Exemplo n.º 1
0
/*
**	CZT計算用構造体の数表データを消去してそのメモリ領域を開放する。
**
**	cztp	= CZT計算用構造体へのポインタ
*/
void czt_end(czt_struct *cztp)
{
	if (cztp->wr != NULL) { free(cztp->wr); cztp->wr = NULL; }
	if (cztp->vr != NULL) { free(cztp->vr); cztp->vr = NULL; }
	if (cztp->tr != NULL) { free(cztp->tr); cztp->tr = NULL; }

	cztp->samples     = 0;
	cztp->samples_out = 0;
	cztp->samples_ex  = 0;

	fft_end(&cztp->fft);
}
Exemplo n.º 2
0
int
main ()
{
  int i;
  int N, n;
  int nTimes;
  float secs;
  float *results = malloc ((MAXPOW2 - MINPOW2) * sizeof (float));
  timestamp_t t0, t1;


  for (N = (1 << MINPOW2), n = 0; N < (1 << MAXPOW2); N = N << 1, n++)
    {
      complex *in = malloc ((N) * sizeof (complex));
      complex *out = malloc ((N) * sizeof (complex));

      for (i = 0; i < N; i++)
        in[i].r = i, in[i].i = 0;

      fft_init (N);

      nTimes = (int) ceil ((MFLOPS * 1e6F) / (float) flops_fft (N));

      t0 = get_timestamp();

      for (i = 0; i < nTimes; i++)
        {
          memcpy (out, in, (N) * sizeof (complex));
          fft_exec (N, out);
        }

      t1 = get_timestamp();

      secs = (t1 - t0) / 1000000.0L;

      free (in);

      free (out);

      fft_end ();

      fprintf (stderr, "nTimes=%d N=%d:  (flops %f : time:%g us)\n", nTimes,
               N, (flops_fft (N) * nTimes) / secs * 1e-6F, secs);
      results[n] = (flops_fft (N) * nTimes) / secs * 1e-6F;
    }
  for (n = 0; n < (MAXPOW2 - MINPOW2); ++n)
    printf ("%d, %f\n", 1 << (MINPOW2 + n), results[n]);

  free (results);
}
Exemplo n.º 3
0
int main(int argc, char **argv)
{
    FFTComplex *tab, *tab1, *tab_ref;
    FFTSample *tabtmp, *tab2;
    int it, i, c;
    int do_speed = 0;
    int do_mdct = 0;
    int do_inverse = 0;
    FFTContext s1, *s = &s1;
    MDCTContext m1, *m = &m1;
    int fft_nbits, fft_size;

    mm_flags = 0;
    fft_nbits = 9;
    for(;;) {
        c = getopt(argc, argv, "hsimn:");
        if (c == -1)
            break;
        switch(c) {
        case 'h':
            help();
            break;
        case 's':
            do_speed = 1;
            break;
        case 'i':
            do_inverse = 1;
            break;
        case 'm':
            do_mdct = 1;
            break;
        case 'n':
            fft_nbits = atoi(optarg);
            break;
        }
    }

    fft_size = 1 << fft_nbits;
    tab = av_malloc(fft_size * sizeof(FFTComplex));
    tab1 = av_malloc(fft_size * sizeof(FFTComplex));
    tab_ref = av_malloc(fft_size * sizeof(FFTComplex));
    tabtmp = av_malloc(fft_size / 2 * sizeof(FFTSample));
    tab2 = av_malloc(fft_size * sizeof(FFTSample));

    if (do_mdct) {
        if (do_inverse)
            printf("IMDCT");
        else
            printf("MDCT");
        ff_mdct_init(m, fft_nbits, do_inverse);
    } else {
        if (do_inverse)
            printf("IFFT");
        else
            printf("FFT");
        fft_init(s, fft_nbits, do_inverse);
        fft_ref_init(fft_nbits, do_inverse);
    }
    printf(" %d test\n", fft_size);

    /* generate random data */

    for(i=0;i<fft_size;i++) {
        tab1[i].re = frandom();
        tab1[i].im = frandom();
    }

    /* checking result */
    printf("Checking...\n");

    if (do_mdct) {
        if (do_inverse) {
            imdct_ref((float *)tab_ref, (float *)tab1, fft_size);
            ff_imdct_calc(m, tab2, (float *)tab1, tabtmp);
            check_diff((float *)tab_ref, tab2, fft_size);
        } else {
            mdct_ref((float *)tab_ref, (float *)tab1, fft_size);
            
            ff_mdct_calc(m, tab2, (float *)tab1, tabtmp);

            check_diff((float *)tab_ref, tab2, fft_size / 2);
        }
    } else {
        memcpy(tab, tab1, fft_size * sizeof(FFTComplex));
        fft_permute(s, tab);
        fft_calc(s, tab);
        
        fft_ref(tab_ref, tab1, fft_nbits);
        check_diff((float *)tab_ref, (float *)tab, fft_size * 2);
    }

