Exemplo n.º 1
0
static int compare_d(void *a, unsigned long b)
{
   int ret;
   LTC_ARGCHK(a != NULL);
   ret = fp_cmp_d(a, b);
   switch (ret) {
      case FP_LT: return LTC_MP_LT;
      case FP_EQ: return LTC_MP_EQ;
      case FP_GT: return LTC_MP_GT;
   }
   return 0;
}
Exemplo n.º 2
0
static int
tfm_dh_compute_key(unsigned char *shared, const BIGNUM * pub, DH *dh)
{
    fp_int s, priv_key, p, peer_pub;
    size_t size = 0;
    int ret;

    if (dh->pub_key == NULL || dh->g == NULL || dh->priv_key == NULL)
	return -1;

    fp_init(&p);
    BN2mpz(&p, dh->p);

    fp_init(&peer_pub);
    BN2mpz(&peer_pub, pub);

    /* check if peers pubkey is reasonable */
    if (fp_isneg(&peer_pub)
	|| fp_cmp(&peer_pub, &p) >= 0
	|| fp_cmp_d(&peer_pub, 1) <= 0)
    {
	fp_zero(&p);
	fp_zero(&peer_pub);
	return -1;
    }

    fp_init(&priv_key);
    BN2mpz(&priv_key, dh->priv_key);

    fp_init(&s);

    ret = fp_exptmod(&peer_pub, &priv_key, &p, &s);

    fp_zero(&p);
    fp_zero(&peer_pub);
    fp_zero(&priv_key);

    if (ret != 0)
	return -1;

    size = fp_unsigned_bin_size(&s);
    fp_to_unsigned_bin(&s, shared);
    fp_zero(&s);

    return size;
}
Exemplo n.º 3
0
/**
   Add two ECC points
   @param P        The point to add
   @param Q        The point to add
   @param R        [out] The destination of the double
   @param modulus  The modulus of the field the ECC curve is in
   @param mp       The "b" value from montgomery_setup()
   @return CRYPT_OK on success
*/
static int tfm_ecc_projective_add_point(ecc_point *P, ecc_point *Q, ecc_point *R, void *modulus, void *Mp)
{
   fp_int  t1, t2, x, y, z;
   fp_digit mp;  
   
   LTC_ARGCHK(P       != NULL);
   LTC_ARGCHK(Q       != NULL);
   LTC_ARGCHK(R       != NULL);
   LTC_ARGCHK(modulus != NULL);
   LTC_ARGCHK(Mp      != NULL);

   mp = *((fp_digit*)Mp);

   fp_init(&t1);
   fp_init(&t2);
   fp_init(&x);
   fp_init(&y);
   fp_init(&z);

   /* should we dbl instead? */
   fp_sub(modulus, Q->y, &t1);
   if ( (fp_cmp(P->x, Q->x) == FP_EQ) && 
        (Q->z != NULL && fp_cmp(P->z, Q->z) == FP_EQ) &&
        (fp_cmp(P->y, Q->y) == FP_EQ || fp_cmp(P->y, &t1) == FP_EQ)) {
        return tfm_ecc_projective_dbl_point(P, R, modulus, Mp);
   }

   fp_copy(P->x, &x);
   fp_copy(P->y, &y);
   fp_copy(P->z, &z);

   /* if Z is one then these are no-operations */
   if (Q->z != NULL) {
      /* T1 = Z' * Z' */
      fp_sqr(Q->z, &t1);
      fp_montgomery_reduce(&t1, modulus, mp);
      /* X = X * T1 */
      fp_mul(&t1, &x, &x);
      fp_montgomery_reduce(&x, modulus, mp);
      /* T1 = Z' * T1 */
      fp_mul(Q->z, &t1, &t1);
      fp_montgomery_reduce(&t1, modulus, mp);
      /* Y = Y * T1 */
      fp_mul(&t1, &y, &y);
      fp_montgomery_reduce(&y, modulus, mp);
   }

   /* T1 = Z*Z */
   fp_sqr(&z, &t1);
   fp_montgomery_reduce(&t1, modulus, mp);
   /* T2 = X' * T1 */
   fp_mul(Q->x, &t1, &t2);
   fp_montgomery_reduce(&t2, modulus, mp);
   /* T1 = Z * T1 */
   fp_mul(&z, &t1, &t1);
   fp_montgomery_reduce(&t1, modulus, mp);
   /* T1 = Y' * T1 */
   fp_mul(Q->y, &t1, &t1);
   fp_montgomery_reduce(&t1, modulus, mp);

