Exemplo n.º 1
0
int
main(int argc, char **argv)
{
	int nt;		/* number of time samples per trace */
	float dt;	/* time sampling interval */
	float ft;	/* time of first sample */
	int it;		/* time sample index */
	int ncdp;	/* number of cdps specified */
	float *cdp;	/* array[ncdp] of cdps */
	int icdp;	/* index into cdp array */
	int jcdp;	/* index into cdp array */
	int nvnmo;	/* number of vnmos specified */
	float *vnmo;	/* array[nvnmo] of vnmos */
	int ntnmo;	/* number of tnmos specified */
	float *tnmo;	/* array[ntnmo] of tnmos */
	float **ovv;	/* array[ncdp][nt] of sloth (1/velocity^2) functions */
	float *ovvt;	/* array[nt] of sloth for a particular trace */
	int nanis1;	/* number of anis1's specified */
	int nanis2;	/* number of anis2's specified */
	float *anis1;	/* array[nanis1] of anis1's */
	float *anis2;	/* array[nanis2] of anis2's */
	float **oa1;	/* array[ncdp][nt] of anis1 functions */
	float **oa2;	/* array[ncdp][nt] of anis2 functions */
	float *oa1t;	/* array[nt] of anis1 for a particular trace */
	float *oa2t;	/* array[nt] of anis2 for a particular trace */
	float smute;	/* zero samples with NMO stretch exceeding smute */
	float osmute;	/* 1/smute */
	int lmute;	/* length in samples of linear ramp for mute */
	int itmute=0;	/* zero samples with indices less than itmute */
	int sscale;	/* if non-zero, apply NMO stretch scaling */
	int invert;	/* if non-zero, do inverse NMO */
	float sy;	/* cross-line offset component */
	int ixoffset;	/* indes for cross-line offset component */
	long oldoffset;	/* offset of previous trace */
	long oldcdp;	/* cdp of previous trace */
	int newsloth;	/* if non-zero, new sloth function was computed */
	float tn;	/* NMO time (time after NMO correction) */
	float v;	/* velocity */
	float *qtn;	/* NMO-corrected trace q(tn) */
	float *ttn;	/* time t(tn) for NMO */
	float *atn;	/* amplitude a(tn) for NMO */
	float *qt;	/* inverse NMO-corrected trace q(t) */
	float *tnt;	/* time tn(t) for inverse NMO */
	float *at;	/* amplitude a(t) for inverse NMO */
	float acdp;	/* temporary used to sort cdp array */
	float *aovv;	/* temporary used to sort ovv array */
	float *aoa1;	/* temporary used to sort oa1 array */
	float *aoa2;	/* temporary used to sort oa2 array */
	float temp;	/* temporary float */
	float tsq;	/* temporary float */
	int i;		/* index used in loop */
	int upward;	/* scans upward if it's nonzero. */

	/* hook up getpar */
	initargs(argc, argv);
	requestdoc(1);

	/* get information from the first header */
	if (!gettr(&tr)) err("can't get first trace");
	nt = tr.ns;
	dt = ((double) tr.dt)/1000000.0;
	ft = tr.delrt/1000.0;
	sy  = tr.sy;

