Exemplo n.º 1
0
/*
 * Load a immediate using a shortcut if possible; otherwise
 * grab from the per-translation literal pool.  If target is
 * a high register, build constant into a low register and copy.
 *
 * No additional register clobbering operation performed. Use this version when
 * 1) rDest is freshly returned from dvmCompilerAllocTemp or
 * 2) The codegen is under fixed register usage
 */
static ArmLIR *loadConstantNoClobber(CompilationUnit *cUnit, int rDest,
                                     int value)
{
    ArmLIR *res;
    int tDest = LOWREG(rDest) ? rDest : dvmCompilerAllocTemp(cUnit);
    /* See if the value can be constructed cheaply */
    if ((value >= 0) && (value <= 255)) {
        res = newLIR2(cUnit, kThumbMovImm, tDest, value);
        if (rDest != tDest) {
           opRegReg(cUnit, kOpMov, rDest, tDest);
           dvmCompilerFreeTemp(cUnit, tDest);
        }
        return res;
    } else if ((value & 0xFFFFFF00) == 0xFFFFFF00) {
        res = newLIR2(cUnit, kThumbMovImm, tDest, ~value);
        newLIR2(cUnit, kThumbMvn, tDest, tDest);
        if (rDest != tDest) {
           opRegReg(cUnit, kOpMov, rDest, tDest);
           dvmCompilerFreeTemp(cUnit, tDest);
        }
        return res;
    }
    /* No shortcut - go ahead and use literal pool */
    ArmLIR *dataTarget = scanLiteralPool(cUnit->literalList, value, 255);
    if (dataTarget == NULL) {
        dataTarget = addWordData(cUnit, &cUnit->literalList, value);
    }
    ArmLIR *loadPcRel = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
    loadPcRel->opcode = kThumbLdrPcRel;
    loadPcRel->generic.target = (LIR *) dataTarget;
    loadPcRel->operands[0] = tDest;
    setupResourceMasks(loadPcRel);
    setMemRefType(loadPcRel, true, kLiteral);
    loadPcRel->aliasInfo = dataTarget->operands[0];
    res = loadPcRel;
    dvmCompilerAppendLIR(cUnit, (LIR *) loadPcRel);

    /*
     * To save space in the constant pool, we use the ADD_RRI8 instruction to
     * add up to 255 to an existing constant value.
     */
    if (dataTarget->operands[0] != value) {
        newLIR2(cUnit, kThumbAddRI8, tDest, value - dataTarget->operands[0]);
    }
    if (rDest != tDest) {
       opRegReg(cUnit, kOpMov, rDest, tDest);
       dvmCompilerFreeTemp(cUnit, tDest);
    }
    return res;
}
Exemplo n.º 2
0
/*
 * For monitor unlock, we don't have to use ldrex/strex.  Once
 * we've determined that the lock is thin and that we own it with
 * a zero recursion count, it's safe to punch it back to the
 * initial, unlock thin state with a store word.
 */
static void genMonitorExit(CompilationUnit *cUnit, MIR *mir)
{
    RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
    ArmLIR *target;
    ArmLIR *branch;
    ArmLIR *hopTarget;
    ArmLIR *hopBranch;

    assert(LW_SHAPE_THIN == 0);
    loadValueDirectFixed(cUnit, rlSrc, r1);  // Get obj
    dvmCompilerLockAllTemps(cUnit);  // Prepare for explicit register usage
    dvmCompilerFreeTemp(cUnit, r4PC);  // Free up r4 for general use
    genNullCheck(cUnit, rlSrc.sRegLow, r1, mir->offset, NULL);
    loadWordDisp(cUnit, r1, offsetof(Object, lock), r2); // Get object->lock
    loadWordDisp(cUnit, r6SELF, offsetof(Thread, threadId), r3); // Get threadId
    // Is lock unheld on lock or held by us (==threadId) on unlock?
    opRegRegImm(cUnit, kOpAnd, r7, r2,
                (LW_HASH_STATE_MASK << LW_HASH_STATE_SHIFT));
    opRegImm(cUnit, kOpLsl, r3, LW_LOCK_OWNER_SHIFT); // Align owner
    newLIR3(cUnit, kThumb2Bfc, r2, LW_HASH_STATE_SHIFT,
            LW_LOCK_OWNER_SHIFT - 1);
    opRegReg(cUnit, kOpSub, r2, r3);
    hopBranch = opCondBranch(cUnit, kArmCondNe);
    dvmCompilerGenMemBarrier(cUnit, kSY);
    storeWordDisp(cUnit, r1, offsetof(Object, lock), r7);
    branch = opNone(cUnit, kOpUncondBr);

