smpl_t
aubio_beattracking_get_confidence (aubio_beattracking_t * bt)
{
    if (bt->gp) {
        return fvec_max (bt->acfout) / fvec_sum(bt->acfout);
    } else {
        return 0.;
    }
}
Exemplo n.º 2
0
smpl_t
aubio_beattracking_get_confidence (const aubio_beattracking_t * bt)
{
    if (bt->gp) {
        smpl_t acf_sum = fvec_sum(bt->acfout);
        if (acf_sum != 0.) {
            return fvec_quadratic_peak_mag (bt->acfout, bt->gp) / acf_sum;
        }
    }
    return 0.;
}
Exemplo n.º 3
0
double nn_thread (int npt, int nclust, int d,
		  const float *codebook, const float *coords,
		  int *vw, int n_thread)
{
  float *vwdis2=fvec_new(npt);
  knn_full_thread (2, npt, nclust, d, 1, codebook, coords, NULL, vw, vwdis2, n_thread);
   
  double toterr = fvec_sum(vwdis2, npt); 

  free(vwdis2);
  return toterr;
}
Exemplo n.º 4
0
double nn (int npt, int nclust, int d,
	 const float *codebook, const float *coords, int *vw) 
{
  
  /* The distances to centroids that will be returned */
  float *vwdis = fvec_new(npt);
  
  knn_full (2, npt, nclust, d, 1, codebook, coords, NULL, vw, vwdis);
  
  double toterr = fvec_sum(vwdis, npt);
  free(vwdis);

  return toterr;
}
Exemplo n.º 5
0
gmm_t * gmm_learn (int di, int ni, int ki, int niter,
                   const float * v, int nt, int seed, int nredo,
                   int flags)
{
    long d=di,k=ki,n=ni;

    int iter, iter_tot = 0;
    double old_key, key = 666;

    niter = (niter == 0 ? 10000 : niter);

    /* the GMM parameters */
    float * p = fvec_new_0 (n * k);      /* p(ci|x) for all i */
    gmm_t * g = gmm_new (d, k);

    /* initialize the GMM: k-means + variance estimation */
    int * nassign = ivec_new (n);  /* not useful -> to be removed when debugged */
    float * dis = fvec_new (n);
    kmeans (d, n, k, niter, v, nt, seed, nredo, g->mu, dis, NULL, nassign);

    fflush (stderr);
    fprintf (stderr, "assign = ");
    ivec_print (nassign, k);
    fprintf (stderr, "\n");
    free (nassign);

    /* initialization of the GMM parameters assuming a diagonal matrix */
    fvec_set (g->w, k, 1.0 / k);
    double sig = fvec_sum (dis, n) / n;
    printf ("sigma at initialization = %.3f\n", sig);
    fvec_set (g->sigma, k * d, sig);
    free (dis);


    /* start the EM algorithm */
    fprintf (stdout, "<><><><> GMM  <><><><><>\n");

    if(flags & GMM_FLAGS_PURE_KMEANS) niter=0;

    for (iter = 1 ; iter <= niter ; iter++) {

        gmm_compute_p_thread (n, v, g, p, flags, nt);
        fflush(stdout);

        gmm_handle_empty(n, v, g, p);

        gmm_compute_params (n, v, p, g, flags, nt);
        fflush(stdout);


        iter_tot++;

        /* convergence reached -> leave */
        old_key = key;
        key = fvec_sum (g->mu, k * d);

        printf ("keys %5d: %.6f -> %.6f\n", iter, old_key, key);
        fflush(stdout);

        if (key == old_key)
            break;
    }
    fprintf (stderr, "\n");

    free(p);

    return g;
}
Exemplo n.º 6
0
/* estimate the GMM parameters */
static void gmm_compute_params (int n, const float * v, const float * p,
                                gmm_t * g,
                                int flags,
                                int n_thread)
{
    long i, j;

    long d=g->d, k=g->k;
    float * vtmp = fvec_new (d);
    float * mu_old = fvec_new_cpy (g->mu, k * d);
    float * w_old = fvec_new_cpy (g->w, k);

    fvec_0 (g->w, k);
    fvec_0 (g->mu, k * d);
    fvec_0 (g->sigma, k * d);

    if(0) {
        /* slow and simple */
        for (j = 0 ; j < k ; j++) {
            double dtmp = 0;
            for (i = 0 ; i < n ; i++) {
                /* contribution to the gaussian weight */
                dtmp += p[i * k + j];
                /* contribution to mu */

                fvec_cpy (vtmp, v + i * d, d);
                fvec_mul_by (vtmp, d, p[i * k + j]);
                fvec_add (g->mu + j * d, vtmp, d);

                /* contribution to the variance */
                fvec_cpy (vtmp, v + i * d, d);
                fvec_sub (vtmp, mu_old + j * d, d);
                fvec_sqr (vtmp, d);
                fvec_mul_by (vtmp, d, p[i * k + j]);
                fvec_add (g->sigma + j * d, vtmp, d);

            }
            g->w[j] = dtmp;
        }

    } else {
        /* fast and complicated */

        if(n_thread<=1)
            compute_sum_dcov(n,k,d,v,mu_old,p,g->mu,g->sigma,g->w);
        else
            compute_sum_dcov_thread(n,k,d,v,mu_old,p,g->mu,g->sigma,g->w,n_thread);
    }

    if(flags & GMM_FLAGS_1SIGMA) {
        for (j = 0 ; j < k ; j++) {
            float *sigma_j=g->sigma+j*d;
            double var=fvec_sum(sigma_j,d)/d;
            fvec_set(sigma_j,d,var);
        }
    }

    long nz=0;
    for(i=0; i<k*d; i++)
        if(g->sigma[i]<min_sigma) {
            g->sigma[i]=min_sigma;
            nz++;
        }

    if(nz) printf("WARN %ld sigma diagonals are too small (set to %g)\n",nz,min_sigma);

    for (j = 0 ; j < k ; j++) {
        fvec_div_by (g->mu + j * d, d, g->w[j]);
        fvec_div_by (g->sigma + j * d, d, g->w[j]);
    }

    assert(finite(fvec_sum(g->mu, k*d)));

    fvec_normalize (g->w, k, 1);

    printf ("w = ");
    fvec_print (g->w, k);
    double imfac = k * fvec_sum_sqr (g->w, k);
    printf (" imfac = %.3f\n", imfac);

    free (vtmp);
    free (w_old);
    free (mu_old);
}