERIFY(zfs_sb_teardown(zsb, B_TRUE) == 0);
	os = zsb->z_os;
	bdi_destroy(sb->s_bdi);

	/*
	 * z_os will be NULL if there was an error in
	 * attempting to reopen zsb.
	 */
	if (os != NULL) {
		/*
		 * Unset the objset user_ptr.
		 */
		mutex_enter(&os->os_user_ptr_lock);
		dmu_objset_set_user(os, NULL);
		mutex_exit(&os->os_user_ptr_lock);

		/*
		 * Finally release the objset
		 */
		dmu_objset_disown(os, zsb);
	}

	zfs_sb_free(zsb);
	return (0);
}
Exemplo n.º 2
0
static int
zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
{
	int error;

	error = zfs_register_callbacks(zfsvfs->z_vfs);
	if (error)
		return (error);

	/*
	 * Set the objset user_ptr to track its zfsvfs.
	 */
	mutex_enter(&zfsvfs->z_os->os->os_user_ptr_lock);
	dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
	mutex_exit(&zfsvfs->z_os->os->os_user_ptr_lock);

	/*
	 * If we are not mounting (ie: online recv), then we don't
	 * have to worry about replaying the log as we blocked all
	 * operations out since we closed the ZIL.
	 */
	if (mounting) {
		boolean_t readonly;

		/*
		 * During replay we remove the read only flag to
		 * allow replays to succeed.
		 */
		readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY;
		zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;

		/*
		 * Parse and replay the intent log.
		 */
		zil_replay(zfsvfs->z_os, zfsvfs, &zfsvfs->z_assign,
		    zfs_replay_vector, zfs_unlinked_drain);

		zfs_unlinked_drain(zfsvfs);
		zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */
	}

	if (!zil_disable)
		zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);

	return (0);
}
Exemplo n.º 3
0
Arquivo: zfs_vfsops.c Projeto: nwf/zfs
int
zfs_sb_setup(zfs_sb_t *zsb, boolean_t mounting)
{
	int error;

	error = zfs_register_callbacks(zsb);
	if (error)
		return (error);

	/*
	 * Set the objset user_ptr to track its zsb.
	 */
	mutex_enter(&zsb->z_os->os_user_ptr_lock);
	dmu_objset_set_user(zsb->z_os, zsb);
	mutex_exit(&zsb->z_os->os_user_ptr_lock);

	zsb->z_log = zil_open(zsb->z_os, zfs_get_data);

	/*
	 * If we are not mounting (ie: online recv), then we don't
	 * have to worry about replaying the log as we blocked all
	 * operations out since we closed the ZIL.
	 */
	if (mounting) {
		boolean_t readonly;

		/*
		 * During replay we remove the read only flag to
		 * allow replays to succeed.
		 */
		readonly = zfs_is_readonly(zsb);
		if (readonly != 0)
			readonly_changed_cb(zsb, B_FALSE);
		else
			zfs_unlinked_drain(zsb);

		/*
		 * Parse and replay the intent log.
		 *
		 * Because of ziltest, this must be done after
		 * zfs_unlinked_drain().  (Further note: ziltest
		 * doesn't use readonly mounts, where
		 * zfs_unlinked_drain() isn't called.)  This is because
		 * ziltest causes spa_sync() to think it's committed,
		 * but actually it is not, so the intent log contains
		 * many txg's worth of changes.
		 *
		 * In particular, if object N is in the unlinked set in
		 * the last txg to actually sync, then it could be
		 * actually freed in a later txg and then reallocated
		 * in a yet later txg.  This would write a "create
		 * object N" record to the intent log.  Normally, this
		 * would be fine because the spa_sync() would have
		 * written out the fact that object N is free, before
		 * we could write the "create object N" intent log
		 * record.
		 *
		 * But when we are in ziltest mode, we advance the "open
		 * txg" without actually spa_sync()-ing the changes to
		 * disk.  So we would see that object N is still
		 * allocated and in the unlinked set, and there is an
		 * intent log record saying to allocate it.
		 */
		if (spa_writeable(dmu_objset_spa(zsb->z_os))) {
			if (zil_replay_disable) {
				zil_destroy(zsb->z_log, B_FALSE);
			} else {
				zsb->z_replay = B_TRUE;
				zil_replay(zsb->z_os, zsb,
				    zfs_replay_vector);
				zsb->z_replay = B_FALSE;
			}
		}

		/* restore readonly bit */
		if (readonly != 0)
			readonly_changed_cb(zsb, B_TRUE);
	}

	return (0);
}
Exemplo n.º 4
0
Arquivo: zfs_vfsops.c Projeto: nwf/zfs
int
zfs_domount(struct super_block *sb, zfs_mntopts_t *zmo, int silent)
{
	const char *osname = zmo->z_osname;
	zfs_sb_t *zsb;
	struct inode *root_inode;
	uint64_t recordsize;
	int error;

	error = zfs_sb_create(osname, zmo, &zsb);
	if (error)
		return (error);

	if ((error = dsl_prop_get_integer(osname, "recordsize",
	    &recordsize, NULL)))
		goto out;

	zsb->z_sb = sb;
	sb->s_fs_info = zsb;
	sb->s_magic = ZFS_SUPER_MAGIC;
	sb->s_maxbytes = MAX_LFS_FILESIZE;
	sb->s_time_gran = 1;
	sb->s_blocksize = recordsize;
	sb->s_blocksize_bits = ilog2(recordsize);
	zsb->z_bdi.ra_pages = 0;
	sb->s_bdi = &zsb->z_bdi;

	error = -zpl_bdi_setup_and_register(&zsb->z_bdi, "zfs");
	if (error)
		goto out;