    hopTarget = newLIR0(cUnit, kArmPseudoTargetLabel);
    hopTarget->defMask = ENCODE_ALL;
    hopBranch->generic.target = (LIR *)hopTarget;

    // Export PC (part 1)
    loadConstant(cUnit, r3, (int) (cUnit->method->insns + mir->offset));

    LOAD_FUNC_ADDR(cUnit, r7, (int)dvmUnlockObject);
    genRegCopy(cUnit, r0, r6SELF);
    // Export PC (part 2)
    newLIR3(cUnit, kThumb2StrRRI8Predec, r3, r5FP,
            sizeof(StackSaveArea) -
            offsetof(StackSaveArea, xtra.currentPc));
    opReg(cUnit, kOpBlx, r7);
    /* Did we throw? */
    ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0);
    loadConstant(cUnit, r0,
                 (int) (cUnit->method->insns + mir->offset +
                 dexGetWidthFromOpcode(OP_MONITOR_EXIT)));
    genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);

    // Resume here
    target = newLIR0(cUnit, kArmPseudoTargetLabel);
    target->defMask = ENCODE_ALL;
    branch->generic.target = (LIR *)target;
    branchOver->generic.target = (LIR *) target;
}
Exemplo n.º 3
0
/* Export the Dalvik PC assicated with an instruction to the StackSave area */
static ArmLIR *genExportPC(CompilationUnit *cUnit, MIR *mir)
{
    ArmLIR *res;
    int offset = offsetof(StackSaveArea, xtra.currentPc);
    int rDPC = dvmCompilerAllocTemp(cUnit);
    res = loadConstant(cUnit, rDPC, (int) (cUnit->method->insns + mir->offset));
    newLIR3(cUnit, kThumb2StrRRI8Predec, rDPC, r5FP,
            sizeof(StackSaveArea) - offset);
    dvmCompilerFreeTemp(cUnit, rDPC);
    return res;
}
Exemplo n.º 4
0
/*
 * Handle simple case (thin lock) inline.  If it's complicated, bail
 * out to the heavyweight lock/unlock routines.  We'll use dedicated
 * registers here in order to be in the right position in case we
 * to bail to dvm[Lock/Unlock]Object(self, object)
 *
 * r0 -> self pointer [arg0 for dvm[Lock/Unlock]Object
 * r1 -> object [arg1 for dvm[Lock/Unlock]Object
 * r2 -> intial contents of object->lock, later result of strex
 * r3 -> self->threadId
 * r7 -> temp to hold new lock value [unlock only]
 * r4 -> allow to be used by utilities as general temp
 *
 * The result of the strex is 0 if we acquire the lock.
 *
 * See comments in Sync.c for the layout of the lock word.
 * Of particular interest to this code is the test for the
 * simple case - which we handle inline.  For monitor enter, the
 * simple case is thin lock, held by no-one.  For monitor exit,
 * the simple case is thin lock, held by the unlocking thread with
 * a recurse count of 0.
 *
 * A minor complication is that there is a field in the lock word
 * unrelated to locking: the hash state.  This field must be ignored, but
 * preserved.
 *
 */
static void genMonitorEnter(CompilationUnit *cUnit, MIR *mir)
{
    RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
    bool enter = (mir->dalvikInsn.opCode == OP_MONITOR_ENTER);
    ArmLIR *target;
    ArmLIR *hopTarget;
    ArmLIR *branch;
    ArmLIR *hopBranch;

