Exemplo n.º 1
0
/*===========================================================================*
 *				update_priv				     *
 *===========================================================================*/
PRIVATE int update_priv(struct proc *rp, struct priv *priv)
{
/* Update the privilege structure of a given process. */

  int ipc_to_m, i;

  /* Copy s_flags and signal managers. */
  priv(rp)->s_flags = priv->s_flags;
  priv(rp)->s_sig_mgr = priv->s_sig_mgr;
  priv(rp)->s_bak_sig_mgr = priv->s_bak_sig_mgr;

  /* Copy IRQs. */
  if(priv->s_flags & CHECK_IRQ) {
  	if (priv->s_nr_irq < 0 || priv->s_nr_irq > NR_IRQ)
  		return EINVAL;
  	priv(rp)->s_nr_irq= priv->s_nr_irq;
  	for (i= 0; i<priv->s_nr_irq; i++)
  	{
  		priv(rp)->s_irq_tab[i]= priv->s_irq_tab[i];
#if PRIV_DEBUG
  		printf("do_privctl: adding IRQ %d for %d\n",
  			priv(rp)->s_irq_tab[i], rp->p_endpoint);
#endif
  	}
  }

  /* Copy I/O ranges. */
  if(priv->s_flags & CHECK_IO_PORT) {
  	if (priv->s_nr_io_range < 0 || priv->s_nr_io_range > NR_IO_RANGE)
  		return EINVAL;
  	priv(rp)->s_nr_io_range= priv->s_nr_io_range;
  	for (i= 0; i<priv->s_nr_io_range; i++)
  	{
  		priv(rp)->s_io_tab[i]= priv->s_io_tab[i];
#if PRIV_DEBUG
  		printf("do_privctl: adding I/O range [%x..%x] for %d\n",
  			priv(rp)->s_io_tab[i].ior_base,
  			priv(rp)->s_io_tab[i].ior_limit,
  			rp->p_endpoint);
#endif
  	}
  }

  /* Copy memory ranges. */
  if(priv->s_flags & CHECK_MEM) {
  	if (priv->s_nr_mem_range < 0 || priv->s_nr_mem_range > NR_MEM_RANGE)
  		return EINVAL;
  	priv(rp)->s_nr_mem_range= priv->s_nr_mem_range;
  	for (i= 0; i<priv->s_nr_mem_range; i++)
  	{
  		priv(rp)->s_mem_tab[i]= priv->s_mem_tab[i];
#if PRIV_DEBUG
  		printf("do_privctl: adding mem range [%x..%x] for %d\n",
  			priv(rp)->s_mem_tab[i].mr_base,
  			priv(rp)->s_mem_tab[i].mr_limit,
  			rp->p_endpoint);
#endif
  	}
  }

  /* Copy trap mask. */
  priv(rp)->s_trap_mask = priv->s_trap_mask;

  /* Copy target mask. */
#if PRIV_DEBUG
  printf("do_privctl: Setting ipc target mask for %d:");
  for (i=0; i < NR_SYS_PROCS; i += BITCHUNK_BITS) {
  	printf(" %04x", get_sys_bits(priv->s_ipc_to, i));
  }
  printf("\n");
#endif

  memcpy(&ipc_to_m, &priv->s_ipc_to, sizeof(ipc_to_m));
  fill_sendto_mask(rp, ipc_to_m);

#if PRIV_DEBUG
  printf("do_privctl: Set ipc target mask for %d:");
  for (i=0; i < NR_SYS_PROCS; i += BITCHUNK_BITS) {
  	printf(" %04x", get_sys_bits(priv(rp)->s_ipc_to, i));
  }
  printf("\n");
#endif

  /* Copy kernel call mask. */
  memcpy(priv(rp)->s_k_call_mask, priv->s_k_call_mask,
  	sizeof(priv(rp)->s_k_call_mask));

  return OK;
}
Exemplo n.º 2
0
/*===========================================================================*
 *			kmain 	                             		*
 *===========================================================================*/
void kmain(kinfo_t *local_cbi)
{
/* Start the ball rolling. */
  struct boot_image *ip;	/* boot image pointer */
  register struct proc *rp;	/* process pointer */
  register int i, j;

  /* save a global copy of the boot parameters */
  memcpy(&kinfo, local_cbi, sizeof(kinfo));
  memcpy(&kmess, kinfo.kmess, sizeof(kmess));

