int main(int argc, Char *argv[]) { /* Read in sequences or frequencies and bootstrap or jackknife them */ #ifdef MAC argc = 1; /* macsetup("SeqBoot",""); */ argv[0] = "SeqBoot"; #endif init(argc,argv); openfile(&infile, INFILE, "input file", "r", argv[0], infilename); ibmpc = IBMCRT; ansi = ANSICRT; doinput(argc, argv); bootwrite(); freenewer(); freenew(); freerest(); if (nodep) matrix_char_delete(nodep, spp); if (nodef) matrix_double_delete(nodef, spp); FClose(infile); if (factors) { FClose(factfile); FClose(outfactfile); } if (weights) FClose(weightfile); if (categories) { FClose(catfile); FClose(outcatfile); } if(mixture) FClose(outmixfile); if(ancvar) FClose(outancfile); if (justwts && !permute) { FClose(outweightfile); } else FClose(outfile); #ifdef MAC fixmacfile(outfilename); if (justwts && !permute) fixmacfile(outweightfilename); if (categories) fixmacfile(outcatfilename); if (mixture) fixmacfile(outmixfilename); #endif printf("Done.\n\n"); #ifdef WIN32 phyRestoreConsoleAttributes(); #endif return 0; }
int main(int argc, Char *argv[]) { int i; #ifdef MAC argc = 1; /* macsetup("Fitch",""); */ argv[0]="Fitch"; #endif #ifdef WIN32 phySetConsoleAttributes(); phyClearScreen(); #endif strcpy(progname,argv[0]); openfile(&infile,INFILE,"input file","r",argv[0],infilename); openfile(&outfile,OUTFILE,"output file","w",argv[0],outfilename); ibmpc = IBMCRT; ansi = ANSICRT; mulsets = false; datasets = 1; firstset = true; doinit(); if (trout) openfile(&outtree,OUTTREE,"output tree file","w",argv[0],outtreename); for (i=0;i<spp;++i){ enterorder[i]=0;} for (ith = 1; ith <= datasets; ith++) { if (datasets > 1) { fprintf(outfile, "Data set # %ld:\n\n",ith); if (progress) printf("\nData set # %ld:\n\n",ith); } fitch_getinput(); for (jumb = 1; jumb <= njumble; jumb++) maketree(); firstset = false; if (eoln(infile)) { fscanf(infile, "%*[^\n]"); getc(infile); } } if (trout) FClose(outtree); FClose(outfile); FClose(infile); #ifdef MAC fixmacfile(outfilename); fixmacfile(outtreename); #endif printf("Done.\n\n"); #ifdef WIN32 phyRestoreConsoleAttributes(); #endif return 0; }
int main(int argc, Char *argv[]) { /* main program */ long i; #ifdef MAC argc = 1; /* macsetup("Contml",""); */ argv[0] = "Contml"; #endif init(argc, argv); emboss_getoptions("fcontml", argc, argv); progname = argv[0]; ibmpc = IBMCRT; ansi = ANSICRT; firstset = true; doinit(); for (ith = 1; ith <= datasets; ith++) { getinput(); if (ith == 1) firstset = false; if (datasets > 1) { fprintf(outfile, "Data set # %ld:\n\n", ith); if (progress) printf("\nData set # %ld:\n", ith); } for (jumb = 1; jumb <= njumble; jumb++) maketree(); if (usertree) for (i = 0; i < MAXSHIMOTREES; i++) free(l0gf[i]); } FClose(outfile); FClose(outtree); #ifdef MAC fixmacfile(outfilename); fixmacfile(outtreename); #endif printf("\nDone.\n\n"); #ifdef WIN32 phyRestoreConsoleAttributes(); #endif ajPhyloFreqDel(&phylofreq); ajPhyloTreeDelarray(&phylotrees); ajFileClose(&embossoutfile); ajFileClose(&embossouttree); embExit(); return 0; }
int main(int argc, Char *argv[]) { /* main program */ long i; #ifdef MAC argc = 1; /* macsetup("Contml",""); */ argv[0] = "Contml"; #endif init(argc, argv); progname = argv[0]; openfile(&infile,INFILE,"input file", "r",argv[0],infilename); openfile(&outfile,OUTFILE,"output file", "w",argv[0],outfilename); ibmpc = IBMCRT; ansi = ANSICRT; mulsets = false; firstset = true; datasets = 1; doinit(); if (trout) openfile(&outtree,OUTTREE,"output tree file", "w",argv[0],outtreename); for (ith = 1; ith <= datasets; ith++) { getinput(); if (ith == 1) firstset = false; if (datasets > 1) { fprintf(outfile, "Data set # %ld:\n\n", ith); if (progress) printf("\nData set # %ld:\n", ith); } for (jumb = 1; jumb <= njumble; jumb++) maketree(); if (usertree) for (i = 0; i < MAXSHIMOTREES; i++) free(l0gf[i]); } FClose(outfile); FClose(outtree); FClose(infile); #ifdef MAC fixmacfile(outfilename); fixmacfile(outtreename); #endif printf("\nDone.\n\n"); #ifdef WIN32 phyRestoreConsoleAttributes(); #endif return 0; }