    assert(LW_SHAPE_THIN == 0);
    loadValueDirectFixed(cUnit, rlSrc, r1);  // Get obj
    dvmCompilerLockAllTemps(cUnit);  // Prepare for explicit register usage
    dvmCompilerFreeTemp(cUnit, r4PC);  // Free up r4 for general use
    loadWordDisp(cUnit, rGLUE, offsetof(InterpState, self), r0); // Get self
    genNullCheck(cUnit, rlSrc.sRegLow, r1, mir->offset, NULL);
    loadWordDisp(cUnit, r0, offsetof(Thread, threadId), r3); // Get threadId
    newLIR3(cUnit, kThumb2Ldrex, r2, r1,
            offsetof(Object, lock) >> 2); // Get object->lock
    opRegImm(cUnit, kOpLsl, r3, LW_LOCK_OWNER_SHIFT); // Align owner
    // Is lock unheld on lock or held by us (==threadId) on unlock?
    newLIR4(cUnit, kThumb2Bfi, r3, r2, 0, LW_LOCK_OWNER_SHIFT - 1);
    newLIR3(cUnit, kThumb2Bfc, r2, LW_HASH_STATE_SHIFT,
            LW_LOCK_OWNER_SHIFT - 1);
    hopBranch = newLIR2(cUnit, kThumb2Cbnz, r2, 0);
    newLIR4(cUnit, kThumb2Strex, r2, r3, r1, offsetof(Object, lock) >> 2);
    branch = newLIR2(cUnit, kThumb2Cbz, r2, 0);

    hopTarget = newLIR0(cUnit, kArmPseudoTargetLabel);
    hopTarget->defMask = ENCODE_ALL;
    hopBranch->generic.target = (LIR *)hopTarget;

    // Clear the lock
    ArmLIR *inst = newLIR0(cUnit, kThumb2Clrex);
    // ...and make it a scheduling barrier
    inst->defMask = ENCODE_ALL;

    // Export PC (part 1)
    loadConstant(cUnit, r3, (int) (cUnit->method->insns + mir->offset));

    /* Get dPC of next insn */
    loadConstant(cUnit, r4PC, (int)(cUnit->method->insns + mir->offset +
                                    dexGetInstrWidthAbs(gDvm.instrWidth, OP_MONITOR_ENTER)));
    // Export PC (part 2)
    newLIR3(cUnit, kThumb2StrRRI8Predec, r3, rFP,
            sizeof(StackSaveArea) -
            offsetof(StackSaveArea, xtra.currentPc));
    /* Call template, and don't return */
    genDispatchToHandler(cUnit, TEMPLATE_MONITOR_ENTER);
    // Resume here
    target = newLIR0(cUnit, kArmPseudoTargetLabel);
    target->defMask = ENCODE_ALL;
    branch->generic.target = (LIR *)target;
}
Exemplo n.º 5
0
static bool genInlinedAbsFloat(CompilationUnit *cUnit, MIR *mir)
{
    int offset = offsetof(InterpState, retval);
    RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
    int reg0 = loadValue(cUnit, rlSrc, kCoreReg).lowReg;
    int signMask = dvmCompilerAllocTemp(cUnit);
    loadConstant(cUnit, signMask, 0x7fffffff);
    newLIR2(cUnit, kThumbAndRR, reg0, signMask);
    dvmCompilerFreeTemp(cUnit, signMask);
    storeWordDisp(cUnit, rGLUE, offset, reg0);
    //TUNING: rewrite this to not clobber
    dvmCompilerClobber(cUnit, reg0);
    return true;
}
Exemplo n.º 6
0
static bool genInlinedAbsDouble(CompilationUnit *cUnit, MIR *mir)
{
    int offset = offsetof(Thread, interpSave.retval);
    RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
    RegLocation regSrc = loadValueWide(cUnit, rlSrc, kCoreReg);
    int reglo = regSrc.lowReg;
    int reghi = regSrc.highReg;
    int signMask = dvmCompilerAllocTemp(cUnit);
    loadConstant(cUnit, signMask, 0x7fffffff);
    storeWordDisp(cUnit, r6SELF, offset, reglo);
    newLIR2(cUnit, kThumbAndRR, reghi, signMask);
    dvmCompilerFreeTemp(cUnit, signMask);
    storeWordDisp(cUnit, r6SELF, offset + 4, reghi);
    //TUNING: rewrite this to not clobber
    dvmCompilerClobber(cUnit, reghi);
    return false;
}
Exemplo n.º 7
0
/*
 * To avoid possible conflicts, we use a lot of temps here.  Note that
 * our usage of Thumb2 instruction forms avoids the problems with register
 * reuse for multiply instructions prior to arm6.
 */
static void genMulLong(CompilationUnit *cUnit, RegLocation rlDest,
                       RegLocation rlSrc1, RegLocation rlSrc2)
{
    RegLocation rlResult;
    int resLo = dvmCompilerAllocTemp(cUnit);
    int resHi = dvmCompilerAllocTemp(cUnit);
    int tmp1 = dvmCompilerAllocTemp(cUnit);