#ifdef __arm__
  /* We want to initialize serial before we do any output */
  omap3_ser_init();
#endif
  /* We can talk now */
  printf("MINIX booting\n");

  /* Kernel may use bits of main memory before VM is started */
  kernel_may_alloc = 1;

  assert(sizeof(kinfo.boot_procs) == sizeof(image));
  memcpy(kinfo.boot_procs, image, sizeof(kinfo.boot_procs));

  cstart();

  BKL_LOCK();
 
   DEBUGEXTRA(("main()\n"));

   proc_init();

   if(NR_BOOT_MODULES != kinfo.mbi.mods_count)
   	panic("expecting %d boot processes/modules, found %d",
		NR_BOOT_MODULES, kinfo.mbi.mods_count);

  /* Set up proc table entries for processes in boot image. */
  for (i=0; i < NR_BOOT_PROCS; ++i) {
	int schedulable_proc;
	proc_nr_t proc_nr;
	int ipc_to_m, kcalls;
	sys_map_t map;

	ip = &image[i];				/* process' attributes */
	DEBUGEXTRA(("initializing %s... ", ip->proc_name));
	rp = proc_addr(ip->proc_nr);		/* get process pointer */
	ip->endpoint = rp->p_endpoint;		/* ipc endpoint */
	make_zero64(rp->p_cpu_time_left);
	if(i < NR_TASKS)			/* name (tasks only) */
		strlcpy(rp->p_name, ip->proc_name, sizeof(rp->p_name));

	if(i >= NR_TASKS) {
		/* Remember this so it can be passed to VM */
		multiboot_module_t *mb_mod = &kinfo.module_list[i - NR_TASKS];
		ip->start_addr = mb_mod->mod_start;
		ip->len = mb_mod->mod_end - mb_mod->mod_start;
	}
	
	reset_proc_accounting(rp);

	/* See if this process is immediately schedulable.
	 * In that case, set its privileges now and allow it to run.
	 * Only kernel tasks and the root system process get to run immediately.
	 * All the other system processes are inhibited from running by the
	 * RTS_NO_PRIV flag. They can only be scheduled once the root system
	 * process has set their privileges.
	 */
	proc_nr = proc_nr(rp);
	schedulable_proc = (iskerneln(proc_nr) || isrootsysn(proc_nr) ||
		proc_nr == VM_PROC_NR);
	if(schedulable_proc) {
	    /* Assign privilege structure. Force a static privilege id. */
            (void) get_priv(rp, static_priv_id(proc_nr));

            /* Priviliges for kernel tasks. */
	    if(proc_nr == VM_PROC_NR) {
                priv(rp)->s_flags = VM_F;
                priv(rp)->s_trap_mask = SRV_T;
		ipc_to_m = SRV_M;
		kcalls = SRV_KC;
                priv(rp)->s_sig_mgr = SELF;
                rp->p_priority = SRV_Q;
                rp->p_quantum_size_ms = SRV_QT;
	    }
	    else if(iskerneln(proc_nr)) {
                /* Privilege flags. */
                priv(rp)->s_flags = (proc_nr == IDLE ? IDL_F : TSK_F);
                /* Allowed traps. */
                priv(rp)->s_trap_mask = (proc_nr == CLOCK 
                    || proc_nr == SYSTEM  ? CSK_T : TSK_T);
                ipc_to_m = TSK_M;                  /* allowed targets */
                kcalls = TSK_KC;                   /* allowed kernel calls */
            }
            /* Priviliges for the root system process. */
            else {
	    	assert(isrootsysn(proc_nr));
                priv(rp)->s_flags= RSYS_F;        /* privilege flags */
                priv(rp)->s_trap_mask= SRV_T;     /* allowed traps */
                ipc_to_m = SRV_M;                 /* allowed targets */
                kcalls = SRV_KC;                  /* allowed kernel calls */
                priv(rp)->s_sig_mgr = SRV_SM;     /* signal manager */
                rp->p_priority = SRV_Q;	          /* priority queue */
                rp->p_quantum_size_ms = SRV_QT;   /* quantum size */
            }

            /* Fill in target mask. */
            memset(&map, 0, sizeof(map));

            if (ipc_to_m == ALL_M) {
                for(j = 0; j < NR_SYS_PROCS; j++)
                    set_sys_bit(map, j);
            }

            fill_sendto_mask(rp, &map);

