void ScreenLensDistortionOperation::executePixel(float output[4], int x, int y, void *data)
{
	MemoryBuffer *buffer = (MemoryBuffer *)data;
	float xy[2] = { (float)x, (float)y };
	float uv[2];
	get_uv(xy, uv);
	float uv_dot = len_squared_v2(uv);

	int count[3] = { 0, 0, 0 };
	float delta[3][2];
	float sum[4] = { 0, 0, 0, 0 };

	bool valid_r = get_delta(uv_dot, m_k4[0], uv, delta[0]);
	bool valid_g = get_delta(uv_dot, m_k4[1], uv, delta[1]);
	bool valid_b = get_delta(uv_dot, m_k4[2], uv, delta[2]);

	if (valid_r && valid_g && valid_b) {
		accumulate(buffer, 0, 1, uv_dot, uv, delta, sum, count);
		accumulate(buffer, 1, 2, uv_dot, uv, delta, sum, count);
		
		if (count[0]) output[0] = 2.0f * sum[0] / (float)count[0];
		if (count[1]) output[1] = 2.0f * sum[1] / (float)count[1];
		if (count[2]) output[2] = 2.0f * sum[2] / (float)count[2];
		
		/* set alpha */
		output[3] = 1.0f;
	}
	else {
		zero_v4(output);
	}
}
void ScreenLensDistortionOperation::determineUV(float result[6], float x, float y) const
{
	const float xy[2] = {x, y};
	float uv[2];
	get_uv(xy, uv);
	float uv_dot = len_squared_v2(uv);
	
	copy_v2_v2(result + 0, xy);
	copy_v2_v2(result + 2, xy);
	copy_v2_v2(result + 4, xy);
	get_delta(uv_dot, m_k4[0], uv, result + 0);
	get_delta(uv_dot, m_k4[1], uv, result + 2);
	get_delta(uv_dot, m_k4[2], uv, result + 4);
}
Exemplo n.º 3
0
void texture::get_uv(vec2& texture_space) const {
    auto temp = texture_space;
    get_uv(temp.x, temp.y, texture_space.x, texture_space.y);
}
Exemplo n.º 4
0
void texture::get_uv(const rects::texture<float> &uv, rects::texture<float>& out) const {
    get_uv(uv.u1, uv.v1, out.u1, out.v1);
    get_uv(uv.u2, uv.v2, out.u2, out.v2);
}
Exemplo n.º 5
0
void BakedLight::_plot_face(int p_idx, int p_level, const Vector3 *p_vtx, const Vector2* p_uv, const MaterialCache& p_material, const Rect3 &p_aabb) {



	if (p_level==cell_subdiv-1) {
		//plot the face by guessing it's albedo and emission value

		//find best axis to map to, for scanning values
		int closest_axis;
		float closest_dot;

		Vector3 normal = Plane(p_vtx[0],p_vtx[1],p_vtx[2]).normal;

		for(int i=0;i<3;i++) {

			Vector3 axis;
			axis[i]=1.0;
			float dot=ABS(normal.dot(axis));
			if (i==0 || dot>closest_dot) {
				closest_axis=i;
				closest_dot=dot;
			}
		}

		Vector3 axis;
		axis[closest_axis]=1.0;
		Vector3 t1;
		t1[(closest_axis+1)%3]=1.0;
		Vector3 t2;
		t2[(closest_axis+2)%3]=1.0;

		t1*=p_aabb.size[(closest_axis+1)%3]/float(color_scan_cell_width);
		t2*=p_aabb.size[(closest_axis+2)%3]/float(color_scan_cell_width);

		Color albedo_accum;
		Color emission_accum;
		float alpha=0.0;

		//map to a grid average in the best axis for this face
		for(int i=0;i<color_scan_cell_width;i++) {

			Vector3 ofs_i=float(i)*t1;

			for(int j=0;j<color_scan_cell_width;j++) {

				Vector3 ofs_j=float(j)*t2;

				Vector3 from = p_aabb.pos+ofs_i+ofs_j;
				Vector3 to = from + t1 + t2 + axis * p_aabb.size[closest_axis];
				Vector3 half = (to-from)*0.5;

				//is in this cell?
				if (!fast_tri_box_overlap(from+half,half,p_vtx)) {
					continue; //face does not span this cell
				}

				//go from -size to +size*2 to avoid skipping collisions
				Vector3 ray_from = from + (t1+t2)*0.5 - axis * p_aabb.size[closest_axis];
				Vector3 ray_to = ray_from + axis * p_aabb.size[closest_axis]*2;