    rlSrc1 = loadValueWide(cUnit, rlSrc1, kCoreReg);
    rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg);

    newLIR3(cUnit, kThumb2MulRRR, tmp1, rlSrc2.lowReg, rlSrc1.highReg);
    newLIR4(cUnit, kThumb2Umull, resLo, resHi, rlSrc2.lowReg, rlSrc1.lowReg);
    newLIR4(cUnit, kThumb2Mla, tmp1, rlSrc1.lowReg, rlSrc2.highReg, tmp1);
    newLIR4(cUnit, kThumb2AddRRR, resHi, tmp1, resHi, 0);
    dvmCompilerFreeTemp(cUnit, tmp1);

    rlResult = dvmCompilerGetReturnWide(cUnit);  // Just as a template, will patch
    rlResult.lowReg = resLo;
    rlResult.highReg = resHi;
    storeValueWide(cUnit, rlDest, rlResult);
}
Exemplo n.º 8
0
/*
 * Generate array store
 *
 */
static void genArrayPut(CompilationUnit *cUnit, MIR *mir, OpSize size,
                        RegLocation rlArray, RegLocation rlIndex,
                        RegLocation rlSrc, int scale)
{
    RegisterClass regClass = dvmCompilerRegClassBySize(size);
    int lenOffset = OFFSETOF_MEMBER(ArrayObject, length);
    int dataOffset = OFFSETOF_MEMBER(ArrayObject, contents);

    int regPtr;
    rlArray = loadValue(cUnit, rlArray, kCoreReg);
    rlIndex = loadValue(cUnit, rlIndex, kCoreReg);

    if (dvmCompilerIsTemp(cUnit, rlArray.lowReg)) {
        dvmCompilerClobber(cUnit, rlArray.lowReg);
        regPtr = rlArray.lowReg;
    } else {
        regPtr = dvmCompilerAllocTemp(cUnit);
        genRegCopy(cUnit, regPtr, rlArray.lowReg);
    }

    /* null object? */
    ArmLIR * pcrLabel = NULL;

    if (!(mir->OptimizationFlags & MIR_IGNORE_NULL_CHECK)) {
        pcrLabel = genNullCheck(cUnit, rlArray.sRegLow, rlArray.lowReg,
                                mir->offset, NULL);
    }

    if (!(mir->OptimizationFlags & MIR_IGNORE_RANGE_CHECK)) {
        int regLen = dvmCompilerAllocTemp(cUnit);
        //NOTE: max live temps(4) here.
        /* Get len */
        loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLen);
        /* regPtr -> array data */
        opRegImm(cUnit, kOpAdd, regPtr, dataOffset);
        genBoundsCheck(cUnit, rlIndex.lowReg, regLen, mir->offset,
                       pcrLabel);
        dvmCompilerFreeTemp(cUnit, regLen);
    } else {
        /* regPtr -> array data */
        opRegImm(cUnit, kOpAdd, regPtr, dataOffset);
    }
    /* at this point, regPtr points to array, 2 live temps */
    if ((size == kLong) || (size == kDouble)) {
        //TODO: need specific wide routine that can handle fp regs
        if (scale) {
            int rNewIndex = dvmCompilerAllocTemp(cUnit);
            opRegRegImm(cUnit, kOpLsl, rNewIndex, rlIndex.lowReg, scale);
            opRegReg(cUnit, kOpAdd, regPtr, rNewIndex);
        } else {
            opRegReg(cUnit, kOpAdd, regPtr, rlIndex.lowReg);
        }
        rlSrc = loadValueWide(cUnit, rlSrc, regClass);