    /* do a speed test */

    if (do_speed) {
        int64_t time_start, duration;
        int nb_its;

        printf("Speed test...\n");
        /* we measure during about 1 seconds */
        nb_its = 1;
        for(;;) {
            time_start = gettime();
            for(it=0;it<nb_its;it++) {
                if (do_mdct) {
                    if (do_inverse) {
                        ff_imdct_calc(m, (float *)tab, (float *)tab1, tabtmp);
                    } else {
                        ff_mdct_calc(m, (float *)tab, (float *)tab1, tabtmp);
                    }
                } else {
                    memcpy(tab, tab1, fft_size * sizeof(FFTComplex));
                    fft_calc(s, tab);
                }
            }
            duration = gettime() - time_start;
            if (duration >= 1000000)
                break;
            nb_its *= 2;
        }
        printf("time: %0.1f us/transform [total time=%0.2f s its=%d]\n", 
               (double)duration / nb_its, 
               (double)duration / 1000000.0,
               nb_its);
    }
    
    if (do_mdct) {
        ff_mdct_end(m);
    } else {
        fft_end(s);
    }
    return 0;
}
Exemplo n.º 4
0
void ff_mdct_end(MDCTContext *s)
{
    av_freep(&s->tcos);
    av_freep(&s->tsin);
    fft_end(&s->fft);
}
Exemplo n.º 5
0
/*
Manage the whole stuff.
*/
void	makeit()

  {
   checkstruct		*check;
   picstruct		*dfield, *field,*pffield[MAXFLAG], *wfield,*dwfield;
   catstruct		*imacat;
   tabstruct		*imatab;
   patternstruct	*pattern;
   static time_t        thetime1, thetime2;
   struct tm		*tm;
   unsigned int		modeltype;
   int			nflag[MAXFLAG], nparam2[2],
			i, nok, ntab, next, ntabmax, forcextflag,
			nima0,nima1, nweight0,nweight1, npsf0,npsf1, npat,npat0;

   next = 0;
   nok = 1;

/* Processing start date and time */
  dtime = counter_seconds();
  thetimet = time(NULL);
  tm = localtime(&thetimet);
  sprintf(prefs.sdate_start,"%04d-%02d-%02d",
        tm->tm_year+1900, tm->tm_mon+1, tm->tm_mday);
  sprintf(prefs.stime_start,"%02d:%02d:%02d",
        tm->tm_hour, tm->tm_min, tm->tm_sec);

  NFPRINTF(OUTPUT, "");
  QPRINTF(OUTPUT, "----- %s %s started on %s at %s with %d thread%s\n\n",
		BANNER,
		MYVERSION,
		prefs.sdate_start,
		prefs.stime_start,
		prefs.nthreads,
		prefs.nthreads>1? "s":"");

/* Initialize globals variables */
  initglob();

  NFPRINTF(OUTPUT, "Setting catalog parameters");
  readcatparams(prefs.param_name);
  useprefs();			/* update things accor. to prefs parameters */

/* Check if a specific extension should be loaded */
/* Never true for an NDF, although we could through all NDFs in a container, */
/* so we make selectext go away. */
  nima0 = -1;
  forcextflag = 0;

/* Do the same for other data (but do not force single extension mode) */
  nima1 = -1;    /* selectext(prefs.image_name[1]) */
  nweight0 = -1; /* selectext(prefs.wimage_name[0]) */
  nweight1 = -1; /* selectext(prefs.wimage_name[1]) */
  if (prefs.dpsf_flag)
    {
    npsf0 = -1; /* selectext(prefs.psf_name[0]) */
    npsf1 = -1; /* selectext(prefs.psf_name[1]) */
    }
  else
    npsf0 = -1; /* selectext(prefs.psf_name[0]) */
  for (i=0; i<prefs.nfimage_name; i++)
    nflag[i] = -1; /* selectext(prefs.fimage_name[i]) */

  if (prefs.psf_flag)
    {
/*-- Read the first PSF extension to set up stuff such as context parameters */
    NFPRINTF(OUTPUT, "Reading PSF information");
    if (prefs.dpsf_flag)
      {
      thedpsf = psf_load(prefs.psf_name[0],nima0<0? 1 :(npsf0<0? 1:npsf0)); 
      thepsf = psf_load(prefs.psf_name[1], nima1<0? 1 :(npsf1<0? 1:npsf1));
      }
    else
      thepsf = psf_load(prefs.psf_name[0], nima0<0? 1 :(npsf0<0? 1:npsf0)); 
 /*-- Need to check things up because of PSF context parameters */
    updateparamflags();
    useprefs();
    }