				Vector3 intersection;

				if (!Geometry::ray_intersects_triangle(ray_from,ray_to,p_vtx[0],p_vtx[1],p_vtx[2],&intersection)) {
					//no intersect? look in edges

					float closest_dist=1e20;
					for(int j=0;j<3;j++) {
						Vector3 c;
						Vector3 inters;
						Geometry::get_closest_points_between_segments(p_vtx[j],p_vtx[(j+1)%3],ray_from,ray_to,inters,c);
						float d=c.distance_to(intersection);
						if (j==0 || d<closest_dist) {
							closest_dist=d;
							intersection=inters;
						}
					}
				}

				Vector2 uv = get_uv(intersection,p_vtx,p_uv);


				int uv_x = CLAMP(Math::fposmod(uv.x,1.0)*bake_texture_size,0,bake_texture_size-1);
				int uv_y = CLAMP(Math::fposmod(uv.y,1.0)*bake_texture_size,0,bake_texture_size-1);

				int ofs = uv_y*bake_texture_size+uv_x;
				albedo_accum.r+=p_material.albedo[ofs].r;
				albedo_accum.g+=p_material.albedo[ofs].g;
				albedo_accum.b+=p_material.albedo[ofs].b;
				albedo_accum.a+=p_material.albedo[ofs].a;

				emission_accum.r+=p_material.emission[ofs].r;
				emission_accum.g+=p_material.emission[ofs].g;
				emission_accum.b+=p_material.emission[ofs].b;
				alpha+=1.0;

			}
		}


		if (alpha==0) {
			//could not in any way get texture information.. so use closest point to center

			Face3 f( p_vtx[0],p_vtx[1],p_vtx[2]);
			Vector3 inters = f.get_closest_point_to(p_aabb.pos+p_aabb.size*0.5);

			Vector2 uv = get_uv(inters,p_vtx,p_uv);

			int uv_x = CLAMP(Math::fposmod(uv.x,1.0)*bake_texture_size,0,bake_texture_size-1);
			int uv_y = CLAMP(Math::fposmod(uv.y,1.0)*bake_texture_size,0,bake_texture_size-1);

			int ofs = uv_y*bake_texture_size+uv_x;

			alpha = 1.0/(color_scan_cell_width*color_scan_cell_width);

			albedo_accum.r=p_material.albedo[ofs].r*alpha;
			albedo_accum.g=p_material.albedo[ofs].g*alpha;
			albedo_accum.b=p_material.albedo[ofs].b*alpha;
			albedo_accum.a=p_material.albedo[ofs].a*alpha;

			emission_accum.r=p_material.emission[ofs].r*alpha;
			emission_accum.g=p_material.emission[ofs].g*alpha;
			emission_accum.b=p_material.emission[ofs].b*alpha;


			zero_alphas++;
		} else {

			float accdiv = 1.0/(color_scan_cell_width*color_scan_cell_width);
			alpha*=accdiv;

			albedo_accum.r*=accdiv;
			albedo_accum.g*=accdiv;
			albedo_accum.b*=accdiv;
			albedo_accum.a*=accdiv;

			emission_accum.r*=accdiv;
			emission_accum.g*=accdiv;
			emission_accum.b*=accdiv;
		}

		//put this temporarily here, corrected in a later step
		bake_cells_write[p_idx].albedo[0]+=albedo_accum.r;
		bake_cells_write[p_idx].albedo[1]+=albedo_accum.g;
		bake_cells_write[p_idx].albedo[2]+=albedo_accum.b;
		bake_cells_write[p_idx].light[0]+=emission_accum.r;
		bake_cells_write[p_idx].light[1]+=emission_accum.g;
		bake_cells_write[p_idx].light[2]+=emission_accum.b;
		bake_cells_write[p_idx].alpha+=alpha;

		static const Vector3 side_normals[6]={
			Vector3(-1, 0, 0),
			Vector3( 1, 0, 0),
			Vector3( 0,-1, 0),
			Vector3( 0, 1, 0),
			Vector3( 0, 0,-1),
			Vector3( 0, 0, 1),
		};

		for(int i=0;i<6;i++) {
			if (normal.dot(side_normals[i])>CMP_EPSILON) {
				bake_cells_write[p_idx].used_sides|=(1<<i);
			}
		}