            /* Fill in kernel call mask. */
            for(j = 0; j < SYS_CALL_MASK_SIZE; j++) {
                priv(rp)->s_k_call_mask[j] = (kcalls == NO_C ? 0 : (~0));
            }
	}
	else {
	    /* Don't let the process run for now. */
            RTS_SET(rp, RTS_NO_PRIV | RTS_NO_QUANTUM);
	}

	/* Arch-specific state initialization. */
	arch_boot_proc(ip, rp);

	/* scheduling functions depend on proc_ptr pointing somewhere. */
	if(!get_cpulocal_var(proc_ptr))
		get_cpulocal_var(proc_ptr) = rp;

	/* Process isn't scheduled until VM has set up a pagetable for it. */
	if(rp->p_nr != VM_PROC_NR && rp->p_nr >= 0) {
		rp->p_rts_flags |= RTS_VMINHIBIT;
		rp->p_rts_flags |= RTS_BOOTINHIBIT;
	}

	rp->p_rts_flags |= RTS_PROC_STOP;
	rp->p_rts_flags &= ~RTS_SLOT_FREE;
	DEBUGEXTRA(("done\n"));
  }

  /* update boot procs info for VM */
  memcpy(kinfo.boot_procs, image, sizeof(kinfo.boot_procs));

#define IPCNAME(n) { \
	assert((n) >= 0 && (n) <= IPCNO_HIGHEST); \
	assert(!ipc_call_names[n]);	\
	ipc_call_names[n] = #n; \
}

  arch_post_init();

  IPCNAME(SEND);
  IPCNAME(RECEIVE);
  IPCNAME(SENDREC);
  IPCNAME(NOTIFY);
  IPCNAME(SENDNB);
  IPCNAME(SENDA);

  /* System and processes initialization */
  memory_init();
  DEBUGEXTRA(("system_init()... "));
  system_init();
  DEBUGEXTRA(("done\n"));

  /* The bootstrap phase is over, so we can add the physical
   * memory used for it to the free list.
   */
  add_memmap(&kinfo, kinfo.bootstrap_start, kinfo.bootstrap_len);

#ifdef CONFIG_SMP
  if (config_no_apic) {
	  BOOT_VERBOSE(printf("APIC disabled, disables SMP, using legacy PIC\n"));
	  smp_single_cpu_fallback();
  } else if (config_no_smp) {
	  BOOT_VERBOSE(printf("SMP disabled, using legacy PIC\n"));
	  smp_single_cpu_fallback();
  } else {
	  smp_init();
	  /*
	   * if smp_init() returns it means that it failed and we try to finish
	   * single CPU booting
	   */
	  bsp_finish_booting();
  }
#else
  /* 
   * if configured for a single CPU, we are already on the kernel stack which we
   * are going to use everytime we execute kernel code. We finish booting and we
   * never return here
   */
  bsp_finish_booting();
#endif

  NOT_REACHABLE;
}
Exemplo n.º 3
0
/*===========================================================================*
 *				do_privctl				     *
 *===========================================================================*/
PUBLIC int do_privctl(struct proc * caller, message * m_ptr)
{
/* Handle sys_privctl(). Update a process' privileges. If the process is not
 * yet a system process, make sure it gets its own privilege structure.
 */
  struct proc *rp;
  proc_nr_t proc_nr;
  sys_id_t priv_id;
  int ipc_to_m, kcalls;
  int i, r;
  struct io_range io_range;
  struct mem_range mem_range;
  struct priv priv;
  int irq;

  /* Check whether caller is allowed to make this call. Privileged proceses 
   * can only update the privileges of processes that are inhibited from 
   * running by the RTS_NO_PRIV flag. This flag is set when a privileged process
   * forks. 
   */
  if (! (priv(caller)->s_flags & SYS_PROC)) return(EPERM);
  if(m_ptr->CTL_ENDPT == SELF) proc_nr = _ENDPOINT_P(caller->p_endpoint);
  else if(!isokendpt(m_ptr->CTL_ENDPT, &proc_nr)) return(EINVAL);
  rp = proc_addr(proc_nr);

  switch(m_ptr->CTL_REQUEST)
  {
  case SYS_PRIV_ALLOW:
	/* Allow process to run. Make sure its privilege structure has already
	 * been set.
	 */
	if (!RTS_ISSET(rp, RTS_NO_PRIV) || priv(rp)->s_proc_nr == NONE) {
		return(EPERM);
	}
	RTS_UNSET(rp, RTS_NO_PRIV);
	return(OK);