  if (prefs.prof_flag)
    {
#ifdef USE_MODEL
    fft_init(prefs.nthreads);
/* Create profiles at full resolution */
    NFPRINTF(OUTPUT, "Preparing profile models");
    modeltype = (FLAG(obj2.prof_offset_flux)? MODEL_BACK : MODEL_NONE)
	|(FLAG(obj2.prof_dirac_flux)? MODEL_DIRAC : MODEL_NONE)
	|(FLAG(obj2.prof_spheroid_flux)?
		(FLAG(obj2.prof_spheroid_sersicn)?
			MODEL_SERSIC : MODEL_DEVAUCOULEURS) : MODEL_NONE)
	|(FLAG(obj2.prof_disk_flux)? MODEL_EXPONENTIAL : MODEL_NONE)
	|(FLAG(obj2.prof_bar_flux)? MODEL_BAR : MODEL_NONE)
	|(FLAG(obj2.prof_arms_flux)? MODEL_ARMS : MODEL_NONE);
    theprofit = profit_init(thepsf, modeltype);
    changecatparamarrays("VECTOR_MODEL", &theprofit->nparam, 1);
    changecatparamarrays("VECTOR_MODELERR", &theprofit->nparam, 1);
    nparam2[0] = nparam2[1] = theprofit->nparam;
    changecatparamarrays("MATRIX_MODELERR", nparam2, 2);
    if (prefs.dprof_flag)
      thedprofit = profit_init(thedpsf, modeltype);
    if (prefs.pattern_flag)
      {
      npat0 = prefs.prof_disk_patternvectorsize;
      if (npat0<prefs.prof_disk_patternmodvectorsize)
        npat0 = prefs.prof_disk_patternmodvectorsize;
      if (npat0<prefs.prof_disk_patternargvectorsize)
        npat0 = prefs.prof_disk_patternargvectorsize;
/*---- Do a copy of the original number of pattern components */
      prefs.prof_disk_patternncomp = npat0;
      pattern = pattern_init(theprofit, prefs.pattern_type, npat0);
      if (FLAG(obj2.prof_disk_patternvector))
        {
        npat = pattern->size[2];
        changecatparamarrays("DISK_PATTERN_VECTOR", &npat, 1);
        }
      if (FLAG(obj2.prof_disk_patternmodvector))
        {
        npat = pattern->ncomp*pattern->nfreq;
        changecatparamarrays("DISK_PATTERNMOD_VECTOR", &npat, 1);
        }
      if (FLAG(obj2.prof_disk_patternargvector))
        {
        npat = pattern->ncomp*pattern->nfreq;
        changecatparamarrays("DISK_PATTERNARG_VECTOR", &npat, 1);
        }
      pattern_end(pattern);
      }
    QPRINTF(OUTPUT, "Fitting model: ");
    for (i=0; i<theprofit->nprof; i++)
      {
      if (i)
        QPRINTF(OUTPUT, "+");
      QPRINTF(OUTPUT, "%s", theprofit->prof[i]->name);
      }
    QPRINTF(OUTPUT, "\n");
    if (FLAG(obj2.prof_concentration)|FLAG(obj2.prof_concentration))
      {
      thepprofit = profit_init(thepsf, MODEL_DIRAC);
      theqprofit = profit_init(thepsf, MODEL_EXPONENTIAL);
      }
#else
    error(EXIT_FAILURE,
		"*Error*: model-fitting is not supported in this build.\n",
			" Please check your configure options");
#endif
    }

  if (prefs.filter_flag)
    {
    NFPRINTF(OUTPUT, "Reading detection filter");
    getfilter(prefs.filter_name);	/* get the detection filter */
    }

  if (FLAG(obj2.sprob))
    {
    NFPRINTF(OUTPUT, "Initializing Neural Network");
    neurinit();
    NFPRINTF(OUTPUT, "Reading Neural Network Weights");
    getnnw(); 
    }

  if (prefs.somfit_flag)
    {
     int	margin;

    thesom = som_load(prefs.som_name);
    if ((margin=(thesom->inputsize[1]+1)/2) > prefs.cleanmargin)
      prefs.cleanmargin = margin;
    if (prefs.somfit_vectorsize>thesom->neurdim)
      {
      prefs.somfit_vectorsize = thesom->neurdim;
      sprintf(gstr,"%d", prefs.somfit_vectorsize);
      warning("Dimensionality of the SOM-fit vector limited to ", gstr);
      }
    }

