Exemplo n.º 1
0
/**
 *
 * Function to normalize the images between 0 and 255
 *
 **/
void image_normalization(
		const float *I0,  // input image0
		const float *I1,  // input image1
		float *I0n,       // normalized output image0
		float *I1n,       // normalized output image1
		int size          // size of the image
		)
{
	float max0, max1, min0, min1;

	// obtain the max and min of each image
	getminmax(&min0, &max0, I0, size);
	getminmax(&min1, &max1, I1, size);

	// obtain the max and min of both images
	const float max = (max0 > max1)? max0 : max1;
	const float min = (min0 < min1)? min0 : min1;
	const float den = max - min;

	if (den > 0)
		// normalize both images
		for (int i = 0; i < size; i++)
		{
			I0n[i] = 255.0 * (I0[i] - min) / den;
			I1n[i] = 255.0 * (I1[i] - min) / den;
		}

	else
		// copy the original images
		for (int i = 0; i < size; i++)
		{
			I0n[i] = I0[i];
			I1n[i] = I1[i];
		}
}
Exemplo n.º 2
0
float minmaxrefine(tf * f, defs * d, float ax, float halfmaxdist)
{
	float min, max;
	float *data;
	float start, end;
	float step;
	float w;

	int Nstart, Nend;
	int current, status;
	float pos;

	if (d->filter == 1) {
		if (f->current->dataf == NULL)
			return ax;
		data = f->current->dataf;
	} else {
		data = f->current->data;
	}

	status = 0;

	step = (halfmaxdist / 50.0);
	while (step < f->current->head->delta)
		step += (halfmaxdist / 50.0);

	w = step;
	while (status == 0 && w < halfmaxdist) {
		start = ax - w;
		end = ax + w;

		current = hdu_getNptsFromSeconds(f->current->head, ax);
		Nstart = hdu_getNptsFromSeconds(f->current->head, start);
		Nend = hdu_getNptsFromSeconds(f->current->head, end);

		if (hdu_checkNPTS(f->current->head, current))
			return ax;
		if (hdu_checkNPTS(f->current->head, Nstart))
			return ax;
		if (hdu_checkNPTS(f->current->head, Nend))
			return ax;
		if (Nend <= Nstart)
			return ax;

		if ((data[Nstart] < data[current]) && (data[Nend] < data[current]))
			status = 1;			/* MAX */
		else if ((data[Nstart] > data[current])
				 && (data[Nend] > data[current]))
			status = 2;			/* MIN */
		else {
			w += step;
		}
	}

	getminmax(data, f->current->head, start, end, &min, &max);

	if (status == 1)
		pos = max;
	else if (status == 2)
		pos = min;
	else
		pos = ax;

	// fprintf(stderr,"%f %f\n",ax,pos);
	return pos;
}
Exemplo n.º 3
0
int main(int argc, char* argv[])
{
    bool transp, start, scalebar, nomin=true, nomax=true, barreverse, framenum;
    int n1, n2, n3, i1, i2, i3, len, nreserve;
    float min1, max1, min2, max2, o3, d3, o1, d1, xi, yi, tt;
    float **x, **y, **tmp, *symbolsz=NULL, symsize, xc, yc;    
    float ***data=NULL, barmin, barmax, minmax[2];
    char *symbol, sym[2]=" ", *color=NULL, *barfile;
    unsigned char **z=NULL, *barbuf[1];
    sf_datatype type;
    sf_file in, depth, bar=NULL;

    sf_init(argc,argv);
    in = sf_input("in");
    vp_init();

    if (NULL != sf_getstring("depth")) {
	depth = sf_input("depth"); /* values for colored plots */
	if (SF_UCHAR != sf_gettype(depth)) 
	    sf_error("Need uchar in depth");
    } else {
	depth = NULL;
    }

    if (!sf_histint(in,"n1",&n1)) sf_error("No n1= in input");
    if (!sf_histint(in,"n2",&n2)) n2=1;
    n = n1*n2;
    n3 = sf_leftsize(in,2);
    if (n3 > 1) {
	if (!sf_histfloat(in,"o3",&o3)) o3=0.;
	if (!sf_histfloat(in,"d3",&d3)) d3=1.;
    }

    x = sf_floatalloc2(n1,n2);
    y = sf_floatalloc2(n1,n2);
    t = sf_floatalloc(n);

    if (!sf_getbool("scalebar",&scalebar)) scalebar=false;
    /* if y, draw scalebar */

    if (!sf_getbool("wantframenum",&framenum)) framenum = (bool) (n3 > 1);
    /* if y, display third axis position in the corner */
    
    if (NULL != depth) {
	z = sf_ucharalloc2(n1,n2);
	/* initialize color table */
	if (NULL == (color = sf_getstring("color"))) color="j";
	/* color scheme (default is j) */
	if (!sf_getint ("nreserve",&nreserve)) nreserve = 8;
	/* reserved colors */
	vp_rascoltab(nreserve,color);

	if (scalebar) {
	    barfile = sf_getstring("bar");
	    /* file for scalebar data */
	    if (NULL == barfile) {
		barfile=sf_histstring(depth,"bar");
		if (NULL == barfile) sf_error("Need bar=");
	    }