  case SYS_PRIV_YIELD:
	/* Allow process to run and suspend the caller. */
	if (!RTS_ISSET(rp, RTS_NO_PRIV) || priv(rp)->s_proc_nr == NONE) {
		return(EPERM);
	}
	RTS_SET(caller, RTS_NO_PRIV);
	RTS_UNSET(rp, RTS_NO_PRIV);
	return(OK);

  case SYS_PRIV_DISALLOW:
	/* Disallow process from running. */
	if (RTS_ISSET(rp, RTS_NO_PRIV)) return(EPERM);
	RTS_SET(rp, RTS_NO_PRIV);
	return(OK);

  case SYS_PRIV_SET_SYS:
	/* Set a privilege structure of a blocked system process. */
	if (! RTS_ISSET(rp, RTS_NO_PRIV)) return(EPERM);

	/* Check whether a static or dynamic privilege id must be allocated. */
	priv_id = NULL_PRIV_ID;
	if (m_ptr->CTL_ARG_PTR)
	{
		/* Copy privilege structure from caller */
		if((r=data_copy(caller->p_endpoint, (vir_bytes) m_ptr->CTL_ARG_PTR,
			KERNEL, (vir_bytes) &priv, sizeof(priv))) != OK)
			return r;

		/* See if the caller wants to assign a static privilege id. */
		if(!(priv.s_flags & DYN_PRIV_ID)) {
			priv_id = priv.s_id;
		}
	}

	/* Make sure this process has its own privileges structure. This may
	 * fail, since there are only a limited number of system processes.
	 * Then copy privileges from the caller and restore some defaults.
	 */
	if ((i=get_priv(rp, priv_id)) != OK)
	{
		printf("do_privctl: unable to allocate priv_id %d: %d\n",
			priv_id, i);
		return(i);
	}
	priv_id = priv(rp)->s_id;		/* backup privilege id */
	*priv(rp) = *priv(caller);		/* copy from caller */
	priv(rp)->s_id = priv_id;		/* restore privilege id */
	priv(rp)->s_proc_nr = proc_nr;		/* reassociate process nr */

	for (i=0; i< NR_SYS_CHUNKS; i++)		/* remove pending: */
	      priv(rp)->s_notify_pending.chunk[i] = 0;	/* - notifications */
	priv(rp)->s_int_pending = 0;			/* - interrupts */
	(void) sigemptyset(&priv(rp)->s_sig_pending);	/* - signals */
	reset_timer(&priv(rp)->s_alarm_timer);		/* - alarm */
	priv(rp)->s_asyntab= -1;			/* - asynsends */
	priv(rp)->s_asynsize= 0;

	/* Set defaults for privilege bitmaps. */
	priv(rp)->s_flags= DSRV_F;           /* privilege flags */
	priv(rp)->s_trap_mask= DSRV_T;       /* allowed traps */
	ipc_to_m = DSRV_M;                   /* allowed targets */
	fill_sendto_mask(rp, ipc_to_m);
	kcalls = DSRV_KC;                    /* allowed kernel calls */
	for(i = 0; i < SYS_CALL_MASK_SIZE; i++) {
		priv(rp)->s_k_call_mask[i] = (kcalls == NO_C ? 0 : (~0));
	}

	/* Set the default signal managers. */
	priv(rp)->s_sig_mgr = DSRV_SM;
	priv(rp)->s_bak_sig_mgr = NONE;

	/* Set defaults for resources: no I/O resources, no memory resources,
	 * no IRQs, no grant table
	 */
	priv(rp)->s_nr_io_range= 0;
	priv(rp)->s_nr_mem_range= 0;
	priv(rp)->s_nr_irq= 0;
	priv(rp)->s_grant_table= 0;
	priv(rp)->s_grant_entries= 0;

	/* Override defaults if the caller has supplied a privilege structure. */
	if (m_ptr->CTL_ARG_PTR)
	{
		if((r = update_priv(rp, &priv)) != OK) {
			return r;
		} 
	}

	return(OK);

  case SYS_PRIV_SET_USER:
	/* Set a privilege structure of a blocked user process. */
	if (!RTS_ISSET(rp, RTS_NO_PRIV)) return(EPERM);