/* Prepare growth-curve buffer */
  if (prefs.growth_flag)
    initgrowth();

/* Allocate memory for multidimensional catalog parameter arrays */
  alloccatparams();
  useprefs();

/*-- Init the CHECK-images */
  if (prefs.check_flag)
    {
      checkenum	c;
      
      NFPRINTF(OUTPUT, "Initializing check-image(s)");
      for (i=0; i<prefs.ncheck_type; i++)
        if ((c=prefs.check_type[i]) != CHECK_NONE)
          {
            if (prefs.check[c])
              error(EXIT_FAILURE,"*Error*: 2 CHECK_IMAGEs cannot have the same ",
                        " CHECK_IMAGE_TYPE");
            prefs.check[c] = initcheck(prefs.check_name[i], prefs.check_type[i],
                                       next);
            free(prefs.check_name[i]);
          }
    }

  NFPRINTF(OUTPUT, "Initializing catalog");
  initcat();
  
/* Initialize XML data */
  if (prefs.xml_flag || prefs.cat_type==ASCII_VO)
    init_xml(next);

/* Go through all images */
/* for all images in an MEF */

/*---- Initial time measurement*/
  time(&thetime1);
  thecat.currext = nok+1;
  
  dfield = field = wfield = dwfield = NULL;

/*---- Init the Detection and Measurement-images */
  if (prefs.dimage_flag)
  {
      dfield = newfield(prefs.image_name[0], DETECT_FIELD, nok);
      field = newfield(prefs.image_name[1], MEASURE_FIELD, nok);
      if ((field->width!=dfield->width) || (field->height!=dfield->height))
          error(EXIT_FAILURE, "*Error*: Frames have different sizes","");
/*---- Prepare interpolation */
      if (prefs.dweight_flag && prefs.interp_type[0] == INTERP_ALL)
          init_interpolate(dfield, -1, -1);
      if (prefs.interp_type[1] == INTERP_ALL)
          init_interpolate(field, -1, -1);
  }
  else
  {
      field = newfield(prefs.image_name[0], DETECT_FIELD | MEASURE_FIELD, nok);
/*-- Prepare interpolation */
      if ((prefs.dweight_flag || prefs.weight_flag)
          && prefs.interp_type[0] == INTERP_ALL)
          init_interpolate(field, -1, -1);       /* 0.0 or anything else */
  }

/*-- Init the WEIGHT-images */
  if (prefs.dweight_flag || prefs.weight_flag) 
  {
      weightenum	wtype;
      PIXTYPE	interpthresh;

      if (prefs.nweight_type>1)
      {
/*------ Double-weight-map mode */
          if (prefs.weight_type[1] != WEIGHT_NONE)
          {
/*-------- First: the "measurement" weights */
              wfield = newweight(prefs.wimage_name[1],field,prefs.weight_type[1],
                                 nok);
              wtype = prefs.weight_type[1];
              interpthresh = prefs.weight_thresh[1];
/*-------- Convert the interpolation threshold to variance units */
              weight_to_var(wfield, &interpthresh, 1);
              wfield->weight_thresh = interpthresh;
              if (prefs.interp_type[1] != INTERP_NONE)
                  init_interpolate(wfield,
                                   prefs.interp_xtimeout[1], prefs.interp_ytimeout[1]);
          }
/*------ The "detection" weights */
          if (prefs.weight_type[0] != WEIGHT_NONE)
          {
              interpthresh = prefs.weight_thresh[0];
              if (prefs.weight_type[0] == WEIGHT_FROMINTERP)
              {
                  dwfield=newweight(prefs.wimage_name[0],wfield,prefs.weight_type[0], 
                                    nok);
                  weight_to_var(wfield, &interpthresh, 1);
              }
              else
              {
                  dwfield = newweight(prefs.wimage_name[0], dfield?dfield:field,
                                      prefs.weight_type[0], nok);
                  weight_to_var(dwfield, &interpthresh, 1);
              }
              dwfield->weight_thresh = interpthresh;
              if (prefs.interp_type[0] != INTERP_NONE)
                  init_interpolate(dwfield,
                                   prefs.interp_xtimeout[0], prefs.interp_ytimeout[0]);
          }
      }
      else
      {
/*------ Single-weight-map mode */
          wfield = newweight(prefs.wimage_name[0], dfield?dfield:field,
                             prefs.weight_type[0], nok);
          wtype = prefs.weight_type[0];
          interpthresh = prefs.weight_thresh[0];
/*------ Convert the interpolation threshold to variance units */
          weight_to_var(wfield, &interpthresh, 1);
          wfield->weight_thresh = interpthresh;
          if (prefs.interp_type[0] != INTERP_NONE)
              init_interpolate(wfield,
                               prefs.interp_xtimeout[0], prefs.interp_ytimeout[0]);
      }
  }