        HEAP_ACCESS_SHADOW(true);
        storePair(cUnit, regPtr, rlSrc.lowReg, rlSrc.highReg);
        HEAP_ACCESS_SHADOW(false);

        dvmCompilerFreeTemp(cUnit, regPtr);
    } else {
        rlSrc = loadValue(cUnit, rlSrc, regClass);

        HEAP_ACCESS_SHADOW(true);
        storeBaseIndexed(cUnit, regPtr, rlIndex.lowReg, rlSrc.lowReg,
                         scale, size);
        HEAP_ACCESS_SHADOW(false);
    }
}
Exemplo n.º 9
0
/*
 * Generate array load
 */
static void genArrayGet(CompilationUnit *cUnit, MIR *mir, OpSize size,
                        RegLocation rlArray, RegLocation rlIndex,
                        RegLocation rlDest, int scale)
{
    RegisterClass regClass = dvmCompilerRegClassBySize(size);
    int lenOffset = OFFSETOF_MEMBER(ArrayObject, length);
    int dataOffset = OFFSETOF_MEMBER(ArrayObject, contents);
    RegLocation rlResult;
    rlArray = loadValue(cUnit, rlArray, kCoreReg);
    rlIndex = loadValue(cUnit, rlIndex, kCoreReg);
    int regPtr;

    /* null object? */
    ArmLIR * pcrLabel = NULL;

    if (!(mir->OptimizationFlags & MIR_IGNORE_NULL_CHECK)) {
        pcrLabel = genNullCheck(cUnit, rlArray.sRegLow,
                                rlArray.lowReg, mir->offset, NULL);
    }

    regPtr = dvmCompilerAllocTemp(cUnit);

    if (!(mir->OptimizationFlags & MIR_IGNORE_RANGE_CHECK)) {
        int regLen = dvmCompilerAllocTemp(cUnit);
        /* Get len */
        loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLen);
        /* regPtr -> array data */
        opRegRegImm(cUnit, kOpAdd, regPtr, rlArray.lowReg, dataOffset);
        genBoundsCheck(cUnit, rlIndex.lowReg, regLen, mir->offset,
                       pcrLabel);
        dvmCompilerFreeTemp(cUnit, regLen);
    } else {
        /* regPtr -> array data */
        opRegRegImm(cUnit, kOpAdd, regPtr, rlArray.lowReg, dataOffset);
    }
    if ((size == kLong) || (size == kDouble)) {
        if (scale) {
            int rNewIndex = dvmCompilerAllocTemp(cUnit);
            opRegRegImm(cUnit, kOpLsl, rNewIndex, rlIndex.lowReg, scale);
            opRegReg(cUnit, kOpAdd, regPtr, rNewIndex);
            dvmCompilerFreeTemp(cUnit, rNewIndex);
        } else {
            opRegReg(cUnit, kOpAdd, regPtr, rlIndex.lowReg);
        }
        rlResult = dvmCompilerEvalLoc(cUnit, rlDest, regClass, true);

        HEAP_ACCESS_SHADOW(true);
        loadPair(cUnit, regPtr, rlResult.lowReg, rlResult.highReg);
        HEAP_ACCESS_SHADOW(false);

        dvmCompilerFreeTemp(cUnit, regPtr);
        storeValueWide(cUnit, rlDest, rlResult);
    } else {
        rlResult = dvmCompilerEvalLoc(cUnit, rlDest, regClass, true);

        HEAP_ACCESS_SHADOW(true);
        loadBaseIndexed(cUnit, regPtr, rlIndex.lowReg, rlResult.lowReg,
                        scale, size);
        HEAP_ACCESS_SHADOW(false);

        dvmCompilerFreeTemp(cUnit, regPtr);
        storeValue(cUnit, rlDest, rlResult);
    }
}