   /* Y = Y - T1 */
   fp_sub(&y, &t1, &y);
   if (fp_cmp_d(&y, 0) == FP_LT) {
      fp_add(&y, modulus, &y);
   }
   /* T1 = 2T1 */
   fp_add(&t1, &t1, &t1);
   if (fp_cmp(&t1, modulus) != FP_LT) {
      fp_sub(&t1, modulus, &t1);
   }
   /* T1 = Y + T1 */
   fp_add(&t1, &y, &t1);
   if (fp_cmp(&t1, modulus) != FP_LT) {
      fp_sub(&t1, modulus, &t1);
   }
   /* X = X - T2 */
   fp_sub(&x, &t2, &x);
   if (fp_cmp_d(&x, 0) == FP_LT) {
      fp_add(&x, modulus, &x);
   }
   /* T2 = 2T2 */
   fp_add(&t2, &t2, &t2);
   if (fp_cmp(&t2, modulus) != FP_LT) {
      fp_sub(&t2, modulus, &t2);
   }
   /* T2 = X + T2 */
   fp_add(&t2, &x, &t2);
   if (fp_cmp(&t2, modulus) != FP_LT) {
      fp_sub(&t2, modulus, &t2);
   }

   /* if Z' != 1 */
   if (Q->z != NULL) {
      /* Z = Z * Z' */
      fp_mul(&z, Q->z, &z);
      fp_montgomery_reduce(&z, modulus, mp);
   }

   /* Z = Z * X */
   fp_mul(&z, &x, &z);
   fp_montgomery_reduce(&z, modulus, mp);

   /* T1 = T1 * X  */
   fp_mul(&t1, &x, &t1);
   fp_montgomery_reduce(&t1, modulus, mp);
   /* X = X * X */
   fp_sqr(&x, &x);
   fp_montgomery_reduce(&x, modulus, mp);
   /* T2 = T2 * x */
   fp_mul(&t2, &x, &t2);
   fp_montgomery_reduce(&t2, modulus, mp);
   /* T1 = T1 * X  */
   fp_mul(&t1, &x, &t1);
   fp_montgomery_reduce(&t1, modulus, mp);
 
   /* X = Y*Y */
   fp_sqr(&y, &x);
   fp_montgomery_reduce(&x, modulus, mp);
   /* X = X - T2 */
   fp_sub(&x, &t2, &x);
   if (fp_cmp_d(&x, 0) == FP_LT) {
      fp_add(&x, modulus, &x);
   }

   /* T2 = T2 - X */
   fp_sub(&t2, &x, &t2);
   if (fp_cmp_d(&t2, 0) == FP_LT) {
      fp_add(&t2, modulus, &t2);
   } 
   /* T2 = T2 - X */
   fp_sub(&t2, &x, &t2);
   if (fp_cmp_d(&t2, 0) == FP_LT) {
      fp_add(&t2, modulus, &t2);
   }
   /* T2 = T2 * Y */
   fp_mul(&t2, &y, &t2);
   fp_montgomery_reduce(&t2, modulus, mp);
   /* Y = T2 - T1 */
   fp_sub(&t2, &t1, &y);
   if (fp_cmp_d(&y, 0) == FP_LT) {
      fp_add(&y, modulus, &y);
   }
   /* Y = Y/2 */
   if (fp_isodd(&y)) {
      fp_add(&y, modulus, &y);
   }
   fp_div_2(&y, &y);

   fp_copy(&x, R->x);
   fp_copy(&y, R->y);
   fp_copy(&z, R->z);
   
   return CRYPT_OK;
}
Exemplo n.º 4
0
static int tfm_ecc_projective_dbl_point(ecc_point *P, ecc_point *R, void *modulus, void *Mp)
{
   fp_int t1, t2;
   fp_digit mp;