	    nomin = (bool) (!sf_getfloat("minval",&barmin));
	    /* minimum value for scalebar (default is the data minimum) */
	    nomax = (bool) (!sf_getfloat("maxval",&barmax));
	    /* maximum value for scalebar (default is the data maximum) */
	
	    bar = sf_input(barfile);
	    if (SF_UCHAR != sf_gettype(bar)) sf_error("Need uchar in bar");

	    if (nomin) nomin = (bool) (!sf_histfloat(bar,"minval",&barmin));
	    if (nomax) nomax = (bool) (!sf_histfloat(bar,"maxval",&barmax));

	    barbuf[0] = (unsigned char*) sf_alloc(VP_BSIZE,sizeof(unsigned char));

	    if (!sf_getbool("barreverse",&barreverse)) barreverse=false;
	    /* if y, go from small to large on the bar scale */
	}
    } 

    if (!sf_getfloat("pclip",&pclip)) pclip=100.; /* clip percentile */

    type = sf_gettype(in);
    switch (type) {
	case SF_FLOAT:
	    if (!sf_histfloat(in,"o1",&o1)) o1=0.;
	    if (!sf_histfloat(in,"d1",&d1)) d1=1.;
	    
	    for (i2=0; i2 < n2; i2++) {
		for (i1=0; i1 < n1; i1++) {
		    x[i2][i1] = o1 + i1*d1;
		}
	    }
	    break;
	case SF_COMPLEX:
	    data = sf_floatalloc3(2,n1,n2);
	    break;
	default:
	    sf_error("Wrong data type (need float or complex)");
    }

    vp_plot_init(n2);

    symbol = sf_getstring("symbol");
    /* if set, plot with symbols instead of lines */
    if (NULL != symbol) {
	len = strlen(symbol);
	if (len < n2) {
	    symbol = (char*) sf_realloc(symbol,n2,sizeof(char));
	    for (i2=len; i2 < n2; i2++) {
		symbol[i2] = symbol[i2 % len];
	    }
	}

	symbolsz = sf_floatalloc(n2);
	if (!sf_getfloats("symbolsz",symbolsz,n2)) {
	    /* symbol size (default is 2) */
	    for (i2 = 0; i2 < n2; i2++)
		symbolsz[i2] = 2./33.;
	} else {
	    for (i2 = 0; i2 < n2; i2++)
		symbolsz[i2] /= 33.;
	}
    }

    if (!sf_getbool ("transp",&transp)) transp=false;
    /* if y, transpose the axes */
 
    for (i3 = 0; i3 < n3; i3++) {
	if (SF_COMPLEX == type) {
	    sf_floatread(data[0][0],2*n,in);
	    for (i2=0; i2 < n2; i2++) {
		for (i1=0; i1 < n1; i1++) {
		    x[i2][i1] = data[i2][i1][0];
		    y[i2][i1] = data[i2][i1][1];
		}
	    }
	    getminmax(x[0],&min1,&max1);
	} else {
	    sf_floatread(y[0],n,in);
	    min1=o1;
	    max1=o1+(n1-1)*d1;
	}
	getminmax(y[0],&min2,&max2);

	if (NULL != depth) sf_ucharread(z[0],n,depth);
	
	vp_stdplot_init (min1, max1, min2, max2,
			 transp,false,false,true);
	vp_frame_init(in,"blt",false);

	if (transp) {
	    tmp=x; x=y; y=tmp;
	    tt=max1; max1=max2; max2=tt;
	    tt=min1; min1=min2; min2=tt;
	}

	if (i3 > 0) vp_erase();

	if (framenum) vp_framenum(o3+i3*d3);
	vp_frame();

	for (i2=0; i2 < n2; i2++) {
	    vp_plot_set (i2);
	    
	    symsize = 2./33.;
	    if (NULL != symbol) {
		sym[0] = symbol[i2];
		symsize = symbolsz[i2];
	    } 

	    start = true;

	    for (i1=0; i1 < n1; i1++) {
		xi = x[i2][i1];
		yi = y[i2][i1];
		if (NULL != depth) vp_color(z[i2][i1]+256);

		if (isfinite(xi) && 
		    isfinite(yi)) {
		    if (NULL != symbol) {
			vp_umove(xi,yi);
			vp_where (&xc, &yc);
			vp_tjust (TH_SYMBOL, TV_SYMBOL);
			vp_gtext (xc,yc,symsize,0.,0.,symsize,sym);
		    } else if (start) {
			vp_umove(xi,yi);
			start=false;
		    } else {
			vp_udraw(xi,yi);
		    }
		} else {
		    start=true;
		}
	    }
	}

	if (depth && scalebar) {
	    sf_floatread(minmax,2,bar);
	    sf_ucharread(barbuf[0],VP_BSIZE,bar);

	    if (nomin) barmin=minmax[0];
	    if (nomax) barmax=minmax[1];

	    if (barreverse) {
		vp_barframe_init (depth,barmax,barmin);
	    } else {
		vp_barframe_init (depth,barmin,barmax);
	    }
	    vp_barraster(VP_BSIZE, barbuf);
	}
	
	if (transp) {
	    tmp=x; x=y; y=tmp;
	    tt=max1; max1=max2; max2=tt;
	    tt=min1; min1=min2; min2=tt;
	}
    } 
   

    exit(0);
}