	/* get velocity functions, linearly interpolated in time */
	ncdp = countparval("cdp");
	if (ncdp>0) {
		if (countparname("vnmo")!=ncdp)
			err("a vnmo array must be specified for each cdp");
		if (countparname("tnmo")!=ncdp)
			err("a tnmo array must be specified for each cdp");
		if (countparname("anis1")!=ncdp &&
		    countparname("anis1")!=0)
			err("an anis1 array must be specified for each cdp, "
			    "or omitted at all");
		if (countparname("anis2")!=ncdp &&
		    countparname("anis2")!=0)
			err("an anis2 array must be specified for each cdp, "
			    "or omitted at all");
	} else {
		ncdp = 1;
		if (countparname("vnmo")>1)
			err("only one (or no) vnmo array must be specified");
		if (countparname("tnmo")>1)
			err("only one (or no) tnmo array must be specified");
		if (countparname("anis1")>1)
			err("only one (or no) anis1 array must be specified");
		if (countparname("anis2")>1)
			err("only one (or no) anis2 array must be specified");
	}
	cdp = ealloc1float(ncdp);
	if (!getparfloat("cdp",cdp)) cdp[0] = tr.cdp;
	ovv = ealloc2float(nt,ncdp);
	oa1 = ealloc2float(nt,ncdp);
	oa2 = ealloc2float(nt,ncdp);
	for (icdp=0; icdp<ncdp; ++icdp) {
		nvnmo = countnparval(icdp+1,"vnmo");
		ntnmo = countnparval(icdp+1,"tnmo");
		nanis1 = countnparval(icdp+1,"anis1");
		nanis2 = countnparval(icdp+1,"anis2");
		if (nvnmo!=ntnmo && !(ncdp==1 && nvnmo==1 && ntnmo==0))
			err("number of vnmo and tnmo values must be equal");
		if (nanis1!=nvnmo && nanis1 != 0)
			err("number of vnmo and anis1 values must be equal");
		if (nanis2!=nvnmo && nanis2 != 0)
			err("number of vnmo and anis2 values must be equal");
		if (nvnmo==0) nvnmo = 1;
		if (ntnmo==0) ntnmo = nvnmo;
		if (nanis1==0) nanis1 = nvnmo;
		if (nanis2==0) nanis2 = nvnmo;
		/* equal numbers of parameters vnmo, tnmo, anis1, anis2 */
		vnmo = ealloc1float(nvnmo);
		tnmo = ealloc1float(nvnmo);
		anis1 = ealloc1float(nvnmo);
		anis2 = ealloc1float(nvnmo);
		if (!getnparfloat(icdp+1,"vnmo",vnmo)) vnmo[0] = 1500.0;
		if (!getnparfloat(icdp+1,"tnmo",tnmo)) tnmo[0] = 0.0;
		if (!getnparfloat(icdp+1,"anis1",anis1)) 
			for (i=0; i<nvnmo; i++) anis1[i] = 0.0;
		if (!getnparfloat(icdp+1,"anis2",anis2))
			for (i=0; i<nvnmo; i++) anis2[i] = 0.0;
		for (it=1; it<ntnmo; ++it)
			if (tnmo[it]<=tnmo[it-1])
				err("tnmo values must increase monotonically");
		for (it=0,tn=ft; it<nt; ++it,tn+=dt) {
			intlin(ntnmo,tnmo,vnmo,vnmo[0],vnmo[nvnmo-1],1,&tn,&v);
			ovv[icdp][it] = 1.0/(v*v);
		}
		for (it=0,tn=ft; it<nt; ++it,tn+=dt) {
			intlin(ntnmo,tnmo,anis1,anis1[0],anis1[nanis1-1],1,&tn,
			       &oa1[icdp][it]);
		}
		for (it=0,tn=ft; it<nt; ++it,tn+=dt) {
			intlin(ntnmo,tnmo,anis2,anis2[0],anis2[nanis2-1],1,&tn,
			       &oa2[icdp][it]);
		}
		free1float(vnmo);
		free1float(tnmo);
		free1float(anis1);
		free1float(anis2);
	}

	/* sort (by insertion) sloth and anis functions by increasing cdp */
	for (jcdp=1; jcdp<ncdp; ++jcdp) {
		acdp = cdp[jcdp];
		aovv = ovv[jcdp];
		aoa1 = oa1[jcdp];
		aoa2 = oa2[jcdp];
		for (icdp=jcdp-1; icdp>=0 && cdp[icdp]>acdp; --icdp) {
			cdp[icdp+1] = cdp[icdp];
			ovv[icdp+1] = ovv[icdp];
			oa1[icdp+1] = oa1[icdp];
			oa2[icdp+1] = oa2[icdp];
		}
		cdp[icdp+1] = acdp;
		ovv[icdp+1] = aovv;
		oa1[icdp+1] = aoa1;
		oa2[icdp+1] = aoa2;
	}

	/* get other optional parameters */
	if (!getparfloat("smute",&smute)) smute = 1.5;
	if (!getparint("ixoffset",&ixoffset)) ixoffset=0; 
	  if (ixoffset==0) sy = 0.0;
	if (smute<=0.0) err("smute must be greater than 0.0");
	if (!getparint("lmute",&lmute)) lmute = 25;
	if (!getparint("sscale",&sscale)) sscale = 1;
	if (!getparint("invert",&invert)) invert = 0;
	if (!getparint("upward",&upward)) upward = 0;