	} else {
		//go down
		for(int i=0;i<8;i++) {

			Rect3 aabb=p_aabb;
			aabb.size*=0.5;

			if (i&1)
				aabb.pos.x+=aabb.size.x;
			if (i&2)
				aabb.pos.y+=aabb.size.y;
			if (i&4)
				aabb.pos.z+=aabb.size.z;

			{
				Rect3 test_aabb=aabb;
				//test_aabb.grow_by(test_aabb.get_longest_axis_size()*0.05); //grow a bit to avoid numerical error in real-time
				Vector3 qsize = test_aabb.size*0.5; //quarter size, for fast aabb test

				if (!fast_tri_box_overlap(test_aabb.pos+qsize,qsize,p_vtx)) {
				//if (!Face3(p_vtx[0],p_vtx[1],p_vtx[2]).intersects_aabb2(aabb)) {
					//does not fit in child, go on
					continue;
				}

			}

			if (bake_cells_write[p_idx].childs[i]==CHILD_EMPTY) {
				//sub cell must be created

				if (bake_cells_used==(1<<bake_cells_alloc)) {
					//exhausted cells, creating more space
					bake_cells_alloc++;
					bake_cells_write=PoolVector<BakeCell>::Write();
					bake_cells.resize(1<<bake_cells_alloc);
					bake_cells_write=bake_cells.write();
				}

				bake_cells_write[p_idx].childs[i]=bake_cells_used;
				bake_cells_level_used[p_level+1]++;
				bake_cells_used++;


			}


			_plot_face(bake_cells_write[p_idx].childs[i],p_level+1,p_vtx,p_uv,p_material,aabb);
		}
	}
}
Exemplo n.º 6
0
OSL::ShaderGlobals& ShadingPoint::get_osl_shader_globals() const
{
    assert(hit());

    if (!(m_members & HasOSLShaderGlobals))
    {
        const ShadingRay& ray(get_ray());

        m_shader_globals.P = Vector3f(get_point());
        m_shader_globals.dPdx = OSL::Vec3(0, 0, 0);
        m_shader_globals.dPdy = OSL::Vec3(0, 0, 0);
        m_shader_globals.dPdz = OSL::Vec3(0, 0, 0);

        m_shader_globals.I = Vector3f(normalize(ray.m_dir));
        m_shader_globals.dIdx = OSL::Vec3(0, 0, 0);
        m_shader_globals.dIdy = OSL::Vec3(0, 0, 0);

        m_shader_globals.N = Vector3f(get_shading_normal());
        m_shader_globals.Ng = Vector3f(get_geometric_normal());

        m_shader_globals.u = get_uv(0).x;
        m_shader_globals.dudx = 0;
        m_shader_globals.dudy = 0;

        m_shader_globals.v = get_uv(0).y;
        m_shader_globals.dvdx = 0;
        m_shader_globals.dvdy = 0;

        m_shader_globals.dPdu = Vector3f(get_dpdu(0));
        m_shader_globals.dPdv = Vector3f(get_dpdv(0));

        m_shader_globals.time = ray.m_time;
        m_shader_globals.dtime = 0;
        m_shader_globals.dPdtime = OSL::Vec3(0, 0, 0);
        
        m_shader_globals.Ps = OSL::Vec3(0, 0, 0);
        m_shader_globals.dPsdx = OSL::Vec3(0, 0, 0);
        m_shader_globals.dPsdy = OSL::Vec3(0, 0, 0);
        
        m_shader_globals.renderstate = 0;
        m_shader_globals.tracedata = 0;
        m_shader_globals.objdata = 0;

        m_obj_transform_info.m_assembly_instance_transform = 
            &get_assembly_instance().cumulated_transform_sequence();
        m_obj_transform_info.m_object_instance_transform = 
            &get_object_instance().get_transform();

        m_shader_globals.object2common = reinterpret_cast<OSL::TransformationPtr>(&m_obj_transform_info);

        m_shader_globals.shader2common = 0;
        m_shader_globals.surfacearea = 0;

        m_shader_globals.raytype = static_cast<int>(ray.m_type);

        m_shader_globals.flipHandedness = 0;
        m_shader_globals.backfacing = get_side() == ObjectInstance::FrontSide ? 0 : 1;

        m_shader_globals.context = 0;
        m_shader_globals.Ci = 0;
        
        m_members |= HasOSLShaderGlobals;
    }
    else
    {
        // Update always the raytype, as it might have changed from the previous run.
        m_shader_globals.raytype = static_cast<int>(get_ray().m_type);
    }

    return m_shader_globals;
}
Exemplo n.º 7
0
void GIProbe::_plot_face(int p_idx, int p_level,int p_x,int p_y,int p_z, const Vector3 *p_vtx, const Vector2* p_uv, const Baker::MaterialCache& p_material, const Rect3 &p_aabb,Baker *p_baker) {



	if (p_level==p_baker->cell_subdiv-1) {
		//plot the face by guessing it's albedo and emission value