/*-- Init the FLAG-images */
  for (i=0; i<prefs.nimaflag; i++)
  {
      pffield[i] = newfield(prefs.fimage_name[i], FLAG_FIELD, nok);
      if ((pffield[i]->width!=field->width)
          || (pffield[i]->height!=field->height))
          error(EXIT_FAILURE,
                "*Error*: Incompatible FLAG-map size in ", prefs.fimage_name[i]);
  }

/*-- Compute background maps for `standard' fields */
  QPRINTF(OUTPUT, dfield? "Measurement image:"
          : "Detection+Measurement image: ");
  makeback(field, wfield, prefs.wscale_flag[1]);
  QPRINTF(OUTPUT, (dfield || (dwfield&&dwfield->flags^INTERP_FIELD))? "(M)   "
          "Background: %-10g RMS: %-10g / Threshold: %-10g \n"
          : "(M+D) "
          "Background: %-10g RMS: %-10g / Threshold: %-10g \n",
          field->backmean, field->backsig, (field->flags & DETECT_FIELD)?
          field->dthresh: field->thresh);
  if (dfield)
  {
      QPRINTF(OUTPUT, "Detection image: ");
      makeback(dfield, dwfield? dwfield
                        : (prefs.weight_type[0] == WEIGHT_NONE?NULL:wfield),
                prefs.wscale_flag[0]);
      QPRINTF(OUTPUT, "(D)   "
              "Background: %-10g RMS: %-10g / Threshold: %-10g \n",
              dfield->backmean, dfield->backsig, dfield->dthresh);
  }
  else if (dwfield && dwfield->flags^INTERP_FIELD)
  {
      makeback(field, dwfield, prefs.wscale_flag[0]);
      QPRINTF(OUTPUT, "(D)   "
              "Background: %-10g RMS: %-10g / Threshold: %-10g \n",
              field->backmean, field->backsig, field->dthresh);
  }

/*-- For interpolated weight-maps, copy the background structure */
  if (dwfield && dwfield->flags&(INTERP_FIELD|BACKRMS_FIELD))
      copyback(dwfield->reffield, dwfield);
  if (wfield && wfield->flags&(INTERP_FIELD|BACKRMS_FIELD))
      copyback(wfield->reffield, wfield);

/*-- Prepare learn and/or associations */
  if (prefs.assoc_flag)
      init_assoc(field);                  /* initialize assoc tasks */

/*-- Update the CHECK-images */
  if (prefs.check_flag)
      for (i=0; i<MAXCHECK; i++)
        if ((check=prefs.check[i]))
          reinitcheck(field, check);

    if (!forcextflag && nok>1)
      {
      if (prefs.psf_flag)
        {
/*------ Read other PSF extensions */
        NFPRINTF(OUTPUT, "Reading PSF information");
        psf_end(thepsf, thepsfit);
        if (prefs.dpsf_flag)
          {
          psf_end(thedpsf, thedpsfit);
          thedpsf = psf_load(prefs.psf_name[0], nok);
          thepsf = psf_load(prefs.psf_name[1], nok);
          }
        else
          thepsf = psf_load(prefs.psf_name[0], nok); 
        }

#ifdef USE_MODEL
      if (prefs.prof_flag)
        {
/*------ Create profiles at full resolution */
        profit_end(theprofit);
        theprofit = profit_init(thepsf, modeltype);
        if (prefs.dprof_flag)
          {
          profit_end(thedprofit);
          thedprofit = profit_init(thedpsf, modeltype);
          }
        if (prefs.pattern_flag)
          {
          pattern = pattern_init(theprofit, prefs.pattern_type, npat0);
          pattern_end(pattern);
          }
        if (FLAG(obj2.prof_concentration)|FLAG(obj2.prof_concentration))
          {
          profit_end(thepprofit);
          profit_end(theqprofit);
          thepprofit = profit_init(thepsf, MODEL_DIRAC);
          theqprofit = profit_init(thepsf, MODEL_EXPONENTIAL);
          }
        }
#endif
      }

/*-- Initialize PSF contexts and workspace */
  if (prefs.psf_flag)
  {
      psf_readcontext(thepsf, field);
      psf_init();
      if (prefs.dpsf_flag)
        {
        psf_readcontext(thepsf, dfield);
        psf_init();
        }
  }

/*-- Copy field structures to static ones (for catalog info) */
  if (dfield)
  {
      thefield1 = *field;
      thefield2 = *dfield;
  }
  else
      thefield1 = thefield2 = *field;

  if (wfield)
  {
      thewfield1 = *wfield;
      thewfield2 = dwfield? *dwfield: *wfield;
  }
  else if (dwfield)
      thewfield2 = *dwfield;

  reinitcat(field);