	/* Link the process to the privilege structure of the root user
	 * process all the user processes share.
	 */
	priv(rp) = priv_addr(USER_PRIV_ID);

	return(OK);

  case SYS_PRIV_ADD_IO:
	if (RTS_ISSET(rp, RTS_NO_PRIV))
		return(EPERM);

	/* Only system processes get I/O resources? */
	if (!(priv(rp)->s_flags & SYS_PROC))
		return EPERM;

#if 0 /* XXX -- do we need a call for this? */
	if (strcmp(rp->p_name, "fxp") == 0 ||
		strcmp(rp->p_name, "rtl8139") == 0)
	{
		printf("setting ipc_stats_target to %d\n", rp->p_endpoint);
		ipc_stats_target= rp->p_endpoint;
	}
#endif

	/* Get the I/O range */
	data_copy(caller->p_endpoint, (vir_bytes) m_ptr->CTL_ARG_PTR,
		KERNEL, (vir_bytes) &io_range, sizeof(io_range));
	priv(rp)->s_flags |= CHECK_IO_PORT;	/* Check I/O accesses */
	i= priv(rp)->s_nr_io_range;
	if (i >= NR_IO_RANGE) {
		printf("do_privctl: %d already has %d i/o ranges.\n",
			rp->p_endpoint, i);
		return ENOMEM;
	}

	priv(rp)->s_io_tab[i].ior_base= io_range.ior_base;
	priv(rp)->s_io_tab[i].ior_limit= io_range.ior_limit;
	priv(rp)->s_nr_io_range++;

	return OK;

  case SYS_PRIV_ADD_MEM:
	if (RTS_ISSET(rp, RTS_NO_PRIV))
		return(EPERM);

	/* Only system processes get memory resources? */
	if (!(priv(rp)->s_flags & SYS_PROC))
		return EPERM;

	/* Get the memory range */
	if((r=data_copy(caller->p_endpoint, (vir_bytes) m_ptr->CTL_ARG_PTR,
		KERNEL, (vir_bytes) &mem_range, sizeof(mem_range))) != OK)
		return r;
	priv(rp)->s_flags |= CHECK_MEM;	/* Check memory mappings */
	i= priv(rp)->s_nr_mem_range;
	if (i >= NR_MEM_RANGE) {
		printf("do_privctl: %d already has %d mem ranges.\n",
			rp->p_endpoint, i);
		return ENOMEM;
	}

	priv(rp)->s_mem_tab[i].mr_base= mem_range.mr_base;
	priv(rp)->s_mem_tab[i].mr_limit= mem_range.mr_limit;
	priv(rp)->s_nr_mem_range++;

	return OK;

  case SYS_PRIV_ADD_IRQ:
	if (RTS_ISSET(rp, RTS_NO_PRIV))
		return(EPERM);

	/* Only system processes get IRQs? */
	if (!(priv(rp)->s_flags & SYS_PROC))
		return EPERM;

	data_copy(caller->p_endpoint, (vir_bytes) m_ptr->CTL_ARG_PTR,
		KERNEL, (vir_bytes) &irq, sizeof(irq));
	priv(rp)->s_flags |= CHECK_IRQ;	/* Check IRQs */

	i= priv(rp)->s_nr_irq;
	if (i >= NR_IRQ) {
		printf("do_privctl: %d already has %d irq's.\n",
			rp->p_endpoint, i);
		return ENOMEM;
	}
	priv(rp)->s_irq_tab[i]= irq;
	priv(rp)->s_nr_irq++;

	return OK;
  case SYS_PRIV_QUERY_MEM:
  {
	phys_bytes addr, limit;
  	struct priv *sp;
	/* See if a certain process is allowed to map in certain physical
	 * memory.
	 */
	addr = (phys_bytes) m_ptr->CTL_PHYSSTART;
	limit = addr + (phys_bytes) m_ptr->CTL_PHYSLEN - 1;
	if(limit < addr)
		return EPERM;
	if(!(sp = priv(rp)))
		return EPERM;
	if (!(sp->s_flags & SYS_PROC))
		return EPERM;
	for(i = 0; i < sp->s_nr_mem_range; i++) {
		if(addr >= sp->s_mem_tab[i].mr_base &&
		   limit <= sp->s_mem_tab[i].mr_limit)
			return OK;
	}
	return EPERM;
  }

  case SYS_PRIV_UPDATE_SYS:
	/* Update the privilege structure of a system process. */
	if(!m_ptr->CTL_ARG_PTR) return EINVAL;