   LTC_ARGCHK(P       != NULL);
   LTC_ARGCHK(R       != NULL);
   LTC_ARGCHK(modulus != NULL);
   LTC_ARGCHK(Mp      != NULL);

   mp = *((fp_digit*)Mp);

   fp_init(&t1);
   fp_init(&t2);

   if (P != R) {
      fp_copy(P->x, R->x);
      fp_copy(P->y, R->y);
      fp_copy(P->z, R->z);
   }

   /* t1 = Z * Z */
   fp_sqr(R->z, &t1);
   fp_montgomery_reduce(&t1, modulus, mp);
   /* Z = Y * Z */
   fp_mul(R->z, R->y, R->z);
   fp_montgomery_reduce(R->z, modulus, mp);
   /* Z = 2Z */
   fp_add(R->z, R->z, R->z);
   if (fp_cmp(R->z, modulus) != FP_LT) {
      fp_sub(R->z, modulus, R->z);
   }
   
   /* &t2 = X - T1 */
   fp_sub(R->x, &t1, &t2);
   if (fp_cmp_d(&t2, 0) == FP_LT) {
      fp_add(&t2, modulus, &t2);
   }
   /* T1 = X + T1 */
   fp_add(&t1, R->x, &t1);
   if (fp_cmp(&t1, modulus) != FP_LT) {
      fp_sub(&t1, modulus, &t1);
   }
   /* T2 = T1 * T2 */
   fp_mul(&t1, &t2, &t2);
   fp_montgomery_reduce(&t2, modulus, mp);
   /* T1 = 2T2 */
   fp_add(&t2, &t2, &t1);
   if (fp_cmp(&t1, modulus) != FP_LT) {
      fp_sub(&t1, modulus, &t1);
   }
   /* T1 = T1 + T2 */
   fp_add(&t1, &t2, &t1);
   if (fp_cmp(&t1, modulus) != FP_LT) {
      fp_sub(&t1, modulus, &t1);
   }

   /* Y = 2Y */
   fp_add(R->y, R->y, R->y);
   if (fp_cmp(R->y, modulus) != FP_LT) {
      fp_sub(R->y, modulus, R->y);
   }
   /* Y = Y * Y */
   fp_sqr(R->y, R->y);
   fp_montgomery_reduce(R->y, modulus, mp);
   /* T2 = Y * Y */
   fp_sqr(R->y, &t2);
   fp_montgomery_reduce(&t2, modulus, mp);
   /* T2 = T2/2 */
   if (fp_isodd(&t2)) {
      fp_add(&t2, modulus, &t2);
   }
   fp_div_2(&t2, &t2);
   /* Y = Y * X */
   fp_mul(R->y, R->x, R->y);
   fp_montgomery_reduce(R->y, modulus, mp);

   /* X  = T1 * T1 */
   fp_sqr(&t1, R->x);
   fp_montgomery_reduce(R->x, modulus, mp);
   /* X = X - Y */
   fp_sub(R->x, R->y, R->x);
   if (fp_cmp_d(R->x, 0) == FP_LT) {
      fp_add(R->x, modulus, R->x);
   }
   /* X = X - Y */
   fp_sub(R->x, R->y, R->x);
   if (fp_cmp_d(R->x, 0) == FP_LT) {
      fp_add(R->x, modulus, R->x);
   }

   /* Y = Y - X */     
   fp_sub(R->y, R->x, R->y);
   if (fp_cmp_d(R->y, 0) == FP_LT) {
      fp_add(R->y, modulus, R->y);
   }
   /* Y = Y * T1 */
   fp_mul(R->y, &t1, R->y);
   fp_montgomery_reduce(R->y, modulus, mp);
   /* Y = Y - T2 */
   fp_sub(R->y, &t2, R->y);
   if (fp_cmp_d(R->y, 0) == FP_LT) {
      fp_add(R->y, modulus, R->y);
   }
 
   return CRYPT_OK;
}
Exemplo n.º 5
0
static int
tfm_rsa_generate_key(RSA *rsa, int bits, BIGNUM *e, BN_GENCB *cb)
{
    fp_int el, p, q, n, d, dmp1, dmq1, iqmp, t1, t2, t3;
    int counter, ret, bitsp;

    if (bits < 789)
	return -1;

    bitsp = (bits + 1) / 2;

    ret = -1;

    fp_init_multi(&el, &p, &q, &n, &n, &d, &dmp1, &dmq1, &iqmp, &t1, &t2, &t3, NULL);