		//find best axis to map to, for scanning values
		int closest_axis;
		float closest_dot;

		Vector3 normal = Plane(p_vtx[0],p_vtx[1],p_vtx[2]).normal;

		for(int i=0;i<3;i++) {

			Vector3 axis;
			axis[i]=1.0;
			float dot=ABS(normal.dot(axis));
			if (i==0 || dot>closest_dot) {
				closest_axis=i;
				closest_dot=dot;
			}
		}

		Vector3 axis;
		axis[closest_axis]=1.0;
		Vector3 t1;
		t1[(closest_axis+1)%3]=1.0;
		Vector3 t2;
		t2[(closest_axis+2)%3]=1.0;

		t1*=p_aabb.size[(closest_axis+1)%3]/float(color_scan_cell_width);
		t2*=p_aabb.size[(closest_axis+2)%3]/float(color_scan_cell_width);

		Color albedo_accum;
		Color emission_accum;
		Vector3 normal_accum;

		float alpha=0.0;

		//map to a grid average in the best axis for this face
		for(int i=0;i<color_scan_cell_width;i++) {

			Vector3 ofs_i=float(i)*t1;

			for(int j=0;j<color_scan_cell_width;j++) {

				Vector3 ofs_j=float(j)*t2;

				Vector3 from = p_aabb.pos+ofs_i+ofs_j;
				Vector3 to = from + t1 + t2 + axis * p_aabb.size[closest_axis];
				Vector3 half = (to-from)*0.5;

				//is in this cell?
				if (!fast_tri_box_overlap(from+half,half,p_vtx)) {
					continue; //face does not span this cell
				}

				//go from -size to +size*2 to avoid skipping collisions
				Vector3 ray_from = from + (t1+t2)*0.5 - axis * p_aabb.size[closest_axis];
				Vector3 ray_to = ray_from + axis * p_aabb.size[closest_axis]*2;

				Vector3 intersection;

				if (!Geometry::ray_intersects_triangle(ray_from,ray_to,p_vtx[0],p_vtx[1],p_vtx[2],&intersection)) {
					//no intersect? look in edges

					float closest_dist=1e20;
					for(int j=0;j<3;j++) {
						Vector3 c;
						Vector3 inters;
						Geometry::get_closest_points_between_segments(p_vtx[j],p_vtx[(j+1)%3],ray_from,ray_to,inters,c);
						float d=c.distance_to(intersection);
						if (j==0 || d<closest_dist) {
							closest_dist=d;
							intersection=inters;
						}
					}
				}

				Vector2 uv = get_uv(intersection,p_vtx,p_uv);


				int uv_x = CLAMP(Math::fposmod(uv.x,1.0f)*bake_texture_size,0,bake_texture_size-1);
				int uv_y = CLAMP(Math::fposmod(uv.y,1.0f)*bake_texture_size,0,bake_texture_size-1);

				int ofs = uv_y*bake_texture_size+uv_x;
				albedo_accum.r+=p_material.albedo[ofs].r;
				albedo_accum.g+=p_material.albedo[ofs].g;
				albedo_accum.b+=p_material.albedo[ofs].b;
				albedo_accum.a+=p_material.albedo[ofs].a;

				emission_accum.r+=p_material.emission[ofs].r;
				emission_accum.g+=p_material.emission[ofs].g;
				emission_accum.b+=p_material.emission[ofs].b;

				normal_accum+=normal;

				alpha+=1.0;

			}
		}


		if (alpha==0) {
			//could not in any way get texture information.. so use closest point to center

			Face3 f( p_vtx[0],p_vtx[1],p_vtx[2]);
			Vector3 inters = f.get_closest_point_to(p_aabb.pos+p_aabb.size*0.5);