	/* Copy privilege structure from caller */
	if((r=data_copy(caller->p_endpoint, (vir_bytes) m_ptr->CTL_ARG_PTR,
		KERNEL, (vir_bytes) &priv, sizeof(priv))) != OK)
		return r;

	/* Override settings in existing privilege structure. */
	if((r = update_priv(rp, &priv)) != OK) {
		return r;
	}

	return(OK);

  default:
	printf("do_privctl: bad request %d\n", m_ptr->CTL_REQUEST);
	return EINVAL;
  }
}
Exemplo n.º 4
0
/*===========================================================================*
 *				main                                         *
 *===========================================================================*/
PUBLIC int main(void)
{
/* Start the ball rolling. */
  struct boot_image *ip;	/* boot image pointer */
  register struct proc *rp;	/* process pointer */
  register int i, j;
  size_t argsz;			/* size of arguments passed to crtso on stack */

  BKL_LOCK();
   /* Global value to test segment sanity. */
   magictest = MAGICTEST;
 
   DEBUGEXTRA(("main()\n"));

   proc_init();

  /* Set up proc table entries for processes in boot image.  The stacks
   * of the servers have been added to the data segment by the monitor, so
   * the stack pointer is set to the end of the data segment.
   */

  for (i=0; i < NR_BOOT_PROCS; ++i) {
	int schedulable_proc;
	proc_nr_t proc_nr;
	int ipc_to_m, kcalls;
	sys_map_t map;

	ip = &image[i];				/* process' attributes */
	DEBUGEXTRA(("initializing %s... ", ip->proc_name));
	rp = proc_addr(ip->proc_nr);		/* get process pointer */
	ip->endpoint = rp->p_endpoint;		/* ipc endpoint */
	make_zero64(rp->p_cpu_time_left);
	strncpy(rp->p_name, ip->proc_name, P_NAME_LEN); /* set process name */
	
	reset_proc_accounting(rp);

	/* See if this process is immediately schedulable.
	 * In that case, set its privileges now and allow it to run.
	 * Only kernel tasks and the root system process get to run immediately.
	 * All the other system processes are inhibited from running by the
	 * RTS_NO_PRIV flag. They can only be scheduled once the root system
	 * process has set their privileges.
	 */
	proc_nr = proc_nr(rp);
	schedulable_proc = (iskerneln(proc_nr) || isrootsysn(proc_nr));
	if(schedulable_proc) {
	    /* Assign privilege structure. Force a static privilege id. */
            (void) get_priv(rp, static_priv_id(proc_nr));

            /* Priviliges for kernel tasks. */
            if(iskerneln(proc_nr)) {
                /* Privilege flags. */
                priv(rp)->s_flags = (proc_nr == IDLE ? IDL_F : TSK_F);
                /* Allowed traps. */
                priv(rp)->s_trap_mask = (proc_nr == CLOCK 
                    || proc_nr == SYSTEM  ? CSK_T : TSK_T);
                ipc_to_m = TSK_M;                  /* allowed targets */
                kcalls = TSK_KC;                   /* allowed kernel calls */
            }
            /* Priviliges for the root system process. */
            else if(isrootsysn(proc_nr)) {
                priv(rp)->s_flags= RSYS_F;        /* privilege flags */
                priv(rp)->s_trap_mask= SRV_T;     /* allowed traps */
                ipc_to_m = SRV_M;                 /* allowed targets */
                kcalls = SRV_KC;                  /* allowed kernel calls */
                priv(rp)->s_sig_mgr = SRV_SM;     /* signal manager */
                rp->p_priority = SRV_Q;	          /* priority queue */
                rp->p_quantum_size_ms = SRV_QT;   /* quantum size */
            }
            /* Priviliges for ordinary process. */
            else {
		NOT_REACHABLE;
            }

            /* Fill in target mask. */
            memset(&map, 0, sizeof(map));

            if (ipc_to_m == ALL_M) {
                for(j = 0; j < NR_SYS_PROCS; j++)
                    set_sys_bit(map, j);
            }

            fill_sendto_mask(rp, &map);