    BN2mpz(&el, e);

    /* generate p and q so that p != q and bits(pq) ~ bits */
    counter = 0;
    do {
	BN_GENCB_call(cb, 2, counter++);
	CHECK(random_num(&p, bitsp), 0);
	CHECK(fp_find_prime(&p), FP_YES);

	fp_sub_d(&p, 1, &t1);
	fp_gcd(&t1, &el, &t2);
    } while(fp_cmp_d(&t2, 1) != 0);

    BN_GENCB_call(cb, 3, 0);

    counter = 0;
    do {
	BN_GENCB_call(cb, 2, counter++);
	CHECK(random_num(&q, bits - bitsp), 0);
	CHECK(fp_find_prime(&q), FP_YES);

	if (fp_cmp(&p, &q) == 0) /* don't let p and q be the same */
	    continue;

	fp_sub_d(&q, 1, &t1);
	fp_gcd(&t1, &el, &t2);
    } while(fp_cmp_d(&t2, 1) != 0);

    /* make p > q */
    if (fp_cmp(&p, &q) < 0) {
	fp_int c;
	fp_copy(&p, &c);
	fp_copy(&q, &p);
	fp_copy(&c, &q);
    }

    BN_GENCB_call(cb, 3, 1);

    /* calculate n,  		n = p * q */
    fp_mul(&p, &q, &n);

    /* calculate d, 		d = 1/e mod (p - 1)(q - 1) */
    fp_sub_d(&p, 1, &t1);
    fp_sub_d(&q, 1, &t2);
    fp_mul(&t1, &t2, &t3);
    fp_invmod(&el, &t3, &d);

    /* calculate dmp1		dmp1 = d mod (p-1) */
    fp_mod(&d, &t1, &dmp1);
    /* calculate dmq1		dmq1 = d mod (q-1) */
    fp_mod(&d, &t2, &dmq1);
    /* calculate iqmp 		iqmp = 1/q mod p */
    fp_invmod(&q, &p, &iqmp);

    /* fill in RSA key */

    rsa->e = mpz2BN(&el);
    rsa->p = mpz2BN(&p);
    rsa->q = mpz2BN(&q);
    rsa->n = mpz2BN(&n);
    rsa->d = mpz2BN(&d);
    rsa->dmp1 = mpz2BN(&dmp1);
    rsa->dmq1 = mpz2BN(&dmq1);
    rsa->iqmp = mpz2BN(&iqmp);

    ret = 1;

out:
    fp_zero_multi(&el, &p, &q, &n, &d, &dmp1,
		  &dmq1, &iqmp, &t1, &t2, &t3, NULL);

    return ret;
}
Exemplo n.º 6
0
/* c = 1/a (mod b) for odd b only */
int fp_invmod(fp_int *a, fp_int *b, fp_int *c)
{
  fp_int  x, y, u, v, B, D;
  int     neg;

  /* 2. [modified] b must be odd   */
  if (fp_iseven (b) == FP_YES) {
    return fp_invmod_slow(a,b,c);
  }

  /* init all our temps */
  fp_init(&x);  fp_init(&y);
  fp_init(&u);  fp_init(&v);
  fp_init(&B);  fp_init(&D);

  /* x == modulus, y == value to invert */
  fp_copy(b, &x);

  /* we need y = |a| */
  fp_abs(a, &y);

  /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
  fp_copy(&x, &u);
  fp_copy(&y, &v);
  fp_set (&D, 1);

top:
  /* 4.  while u is even do */
  while (fp_iseven (&u) == FP_YES) {
    /* 4.1 u = u/2 */
    fp_div_2 (&u, &u);

    /* 4.2 if B is odd then */
    if (fp_isodd (&B) == FP_YES) {
      fp_sub (&B, &x, &B);
    }
    /* B = B/2 */
    fp_div_2 (&B, &B);
  }

  /* 5.  while v is even do */
  while (fp_iseven (&v) == FP_YES) {
    /* 5.1 v = v/2 */
    fp_div_2 (&v, &v);

    /* 5.2 if D is odd then */
    if (fp_isodd (&D) == FP_YES) {
      /* D = (D-x)/2 */
      fp_sub (&D, &x, &D);
    }
    /* D = D/2 */
    fp_div_2 (&D, &D);
  }