	/* allocate workspace */
	ovvt = ealloc1float(nt);
	oa1t = ealloc1float(nt);
	oa2t = ealloc1float(nt);
	ttn = ealloc1float(nt);
	atn = ealloc1float(nt);
	qtn = ealloc1float(nt);
	tnt = ealloc1float(nt);
	at = ealloc1float(nt);
	qt = ealloc1float(nt);

	/* interpolate sloth and anis function for first trace */
	interpovv(nt,ncdp,cdp,ovv,oa1,oa2,(float)tr.cdp,ovvt,oa1t,oa2t);

	/* set old cdp and old offset for first trace */
	oldcdp = tr.cdp;
	oldoffset = tr.offset-1;

	warn("sy = %f",sy);

	/* loop over traces */
	do {
		/* if necessary, compute new sloth and anis function */
		if (tr.cdp!=oldcdp && ncdp>1) {
			interpovv(nt,ncdp,cdp,ovv,oa1,oa2,(float)tr.cdp,
				  ovvt,oa1t,oa2t);
			newsloth = 1;
		} else {
			newsloth = 0;
		}

		/* if sloth and anis function or offset has changed */
		if (newsloth || tr.offset!=oldoffset) {
			/* compute time t(tn) (normalized) */
			temp = ((float) tr.offset*(float) tr.offset + sy*sy)/(dt*dt);
			for (it=0,tn=ft/dt; it<nt; ++it,tn+=1.0) {
				tsq = temp*ovvt[it] + \
				      oa1t[it]*temp*temp / (1.0+oa2t[it]*temp);
				if (tsq<0.0)
					err("negative moveout; check anis1, "
					    "anis2, or suwind far-offset "
					    "traces");
				if ((1.0+oa2t[it]*temp)<=0.0)
					err("anis2 negative and too small; "
					    "check anis2, or suwind far-offset"
					    " traces");
				ttn[it] = sqrt (tn*tn + tsq);
				}
			/* compute inverse of stretch factor a(tn) */
			atn[0] = ttn[1]-ttn[0];
			for (it=1; it<nt; ++it)
				atn[it] = ttn[it]-ttn[it-1];
			
			/* determine index of first sample to survive mute */
			osmute = 1.0/smute;
			if( !upward ) {
				for (it=0; it<nt-1 && atn[it]<osmute; ++it)
					;
			} else {
				/* scan samples from bottom to top */
				for (it=nt-1; it>0 && atn[it]>=osmute; --it)
					;
			}
			itmute = it;

			/* if inverse NMO will be performed */
			if (invert) {
							
				/* compute tn(t) from t(tn) */
				yxtoxy(nt-itmute,1.0,ft/dt+itmute,&ttn[itmute],
					nt-itmute,1.0,ft/dt+itmute,
					ft/dt-nt,ft/dt+nt,&tnt[itmute]);
			
				/* adjust mute time */
				itmute = 1.0+ttn[itmute]-ft/dt;
				itmute = MIN(nt-2,itmute);
								
				/* compute a(t) */
				if (sscale) {
					for (it=itmute+1; it<nt; ++it)
						at[it] = tnt[it]-tnt[it-1];
					at[itmute] = at[itmute+1];
				}
			}
		}
		
		/* if forward (not inverse) nmo */
		if (!invert) {
	
			/* do nmo via 8-point sinc interpolation */
			ints8r(nt,1.0,ft/dt,tr.data,0.0,0.0,
				nt-itmute,&ttn[itmute],&qtn[itmute]);
			
			/* apply mute */
			for (it=0; it<itmute; ++it)
				qtn[it] = 0.0;
			
			/* apply linear ramp */
			for (it=itmute; it<itmute+lmute && it<nt; ++it)
				qtn[it] *= (float)(it-itmute+1)/(float)lmute;
			
			/* if specified, scale by the NMO stretch factor */
			if (sscale)
				for (it=itmute; it<nt; ++it)
					qtn[it] *= atn[it];
			
			/* copy NMO corrected trace to output trace */
			memcpy( (void *) tr.data,
					(const void *) qtn, nt*sizeof(float));
		