			Vector2 uv = get_uv(inters,p_vtx,p_uv);

			int uv_x = CLAMP(Math::fposmod(uv.x,1.0f)*bake_texture_size,0,bake_texture_size-1);
			int uv_y = CLAMP(Math::fposmod(uv.y,1.0f)*bake_texture_size,0,bake_texture_size-1);

			int ofs = uv_y*bake_texture_size+uv_x;

			alpha = 1.0/(color_scan_cell_width*color_scan_cell_width);

			albedo_accum.r=p_material.albedo[ofs].r*alpha;
			albedo_accum.g=p_material.albedo[ofs].g*alpha;
			albedo_accum.b=p_material.albedo[ofs].b*alpha;
			albedo_accum.a=p_material.albedo[ofs].a*alpha;

			emission_accum.r=p_material.emission[ofs].r*alpha;
			emission_accum.g=p_material.emission[ofs].g*alpha;
			emission_accum.b=p_material.emission[ofs].b*alpha;

			normal_accum*=alpha;


		} else {

			float accdiv = 1.0/(color_scan_cell_width*color_scan_cell_width);
			alpha*=accdiv;

			albedo_accum.r*=accdiv;
			albedo_accum.g*=accdiv;
			albedo_accum.b*=accdiv;
			albedo_accum.a*=accdiv;

			emission_accum.r*=accdiv;
			emission_accum.g*=accdiv;
			emission_accum.b*=accdiv;

			normal_accum*=accdiv;

		}

		//put this temporarily here, corrected in a later step
		p_baker->bake_cells[p_idx].albedo[0]+=albedo_accum.r;
		p_baker->bake_cells[p_idx].albedo[1]+=albedo_accum.g;
		p_baker->bake_cells[p_idx].albedo[2]+=albedo_accum.b;
		p_baker->bake_cells[p_idx].emission[0]+=emission_accum.r;
		p_baker->bake_cells[p_idx].emission[1]+=emission_accum.g;
		p_baker->bake_cells[p_idx].emission[2]+=emission_accum.b;
		p_baker->bake_cells[p_idx].normal[0]+=normal_accum.x;
		p_baker->bake_cells[p_idx].normal[1]+=normal_accum.y;
		p_baker->bake_cells[p_idx].normal[2]+=normal_accum.z;
		p_baker->bake_cells[p_idx].alpha+=alpha;

		static const Vector3 side_normals[6]={
			Vector3(-1, 0, 0),
			Vector3( 1, 0, 0),
			Vector3( 0,-1, 0),
			Vector3( 0, 1, 0),
			Vector3( 0, 0,-1),
			Vector3( 0, 0, 1),
		};

		/*
		for(int i=0;i<6;i++) {
			if (normal.dot(side_normals[i])>CMP_EPSILON) {
				p_baker->bake_cells[p_idx].used_sides|=(1<<i);
			}
		}*/


	} else {
		//go down

		int half = (1<<(p_baker->cell_subdiv-1)) >> (p_level+1);
		for(int i=0;i<8;i++) {

			Rect3 aabb=p_aabb;
			aabb.size*=0.5;

			int nx=p_x;
			int ny=p_y;
			int nz=p_z;

			if (i&1) {
				aabb.pos.x+=aabb.size.x;
				nx+=half;
			}
			if (i&2) {
				aabb.pos.y+=aabb.size.y;
				ny+=half;
			}
			if (i&4) {
				aabb.pos.z+=aabb.size.z;
				nz+=half;
			}
			//make sure to not plot beyond limits
			if (nx<0 || nx>=p_baker->axis_cell_size[0] || ny<0 || ny>=p_baker->axis_cell_size[1] || nz<0 || nz>=p_baker->axis_cell_size[2])
				continue;

			{
				Rect3 test_aabb=aabb;
				//test_aabb.grow_by(test_aabb.get_longest_axis_size()*0.05); //grow a bit to avoid numerical error in real-time
				Vector3 qsize = test_aabb.size*0.5; //quarter size, for fast aabb test

				if (!fast_tri_box_overlap(test_aabb.pos+qsize,qsize,p_vtx)) {
				//if (!Face3(p_vtx[0],p_vtx[1],p_vtx[2]).intersects_aabb2(aabb)) {
					//does not fit in child, go on
					continue;
				}

			}

			if (p_baker->bake_cells[p_idx].childs[i]==Baker::CHILD_EMPTY) {
				//sub cell must be created

				uint32_t child_idx = p_baker->bake_cells.size();
				p_baker->bake_cells[p_idx].childs[i]=child_idx;
				p_baker->bake_cells.resize( p_baker->bake_cells.size() + 1);
				p_baker->bake_cells[child_idx].level=p_level+1;

			}


			_plot_face(p_baker->bake_cells[p_idx].childs[i],p_level+1,nx,ny,nz,p_vtx,p_uv,p_material,aabb,p_baker);
		}
	}
}