int main(int argc, Char *argv[]) { /* main program */ #ifdef MAC argc = 1; /* macsetup("Neighbor",""); */ argv[0] = "Neighbor"; #endif #ifdef WIN32 phySetConsoleAttributes(); phyClearScreen(); #endif openfile(&infile,INFILE,"input file", "r",argv[0],infilename); openfile(&outfile,OUTFILE,"output file", "w",argv[0],outfilename); ibmpc = IBMCRT; ansi = ANSICRT; mulsets = false; datasets = 1; doinit(); if (trout) openfile(&outtree,OUTTREE,"output tree file", "w",argv[0],outtreename); ith = 1; while (ith <= datasets) { if (datasets > 1) { fprintf(outfile, "Data set # %ld:\n",ith); if (progress) printf("Data set # %ld:\n",ith); } getinput(); maketree(); if (eoln(infile)) { fscanf(infile, "%*[^\n]"); getc(infile); } ith++; } FClose(infile); FClose(outfile); FClose(outtree); #ifdef MAC fixmacfile(outfilename); fixmacfile(outtreename); #endif printf("Done.\n\n"); #ifdef WIN32 phyRestoreConsoleAttributes(); #endif return 0; }
int main(int argc, Char *argv[]) { /* Read in sequences or frequencies and bootstrap or jackknife them */ #ifdef MAC argc = 1; /* macsetup("SeqBoot",""); */ argv[0] = "SeqBoot"; #endif init(argc,argv); emboss_getoptions("ffreqboot", argc, argv); ibmpc = IBMCRT; ansi = ANSICRT; doinput(argc, argv); bootwrite(); FClose(infile); if (weights) FClose(weightfile); if (categories) { FClose(catfile); FClose(outcatfile); } if(mixture) FClose(outmixfile); if(ancvar) FClose(outancfile); if (justwts && !permute) { FClose(outweightfile); } else FClose(outfile); #ifdef MAC fixmacfile(outfilename); if (justwts && !permute) fixmacfile(outweightfilename); if (categories) fixmacfile(outcatfilename); if (mixture) fixmacfile(outmixfilename); #endif printf("Done.\n\n"); #ifdef WIN32 phyRestoreConsoleAttributes(); #endif embExit(); return 0; }
void treeoptions(boolean waswritten, Char *ch, FILE **outtree, Char *outtreename, Char *progname) { /* interactively get options for writing a tree */ char input[100]; if (waswritten) { printf("\nTree file already was open.\n"); printf(" A Add to this tree to tree file\n"); printf(" R Replace tree file contents by this tree\n"); printf(" F Write out tree to a different tree file\n"); printf(" N Do Not write out this tree\n"); do { printf("Which should we do? "); #ifdef WIN32 phyFillScreenColor(); #endif fflush(stdout); getstryng(input); *ch = input[0]; uppercase(ch); } while (*ch != 'A' && *ch != 'R' && *ch != 'N' && *ch != 'F'); } if (*ch == 'F') { outtreename[0] = '\0'; while (outtreename[0] =='\0') { printf("Please enter a tree file name>"); #ifdef MAC fixmacfile(outtreename); #endif #ifdef WIN32 phyFillScreenColor(); #endif fflush(stdout); getstryng(outtreename); } FClose(*outtree); } if (*ch == 'R' || *ch == 'A' || *ch == 'F' || !waswritten) { openfile(outtree,outtreename,"output tree file", (*ch == 'A' && waswritten) ? "a" : "w", progname,outtreename); } } /* treeoptions */
int main(int argc, Char *argv[]) { /* distances from restriction sites or fragments */ #ifdef MAC argc = 1; /* macsetup("Restdist",""); */ argv[0] = "Restdist"; #endif #ifdef WIN32 phySetConsoleAttributes(); phyClearScreen(); #endif strcpy(progname,argv[0]); openfile(&infile,INFILE,"input data file","r",argv[0],infilename); openfile(&outfile,OUTFILE,"output file","w",argv[0],outfilename); ibmpc = IBMCRT; ansi = ANSICRT; mulsets = false; datasets = 1; firstset = true; doinit(); for (ith = 1; ith <= datasets; ith++) { getinput(); if (ith == 1) firstset = false; if (datasets > 1 && progress) printf("\nData set # %ld:\n\n",ith); makedists(); writedists(); } FClose(infile); FClose(outfile); #ifdef MAC fixmacfile(outfilename); #endif printf("Done.\n\n"); #ifdef WIN32 phyRestoreConsoleAttributes(); #endif return 0; } /* distances from restriction sites or fragments */