	/* Set callback operations for the file system. */
	sb->s_op = &zpl_super_operations;
	sb->s_xattr = zpl_xattr_handlers;
	sb->s_export_op = &zpl_export_operations;
#ifdef HAVE_S_D_OP
	sb->s_d_op = &zpl_dentry_operations;
#endif /* HAVE_S_D_OP */

	/* Set features for file system. */
	zfs_set_fuid_feature(zsb);

	if (dmu_objset_is_snapshot(zsb->z_os)) {
		uint64_t pval;

		atime_changed_cb(zsb, B_FALSE);
		readonly_changed_cb(zsb, B_TRUE);
		if ((error = dsl_prop_get_integer(osname,
		    "xattr", &pval, NULL)))
			goto out;
		xattr_changed_cb(zsb, pval);
		if ((error = dsl_prop_get_integer(osname,
		    "acltype", &pval, NULL)))
			goto out;
		acltype_changed_cb(zsb, pval);
		zsb->z_issnap = B_TRUE;
		zsb->z_os->os_sync = ZFS_SYNC_DISABLED;
		zsb->z_snap_defer_time = jiffies;

		mutex_enter(&zsb->z_os->os_user_ptr_lock);
		dmu_objset_set_user(zsb->z_os, zsb);
		mutex_exit(&zsb->z_os->os_user_ptr_lock);
	} else {
		error = zfs_sb_setup(zsb, B_TRUE);
	}

	/* Allocate a root inode for the filesystem. */
	error = zfs_root(zsb, &root_inode);
	if (error) {
		(void) zfs_umount(sb);
		goto out;
	}

	/* Allocate a root dentry for the filesystem */
	sb->s_root = d_make_root(root_inode);
	if (sb->s_root == NULL) {
		(void) zfs_umount(sb);
		error = SET_ERROR(ENOMEM);
		goto out;
	}

	if (!zsb->z_issnap)
		zfsctl_create(zsb);

	zsb->z_arc_prune = arc_add_prune_callback(zpl_prune_sb, sb);
out:
	if (error) {
		dmu_objset_disown(zsb->z_os, zsb);
		zfs_sb_free(zsb);
	}

	return (error);
}
Exemplo n.º 5
0
int
zfs_domount(struct super_block *sb, void *data, int silent)
{
	zpl_mount_data_t *zmd = data;
	const char *osname = zmd->z_osname;
	zfs_sb_t *zsb;
	struct inode *root_inode;
	uint64_t recordsize;
	int error;

	error = zfs_sb_create(osname, &zsb);
	if (error)
		return (error);

	if ((error = dsl_prop_get_integer(osname, "recordsize",
	    &recordsize, NULL)))
		goto out;

	zsb->z_sb = sb;
	sb->s_fs_info = zsb;
	sb->s_magic = ZFS_SUPER_MAGIC;
	sb->s_maxbytes = MAX_LFS_FILESIZE;
	sb->s_time_gran = 1;
	sb->s_blocksize = recordsize;
	sb->s_blocksize_bits = ilog2(recordsize);

#ifdef HAVE_BDI
	/*
	 * 2.6.32 API change,
	 * Added backing_device_info (BDI) per super block interfaces.  A BDI
	 * must be configured when using a non-device backed filesystem for
	 * proper writeback.  This is not required for older pdflush kernels.
	 *
	 * NOTE: Linux read-ahead is disabled in favor of zfs read-ahead.
	 */
	zsb->z_bdi.ra_pages = 0;
	sb->s_bdi = &zsb->z_bdi;

	error = -bdi_setup_and_register(&zsb->z_bdi, "zfs", BDI_CAP_MAP_COPY);
	if (error)
		goto out;
#endif /* HAVE_BDI */

	/* Set callback operations for the file system. */
	sb->s_op = &zpl_super_operations;
	sb->s_xattr = zpl_xattr_handlers;
	sb->s_export_op = &zpl_export_operations;
#ifdef HAVE_S_D_OP
	sb->s_d_op = &zpl_dentry_operations;
#endif /* HAVE_S_D_OP */