/*-- Start the extraction pipeline */
  NFPRINTF(OUTPUT, "Scanning image");
  scanimage(field, dfield, pffield, prefs.nimaflag, wfield, dwfield);

  NFPRINTF(OUTPUT, "Closing files");

/*-- Finish the current CHECK-image processing */
  if (prefs.check_flag)
      for (i=0; i<MAXCHECK; i++)
        if ((check=prefs.check[i]))
          reendcheck(field, check);

/*-- Final time measurements*/
    if (time(&thetime2)!=-1)
      {
      if (!strftime(thecat.ext_date, 12, "%d/%m/%Y", localtime(&thetime2)))
        error(EXIT_FAILURE, "*Internal Error*: Date string too long ","");
      if (!strftime(thecat.ext_time, 10, "%H:%M:%S", localtime(&thetime2)))
          error(EXIT_FAILURE, "*Internal Error*: Time/date string too long ","");
      thecat.ext_elapsed = difftime(thetime2, thetime1);
      
  }

  reendcat();

/* Update XML data */
    if (prefs.xml_flag || prefs.cat_type==ASCII_VO)
      update_xml(&thecat, dfield? dfield:field, field,
	dwfield? dwfield:wfield, wfield);


/*-- Close ASSOC routines */
  end_assoc(field);

  for (i=0; i<prefs.nimaflag; i++)
      endfield(pffield[i]);
  endfield(field);
  if (dfield)
      endfield(dfield);
  if (wfield)
      endfield(wfield);
  if (dwfield)
      endfield(dwfield);

    QPRINTF(OUTPUT, "      Objects: detected %-8d / sextracted %-8d        \n\n",
	thecat.ndetect, thecat.ntotal);
/* End look around all images in an MEF */

  if (nok<0)
     error(EXIT_FAILURE, "Not enough valid FITS image extensions in ",
           prefs.image_name[0]);

  NFPRINTF(OUTPUT, "Closing files");

/* End CHECK-image processing */
  if (prefs.check_flag)
    for (i=0; i<MAXCHECK; i++)
      {
      if ((check=prefs.check[i]))
        endcheck(check);
      prefs.check[i] = NULL;
      }

  if (prefs.filter_flag)
    endfilter();

  if (prefs.somfit_flag)
    som_end(thesom);

  if (prefs.growth_flag)
    endgrowth();

#ifdef USE_MODEL
  if (prefs.prof_flag)
    {
    profit_end(theprofit);
    if (prefs.dprof_flag)
      profit_end(thedprofit);
    if (FLAG(obj2.prof_concentration)|FLAG(obj2.prof_concentration))
      {
      profit_end(thepprofit);
      profit_end(theqprofit);
      }
    fft_end();
    }
#endif

  if (prefs.psf_flag)
    psf_end(thepsf, thepsfit);

  if (prefs.dpsf_flag)
    psf_end(thedpsf, thedpsfit);

  if (FLAG(obj2.sprob))
    neurclose();

/* Processing end date and time */
  thetimet2 = time(NULL);
  tm = localtime(&thetimet2);
  sprintf(prefs.sdate_end,"%04d-%02d-%02d",
	tm->tm_year+1900, tm->tm_mon+1, tm->tm_mday);
  sprintf(prefs.stime_end,"%02d:%02d:%02d",
	tm->tm_hour, tm->tm_min, tm->tm_sec);
  prefs.time_diff = counter_seconds() - dtime;

/* Write XML */
  if (prefs.xml_flag)
    write_xml(prefs.xml_name);

  endcat((char *)NULL);

  if (prefs.xml_flag || prefs.cat_type==ASCII_VO)
    end_xml();

/* Free FITS headers (now catalogues are closed). */
  if (field->fitsheadsize > 0) {
      free(field->fitshead);
  }

  return;
  }
Exemplo n.º 6
0
int main(int argc, char **argv)
{
    FFTComplex *tab, *tab1, *tab_ref;
    FFTSample *tab2;
    enum tf_transform transform = TRANSFORM_FFT;
    FFTContext *m, *s;
#if FFT_FLOAT
    RDFTContext *r;
    DCTContext *d;
#endif /* FFT_FLOAT */
    int it, i, err = 1;
    int do_speed = 0, do_inverse = 0;
    int fft_nbits = 9, fft_size;
    double scale = 1.0;
    AVLFG prng;

#if !AVFFT
    s = av_mallocz(sizeof(*s));
    m = av_mallocz(sizeof(*m));
#endif