            /* Fill in kernel call mask. */
            for(j = 0; j < SYS_CALL_MASK_SIZE; j++) {
                priv(rp)->s_k_call_mask[j] = (kcalls == NO_C ? 0 : (~0));
            }
	}
	else {
	    /* Don't let the process run for now. */
            RTS_SET(rp, RTS_NO_PRIV | RTS_NO_QUANTUM);
	}
	rp->p_memmap[T].mem_vir  = ABS2CLICK(ip->memmap.text_vaddr);
	rp->p_memmap[T].mem_phys = ABS2CLICK(ip->memmap.text_paddr);
	rp->p_memmap[T].mem_len  = ABS2CLICK(ip->memmap.text_bytes);
	rp->p_memmap[D].mem_vir  = ABS2CLICK(ip->memmap.data_vaddr);
	rp->p_memmap[D].mem_phys = ABS2CLICK(ip->memmap.data_paddr);
	rp->p_memmap[D].mem_len  = ABS2CLICK(ip->memmap.data_bytes);
	rp->p_memmap[S].mem_phys = ABS2CLICK(ip->memmap.data_paddr +
					     ip->memmap.data_bytes +
					     ip->memmap.stack_bytes);
	rp->p_memmap[S].mem_vir  = ABS2CLICK(ip->memmap.data_vaddr +
					     ip->memmap.data_bytes +
					     ip->memmap.stack_bytes);
	rp->p_memmap[S].mem_len  = 0;

	/* Set initial register values.  The processor status word for tasks 
	 * is different from that of other processes because tasks can
	 * access I/O; this is not allowed to less-privileged processes 
	 */
	rp->p_reg.pc = ip->memmap.entry;
	rp->p_reg.psw = (iskerneln(proc_nr)) ? INIT_TASK_PSW : INIT_PSW;

	/* Initialize the server stack pointer. Take it down three words
	 * to give crtso.s something to use as "argc", "argv" and "envp".
	 */
	if (isusern(proc_nr)) {		/* user-space process? */ 
		rp->p_reg.sp = (rp->p_memmap[S].mem_vir +
				rp->p_memmap[S].mem_len) << CLICK_SHIFT;
		argsz = 3 * sizeof(reg_t);
		rp->p_reg.sp -= argsz;
		phys_memset(rp->p_reg.sp - 
			(rp->p_memmap[S].mem_vir << CLICK_SHIFT) +
			(rp->p_memmap[S].mem_phys << CLICK_SHIFT), 
			0, argsz);
	}

	/* scheduling functions depend on proc_ptr pointing somewhere. */
	if(!get_cpulocal_var(proc_ptr))
		get_cpulocal_var(proc_ptr) = rp;

	/* If this process has its own page table, VM will set the
	 * PT up and manage it. VM will signal the kernel when it has
	 * done this; until then, don't let it run.
	 */
	if(ip->flags & PROC_FULLVM)
		rp->p_rts_flags |= RTS_VMINHIBIT;

	rp->p_rts_flags |= RTS_PROC_STOP;
	rp->p_rts_flags &= ~RTS_SLOT_FREE;
	alloc_segments(rp);
	DEBUGEXTRA(("done\n"));
  }

#define IPCNAME(n) { \
	assert((n) >= 0 && (n) <= IPCNO_HIGHEST); \
	assert(!ipc_call_names[n]);	\
	ipc_call_names[n] = #n; \
}

  IPCNAME(SEND);
  IPCNAME(RECEIVE);
  IPCNAME(SENDREC);
  IPCNAME(NOTIFY);
  IPCNAME(SENDNB);
  IPCNAME(SENDA);

  /* Architecture-dependent initialization. */
  DEBUGEXTRA(("arch_init()... "));
  arch_init();
  DEBUGEXTRA(("done\n"));

  /* System and processes initialization */
  DEBUGEXTRA(("system_init()... "));
  system_init();
  DEBUGEXTRA(("done\n"));

#ifdef CONFIG_SMP
  if (config_no_apic) {
	  BOOT_VERBOSE(printf("APIC disabled, disables SMP, using legacy PIC\n"));
	  smp_single_cpu_fallback();
  } else if (config_no_smp) {
	  BOOT_VERBOSE(printf("SMP disabled, using legacy PIC\n"));
	  smp_single_cpu_fallback();
  } else {
	  smp_init();
	  /*
	   * if smp_init() returns it means that it failed and we try to finish
	   * single CPU booting
	   */
	  bsp_finish_booting();
  }
#else
  /* 
   * if configured for a single CPU, we are already on the kernel stack which we
   * are going to use everytime we execute kernel code. We finish booting and we
   * never return here
   */
  bsp_finish_booting();
#endif

  NOT_REACHABLE;
  return 1;
}