	/* Set features for file system. */
	zfs_set_fuid_feature(zsb);

	if (dmu_objset_is_snapshot(zsb->z_os)) {
		uint64_t pval;

		atime_changed_cb(zsb, B_FALSE);
		readonly_changed_cb(zsb, B_TRUE);
		if ((error = dsl_prop_get_integer(osname,"xattr",&pval,NULL)))
			goto out;
		xattr_changed_cb(zsb, pval);
		zsb->z_issnap = B_TRUE;
		zsb->z_os->os_sync = ZFS_SYNC_DISABLED;

		mutex_enter(&zsb->z_os->os_user_ptr_lock);
		dmu_objset_set_user(zsb->z_os, zsb);
		mutex_exit(&zsb->z_os->os_user_ptr_lock);
	} else {
		error = zfs_sb_setup(zsb, B_TRUE);
	}

	/* Allocate a root inode for the filesystem. */
	error = zfs_root(zsb, &root_inode);
	if (error) {
		(void) zfs_umount(sb);
		goto out;
	}

	/* Allocate a root dentry for the filesystem */
	sb->s_root = d_make_root(root_inode);
	if (sb->s_root == NULL) {
		(void) zfs_umount(sb);
		error = ENOMEM;
		goto out;
	}

	if (!zsb->z_issnap)
		zfsctl_create(zsb);
out:
	if (error) {
		dmu_objset_disown(zsb->z_os, zsb);
		zfs_sb_free(zsb);
	}

	return (error);
}
Exemplo n.º 6
0
/*ARGSUSED*/
static int
zfs_umount(vfs_t *vfsp, int fflag)
{
	zfsvfs_t *zfsvfs = vfsp->vfs_data;
	objset_t *os;
	cred_t *cr = curthread->td_ucred;
	int ret;

	ret = secpolicy_fs_unmount(cr, vfsp);
	if (ret) {
		ret = dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource),
		    ZFS_DELEG_PERM_MOUNT, cr);
		if (ret)
			return (ret);
	}
	/*
	 * We purge the parent filesystem's vfsp as the parent filesystem
	 * and all of its snapshots have their vnode's v_vfsp set to the
	 * parent's filesystem's vfsp.  Note, 'z_parent' is self
	 * referential for non-snapshots.
	 */
	(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);

	/*
	 * Unmount any snapshots mounted under .zfs before unmounting the
	 * dataset itself.
	 */
	if (zfsvfs->z_ctldir != NULL) {
		if ((ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0)
			return (ret);
		ret = vflush(vfsp, 0, 0, curthread);
		ASSERT(ret == EBUSY);
		if (!(fflag & MS_FORCE)) {
			if (zfsvfs->z_ctldir->v_count > 1)
				return (EBUSY);
			ASSERT(zfsvfs->z_ctldir->v_count == 1);
		}
		zfsctl_destroy(zfsvfs);
		ASSERT(zfsvfs->z_ctldir == NULL);
	}

	if (fflag & MS_FORCE) {
		/*
		 * Mark file system as unmounted before calling
		 * vflush(FORCECLOSE). This way we ensure no future vnops
		 * will be called and risk operating on DOOMED vnodes.
		 */
		rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
		zfsvfs->z_unmounted = B_TRUE;
		rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
	}

	/*
	 * Flush all the files.
	 */
	ret = vflush(vfsp, 1, (fflag & MS_FORCE) ? FORCECLOSE : 0, curthread);
	if (ret != 0) {
		if (!zfsvfs->z_issnap) {
			zfsctl_create(zfsvfs);
			ASSERT(zfsvfs->z_ctldir != NULL);
		}
		return (ret);
	}

	if (!(fflag & MS_FORCE)) {
		/*
		 * Check the number of active vnodes in the file system.
		 * Our count is maintained in the vfs structure, but the
		 * number is off by 1 to indicate a hold on the vfs
		 * structure itself.
		 *
		 * The '.zfs' directory maintains a reference of its
		 * own, and any active references underneath are
		 * reflected in the vnode count.
		 */
		if (zfsvfs->z_ctldir == NULL) {
			if (vfsp->vfs_count > 1)
				return (EBUSY);
		} else {
			if (vfsp->vfs_count > 2 ||
			    zfsvfs->z_ctldir->v_count > 1)
				return (EBUSY);
		}
	} else {
		MNT_ILOCK(vfsp);
		vfsp->mnt_kern_flag |= MNTK_UNMOUNTF;
		MNT_IUNLOCK(vfsp);
	}

	VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
	os = zfsvfs->z_os;

	/*
	 * z_os will be NULL if there was an error in
	 * attempting to reopen zfsvfs.
	 */
	if (os != NULL) {
		/*
		 * Unset the objset user_ptr.
		 */
		mutex_enter(&os->os->os_user_ptr_lock);
		dmu_objset_set_user(os, NULL);
		mutex_exit(&os->os->os_user_ptr_lock);

		/*
		 * Finally release the objset
		 */
		dmu_objset_close(os);
	}

	/*
	 * We can now safely destroy the '.zfs' directory node.
	 */
	if (zfsvfs->z_ctldir != NULL)
		zfsctl_destroy(zfsvfs);
	if (zfsvfs->z_issnap) {
		vnode_t *svp = vfsp->mnt_vnodecovered;

		if (svp->v_count >= 2)
			VN_RELE(svp);
	}
	zfs_freevfs(vfsp);

	return (0);
}