#if !AVFFT && FFT_FLOAT
    r = av_mallocz(sizeof(*r));
    d = av_mallocz(sizeof(*d));
#endif

    av_lfg_init(&prng, 1);

    for (;;) {
        int c = getopt(argc, argv, "hsimrdn:f:c:");
        if (c == -1)
            break;
        switch (c) {
        case 'h':
            help();
            return 1;
        case 's':
            do_speed = 1;
            break;
        case 'i':
            do_inverse = 1;
            break;
        case 'm':
            transform = TRANSFORM_MDCT;
            break;
        case 'r':
            transform = TRANSFORM_RDFT;
            break;
        case 'd':
            transform = TRANSFORM_DCT;
            break;
        case 'n':
            fft_nbits = atoi(optarg);
            break;
        case 'f':
            scale = atof(optarg);
            break;
        case 'c':
        {
            unsigned cpuflags = av_get_cpu_flags();

            if (av_parse_cpu_caps(&cpuflags, optarg) < 0)
                return 1;

            av_force_cpu_flags(cpuflags);
            break;
        }
        }
    }

    fft_size = 1 << fft_nbits;
    tab      = av_malloc_array(fft_size, sizeof(FFTComplex));
    tab1     = av_malloc_array(fft_size, sizeof(FFTComplex));
    tab_ref  = av_malloc_array(fft_size, sizeof(FFTComplex));
    tab2     = av_malloc_array(fft_size, sizeof(FFTSample));

    if (!(tab && tab1 && tab_ref && tab2))
        goto cleanup;

    switch (transform) {
#if CONFIG_MDCT
    case TRANSFORM_MDCT:
        av_log(NULL, AV_LOG_INFO, "Scale factor is set to %f\n", scale);
        if (do_inverse)
            av_log(NULL, AV_LOG_INFO, "IMDCT");
        else
            av_log(NULL, AV_LOG_INFO, "MDCT");
        mdct_init(&m, fft_nbits, do_inverse, scale);
        break;
#endif /* CONFIG_MDCT */
    case TRANSFORM_FFT:
        if (do_inverse)
            av_log(NULL, AV_LOG_INFO, "IFFT");
        else
            av_log(NULL, AV_LOG_INFO, "FFT");
        fft_init(&s, fft_nbits, do_inverse);
        if ((err = fft_ref_init(fft_nbits, do_inverse)) < 0)
            goto cleanup;
        break;
#if FFT_FLOAT
#    if CONFIG_RDFT
    case TRANSFORM_RDFT:
        if (do_inverse)
            av_log(NULL, AV_LOG_INFO, "IDFT_C2R");
        else
            av_log(NULL, AV_LOG_INFO, "DFT_R2C");
        rdft_init(&r, fft_nbits, do_inverse ? IDFT_C2R : DFT_R2C);
        if ((err = fft_ref_init(fft_nbits, do_inverse)) < 0)
            goto cleanup;
        break;
#    endif /* CONFIG_RDFT */
#    if CONFIG_DCT
    case TRANSFORM_DCT:
        if (do_inverse)
            av_log(NULL, AV_LOG_INFO, "DCT_III");
        else
            av_log(NULL, AV_LOG_INFO, "DCT_II");
            dct_init(&d, fft_nbits, do_inverse ? DCT_III : DCT_II);
        break;
#    endif /* CONFIG_DCT */
#endif /* FFT_FLOAT */
    default:
        av_log(NULL, AV_LOG_ERROR, "Requested transform not supported\n");
        goto cleanup;
    }
    av_log(NULL, AV_LOG_INFO, " %d test\n", fft_size);

    /* generate random data */

    for (i = 0; i < fft_size; i++) {
        tab1[i].re = frandom(&prng);
        tab1[i].im = frandom(&prng);
    }

    /* checking result */
    av_log(NULL, AV_LOG_INFO, "Checking...\n");

    switch (transform) {
#if CONFIG_MDCT
    case TRANSFORM_MDCT:
        if (do_inverse) {
            imdct_ref(&tab_ref->re, &tab1->re, fft_nbits);
            imdct_calc(m, tab2, &tab1->re);
            err = check_diff(&tab_ref->re, tab2, fft_size, scale);
        } else {
            mdct_ref(&tab_ref->re, &tab1->re, fft_nbits);
            mdct_calc(m, tab2, &tab1->re);
            err = check_diff(&tab_ref->re, tab2, fft_size / 2, scale);
        }
        break;
#endif /* CONFIG_MDCT */
    case TRANSFORM_FFT:
        memcpy(tab, tab1, fft_size * sizeof(FFTComplex));
        fft_permute(s, tab);
        fft_calc(s, tab);