int main(int argc, Char *argv[]) { /* Dollo or polymorphism parsimony by uphill search */ #ifdef MAC argc = 1; /* macsetup("Dollop",""); */ argv[0] = "Dollop"; #endif init(argc, argv); emboss_getoptions("fdollop", argc, argv); /* reads in spp, chars, and the data. Then calls maketree to construct the tree */ progname = argv[0]; ibmpc = IBMCRT; ansi = ANSICRT; garbage = NULL; firstset = true; bits = 8*sizeof(long) - 1; doinit(); if (dollo) fprintf(outfile, "Dollo"); else fprintf(outfile, "Polymorphism"); fprintf(outfile, " parsimony method\n\n"); if (printdata && justwts) fprintf(outfile, "%2ld species, %3ld characters\n\n", spp, chars); for (ith = 1; ith <= (msets); ith++) { if (msets > 1 && !justwts) { fprintf(outfile, "Data set # %ld:\n\n",ith); if (progress) printf("\nData set # %ld:\n",ith); } if (justwts){ fprintf(outfile, "Weights set # %ld:\n\n", ith); if (progress) printf("\nWeights set # %ld:\n\n", ith); } if (printdata && !justwts) fprintf(outfile, "%2ld species, %3ld characters\n\n", spp, chars); doinput(); if (ith == 1) firstset = false; for (jumb = 1; jumb <= njumble; jumb++) maketree(); } /* this would be an appropriate place to deallocate memory, including these items: */ free(steps); FClose(infile); FClose(outfile); FClose(outtree); #ifdef MAC fixmacfile(outfilename); fixmacfile(outtreename); #endif #ifdef WIN32 phyRestoreConsoleAttributes(); #endif embExit(); return 0; } /* Dollo or polymorphism parsimony by uphill search */
int main(int argc, Char *argv[]) { /* Penny's branch-and-bound method */ /* Reads in the number of species, number of characters, options and data. Then finds all most parsimonious trees */ #ifdef MAC argc = 1; /* macsetup("Penny",""); */ argv[0] = "Penny"; #endif init(argc,argv); openfile(&infile,INFILE,"input file", "r",argv[0],infilename); openfile(&outfile,OUTFILE,"output file", "w",argv[0],outfilename); ibmpc = IBMCRT; ansi = ANSICRT; mulsets = false; msets = 1; firstset = true; garbage = NULL; bits = 8*sizeof(long) - 1; doinit(); if (weights || justwts) openfile(&weightfile,WEIGHTFILE,"weights file","r",argv[0],weightfilename); if (trout) openfile(&outtree,OUTTREE,"output tree file", "w",argv[0],outtreename); if(ancvar) openfile(&ancfile,ANCFILE,"ancestors file", "r",argv[0],ancfilename); if(mixture) openfile(&mixfile,MIXFILE,"mixture file", "r",argv[0],mixfilename); for (ith = 1; ith <= msets; ith++) { if(firstset) { if (allsokal && !mixture) fprintf(outfile, "Camin-Sokal parsimony method\n\n"); if (allwagner && !mixture) fprintf(outfile, "Wagner parsimony method\n\n"); } doinput(); if (msets > 1 && !justwts) { fprintf(outfile, "Data set # %ld:\n\n",ith); if (progress) printf("\nData set # %ld:\n",ith); } if (justwts) { if(firstset && mixture && printdata) printmixture(outfile, wagner); fprintf(outfile, "Weights set # %ld:\n\n", ith); if (progress) printf("\nWeights set # %ld:\n\n", ith); } else if (mixture && printdata) printmixture(outfile, wagner); if (printdata) { if (weights || justwts) printweights(outfile, 0, chars, weight, "Characters"); if (ancvar) printancestors(outfile, anczero, ancone); } if (ith == 1) firstset = false; maketree(); } FClose(infile); FClose(outfile); FClose(outtree); #ifdef MAC fixmacfile(outfilename); fixmacfile(outtreename); #endif #ifdef WIN32 phyRestoreConsoleAttributes(); #endif return 0; } /* Penny's branch-and-bound method */