  /* 6.  if u >= v then */
  if (fp_cmp (&u, &v) != FP_LT) {
    /* u = u - v, B = B - D */
    fp_sub (&u, &v, &u);
    fp_sub (&B, &D, &B);
  } else {
    /* v - v - u, D = D - B */
    fp_sub (&v, &u, &v);
    fp_sub (&D, &B, &D);
  }

  /* if not zero goto step 4 */
  if (fp_iszero (&u) == FP_NO) {
    goto top;
  }

  /* now a = C, b = D, gcd == g*v */

  /* if v != 1 then there is no inverse */
  if (fp_cmp_d (&v, 1) != FP_EQ) {
    return FP_VAL;
  }

  /* b is now the inverse */
  neg = a->sign;
  while (D.sign == FP_NEG) {
    fp_add (&D, b, &D);
  }
  fp_copy (&D, c);
  c->sign = neg;
  return FP_OKAY;
}
Exemplo n.º 7
0
static int fp_invmod_slow (fp_int * a, fp_int * b, fp_int * c)
{
  fp_int  x, y, u, v, A, B, C, D;
  int     res;

  /* b cannot be negative */
  if (b->sign == FP_NEG || fp_iszero(b) == 1) {
    return FP_VAL;
  }

  /* init temps */
  fp_init(&x);    fp_init(&y);
  fp_init(&u);    fp_init(&v);
  fp_init(&A);    fp_init(&B);
  fp_init(&C);    fp_init(&D);

  /* x = a, y = b */
  if ((res = fp_mod(a, b, &x)) != FP_OKAY) {
      return res;
  }
  fp_copy(b, &y);

  /* 2. [modified] if x,y are both even then return an error! */
  if (fp_iseven (&x) == 1 && fp_iseven (&y) == 1) {
    return FP_VAL;
  }

  /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
  fp_copy (&x, &u);
  fp_copy (&y, &v);
  fp_set (&A, 1);
  fp_set (&D, 1);

top:
  /* 4.  while u is even do */
  while (fp_iseven (&u) == 1) {
    /* 4.1 u = u/2 */
    fp_div_2 (&u, &u);

    /* 4.2 if A or B is odd then */
    if (fp_isodd (&A) == 1 || fp_isodd (&B) == 1) {
      /* A = (A+y)/2, B = (B-x)/2 */
      fp_add (&A, &y, &A);
      fp_sub (&B, &x, &B);
    }
    /* A = A/2, B = B/2 */
    fp_div_2 (&A, &A);
    fp_div_2 (&B, &B);
  }

  /* 5.  while v is even do */
  while (fp_iseven (&v) == 1) {
    /* 5.1 v = v/2 */
    fp_div_2 (&v, &v);

    /* 5.2 if C or D is odd then */
    if (fp_isodd (&C) == 1 || fp_isodd (&D) == 1) {
      /* C = (C+y)/2, D = (D-x)/2 */
      fp_add (&C, &y, &C);
      fp_sub (&D, &x, &D);
    }
    /* C = C/2, D = D/2 */
    fp_div_2 (&C, &C);
    fp_div_2 (&D, &D);
  }

  /* 6.  if u >= v then */
  if (fp_cmp (&u, &v) != FP_LT) {
    /* u = u - v, A = A - C, B = B - D */
    fp_sub (&u, &v, &u);
    fp_sub (&A, &C, &A);
    fp_sub (&B, &D, &B);
  } else {
    /* v - v - u, C = C - A, D = D - B */
    fp_sub (&v, &u, &v);
    fp_sub (&C, &A, &C);
    fp_sub (&D, &B, &D);
  }

  /* if not zero goto step 4 */
  if (fp_iszero (&u) == 0)
    goto top;

  /* now a = C, b = D, gcd == g*v */

  /* if v != 1 then there is no inverse */
  if (fp_cmp_d (&v, 1) != FP_EQ) {
    return FP_VAL;
  }

  /* if its too low */
  while (fp_cmp_d(&C, 0) == FP_LT) {
      fp_add(&C, b, &C);
  }
  
  /* too big */
  while (fp_cmp_mag(&C, b) != FP_LT) {
      fp_sub(&C, b, &C);
  }
  
  /* C is now the inverse */
  fp_copy(&C, c);
  return FP_OKAY;
}