        fft_ref(tab_ref, tab1, fft_nbits);
        err = check_diff(&tab_ref->re, &tab->re, fft_size * 2, 1.0);
        break;
#if FFT_FLOAT
#if CONFIG_RDFT
    case TRANSFORM_RDFT:
    {
        int fft_size_2 = fft_size >> 1;
        if (do_inverse) {
            tab1[0].im          = 0;
            tab1[fft_size_2].im = 0;
            for (i = 1; i < fft_size_2; i++) {
                tab1[fft_size_2 + i].re =  tab1[fft_size_2 - i].re;
                tab1[fft_size_2 + i].im = -tab1[fft_size_2 - i].im;
            }

            memcpy(tab2, tab1, fft_size * sizeof(FFTSample));
            tab2[1] = tab1[fft_size_2].re;

            rdft_calc(r, tab2);
            fft_ref(tab_ref, tab1, fft_nbits);
            for (i = 0; i < fft_size; i++) {
                tab[i].re = tab2[i];
                tab[i].im = 0;
            }
            err = check_diff(&tab_ref->re, &tab->re, fft_size * 2, 0.5);
        } else {
            for (i = 0; i < fft_size; i++) {
                tab2[i]    = tab1[i].re;
                tab1[i].im = 0;
            }
            rdft_calc(r, tab2);
            fft_ref(tab_ref, tab1, fft_nbits);
            tab_ref[0].im = tab_ref[fft_size_2].re;
            err = check_diff(&tab_ref->re, tab2, fft_size, 1.0);
        }
        break;
    }
#endif /* CONFIG_RDFT */
#if CONFIG_DCT
    case TRANSFORM_DCT:
        memcpy(tab, tab1, fft_size * sizeof(FFTComplex));
        dct_calc(d, &tab->re);
        if (do_inverse)
            idct_ref(&tab_ref->re, &tab1->re, fft_nbits);
        else
            dct_ref(&tab_ref->re, &tab1->re, fft_nbits);
        err = check_diff(&tab_ref->re, &tab->re, fft_size, 1.0);
        break;
#endif /* CONFIG_DCT */
#endif /* FFT_FLOAT */
    }

    /* do a speed test */

    if (do_speed) {
        int64_t time_start, duration;
        int nb_its;

        av_log(NULL, AV_LOG_INFO, "Speed test...\n");
        /* we measure during about 1 seconds */
        nb_its = 1;
        for (;;) {
            time_start = av_gettime_relative();
            for (it = 0; it < nb_its; it++) {
                switch (transform) {
                case TRANSFORM_MDCT:
                    if (do_inverse)
                        imdct_calc(m, &tab->re, &tab1->re);
                    else
                        mdct_calc(m, &tab->re, &tab1->re);
                    break;
                case TRANSFORM_FFT:
                    memcpy(tab, tab1, fft_size * sizeof(FFTComplex));
                    fft_calc(s, tab);
                    break;
#if FFT_FLOAT
                case TRANSFORM_RDFT:
                    memcpy(tab2, tab1, fft_size * sizeof(FFTSample));
                    rdft_calc(r, tab2);
                    break;
                case TRANSFORM_DCT:
                    memcpy(tab2, tab1, fft_size * sizeof(FFTSample));
                    dct_calc(d, tab2);
                    break;
#endif /* FFT_FLOAT */
                }
            }
            duration = av_gettime_relative() - time_start;
            if (duration >= 1000000)
                break;
            nb_its *= 2;
        }
        av_log(NULL, AV_LOG_INFO,
               "time: %0.1f us/transform [total time=%0.2f s its=%d]\n",
               (double) duration / nb_its,
               (double) duration / 1000000.0,
               nb_its);
    }

    switch (transform) {
#if CONFIG_MDCT
    case TRANSFORM_MDCT:
        mdct_end(m);
        break;
#endif /* CONFIG_MDCT */
    case TRANSFORM_FFT:
        fft_end(s);
        break;
#if FFT_FLOAT
#    if CONFIG_RDFT
    case TRANSFORM_RDFT:
        rdft_end(r);
        break;
#    endif /* CONFIG_RDFT */
#    if CONFIG_DCT
    case TRANSFORM_DCT:
        dct_end(d);
        break;
#    endif /* CONFIG_DCT */
#endif /* FFT_FLOAT */
    }

cleanup:
    av_free(tab);
    av_free(tab1);
    av_free(tab2);
    av_free(tab_ref);
    av_free(exptab);

#if !AVFFT
    av_free(s);
    av_free(m);
#endif

#if !AVFFT && FFT_FLOAT
    av_free(r);
    av_free(d);
#endif

    if (err)
        printf("Error: %d.\n", err);

    return !!err;
}