int main(int argc, Char *argv[]) { pattern_elm ***pattern_array; long tip_count = 0; double ln_maxgrp; double ln_maxgrp1; double ln_maxgrp2; node * p; #ifdef MAC argc = 1; /* macsetup("Treedist", ""); */ argv[0] = "Treedist"; #endif init(argc, argv); emboss_getoptions("ftreedist",argc,argv); /* Initialize option-based variables, then ask for changes regarding their values. */ ntrees = 0.0; lasti = -1; /* read files to determine size of structures we'll be working with */ countcomma(ajStrGetuniquePtr(&phylotrees[0]->Tree),&tip_count); tip_count++; /* countcomma does a raw comma count, tips is one greater */ /* * EWFIX.BUG.756 -- this section may be killed if a good solution * to bug 756 is found * * inside cons.c there are several arrays which are allocated * to size "maxgrp", the maximum number of groups (sets of * tips more closely connected than the rest of the tree) we * can see as the code executes. * * We have two measures we use to determine how much space to * allot: * (1) based on the tip count of the trees in the infile * (2) based on total number of trees in infile, and * * (1) -- Tip Count Method * Since each group is a subset of the set of tips we must * represent at most pow(2,tips) different groups. (Technically * two fewer since we don't store the empty or complete subsets, * but let's keep this simple. * * (2) -- Total Tree Size Method * Each tree we read results in * singleton groups for each tip, plus * a group for each interior node except the root * Since the singleton tips are identical for each tree, this gives * a bound of #tips + ( #trees * (# tips - 2 ) ) * * * Ignoring small terms where expedient, either of the following should * result in an adequate allocation: * pow(2,#tips) * (#trees + 1) * #tips * * Since "maxgrp" is a limit on the number of items we'll need to put * in a hash, we double it to make space for quick hashing * * BUT -- all of this has the possibility for overflow, so -- let's * make the initial calculations with doubles and then convert * */ /* limit chosen to make hash arithmetic work */ maxgrp = LONG_MAX / 2; ln_maxgrp = log((double)maxgrp); /* 2 * (#trees + 1) * #tips */ ln_maxgrp1 = log(2.0 * (double)tip_count * ((double)trees_in_1 + (double)trees_in_2)); /* ln only for 2 * pow(2,#tips) */ ln_maxgrp2 = (double)(1 + tip_count) * log(2.0); /* now -- find the smallest of the three */ if(ln_maxgrp1 < ln_maxgrp) { maxgrp = 2 * (trees_in_1 + trees_in_2 + 1) * tip_count; ln_maxgrp = ln_maxgrp1; } if(ln_maxgrp2 < ln_maxgrp) { maxgrp = pow(2,tip_count+1); } /* Read the (first) tree file and put together grouping, order, and timesseen */ read_groups (&pattern_array, trees_in_1 + trees_in_2, tip_count, phylotrees); if ((tree_pairing == ADJACENT_PAIRS) || (tree_pairing == ALL_IN_FIRST)) { /* Here deal with the adjacent or all-in-first pairing difference computation */ compute_distances (pattern_array, trees_in_1, 0); } else if (tree_pairing == NO_PAIRING) { /* Compute the consensus tree. */ putc('\n', outfile); /* consensus(); Reserved for future development */ } if (progress) printf("\nOutput written to file \"%s\"\n\n", outfilename); FClose(outtree); FClose(intree); FClose(outfile); if ((tree_pairing == ALL_IN_1_AND_2) || (tree_pairing == CORR_IN_1_AND_2)) FClose(intree2); #ifdef MAC fixmacfile(outfilename); fixmacfile(outtreename); #endif free_patterns (pattern_array, trees_in_1 + trees_in_2); clean_up_final(); /* clean up grbg */ p = grbg; while (p != NULL) { node * r = p; p = p->next; free(r->nodeset); free(r->view); free(r); } printf("Done.\n\n"); embExit(); return 0; } /* main */