		/* else inverse nmo */
		} else {
	
			/* do inverse nmo via 8-point sinc interpolation */
			ints8r(nt,1.0,ft/dt,tr.data,0.0,0.0,
				nt-itmute,&tnt[itmute],&qt[itmute]);
			
			/* apply mute */
			for (it=0; it<itmute; ++it)
				qt[it] = 0.0;
			
			/* if specified, undo NMO stretch factor scaling */
			if (sscale)
				for (it=itmute; it<nt; ++it)
					qt[it] *= at[it];
			
			/* copy inverse NMO corrected trace to output trace */
			memcpy( (void *) tr.data,
					(const void *) qt,nt*sizeof(float));
		}

		/* write output trace */
		puttr(&tr);

		/* remember offset and cdp */
		oldoffset = tr.offset;
		oldcdp = tr.cdp;

	} while (gettr(&tr));

	return(CWP_Exit());
}
Exemplo n.º 2
0
int
main(int argc, char **argv)
{
	float phase;		/* phase shift = phasefac*PI		*/
	float power;		/* phase shift = phasefac*PI		*/
	register float *rt;	/* real trace				*/
	register complex *ct;	/* complex transformed trace		*/
	complex *filt;		/* complex power	 		*/
	int nt;			/* number of points on input trace	*/
	size_t ntsize;		/* nt in bytes				*/
	int ncdp;               /* number of cdps specified */
	int icdp;       	/* index into cdp array */

	long oldoffset;         /* offset of previous trace */
        long oldcdp;    	/* cdp of previous trace */
        int newsloth;   	/* if non-zero, new sloth function was computed */
	int jcdp;       	/* index into cdp array */
	float dt;		/* sample spacing (secs) on input trace	*/
	float tn;		/* sample spacing (secs) on input trace	*/
	float omega;		/* circular frequency			*/
	float domega;		/* circular frequency spacing (from dt)	*/
	int nfft;		/* number of points in nfft		*/
	int ntnmo;      	/* number of tnmos specified            */
	float *cdp;     	/* array[ncdp] of cdps */

	float *vnmo;   		/* array[nvnmo] of vnmos               */
	float *ovvt;   		/* array[nvnmo] of vnmos               */
	int nvnmo;      	/* number of tnmos specified            */
	float *fnmo;   		 /* array[ntnmo] of tnmos               */
	float **ovv;   		 /* array[nf] of fnmos                  */
	float doffs;             /* offset                            */
	float acdp;     	/* temporary used to sort cdp array */
        float *aovv;    	/* temporary used to sort ovv array */

        int invert;              /*  if non-zero, do invers DLMO       */
        int cm;                  /*  if non-zero, the offset in cm     */
        int nf;                 /* number of frequencies (incl Nyq)     */
        int it;                 /* number of frequencies (incl Nyq)     */
	float onfft;		/* 1 / nfft				*/
	float v;                 /* velocity                            */
	size_t nzeros;		/* number of padded zeroes in bytes	*/
	
	
	/* Initialize */
	initargs(argc, argv);
	requestdoc(1);

	/* Set parameters */
	power=0.0;

	/* Get info from first trace*/ 
	if (!gettr(&tr))	err("can't get first trace");

	nt = tr.ns;

	if (!getparfloat("dt", &dt))	dt = ((double) tr.dt)/1000000.0;
	if (!dt)	err("dt field is zero and not getparred");
	ntsize = nt * FSIZE;

        if (!getparint("invert",&invert)) invert = 0;
        if (!getparint("cm",&cm)) cm = 0;

	/* Set up for fft */
	nfft = npfaro(nt, LOOKFAC * nt);
	if (nfft >= SU_NFLTS || nfft >= PFA_MAX)
		err("Padded nt=%d -- too big", nfft);

        nf = nfft/2 + 1;
        onfft = 1.0 / nfft;
	nzeros = (nfft - nt) * FSIZE;
	domega = TWOPI * onfft / dt;


	/* get velocity functions, linearly interpolated in frequency */

	ncdp = countparval("cdp");

	if (ncdp>0) {
                if (countparname("vnmo")!=ncdp)
                        err("a vnmo array must be specified for each cdp");
                if (countparname("fnmo")!=ncdp)
                        err("a tnmo array must be specified for each cdp");
        } else {
                ncdp = 1;
                if (countparname("vnmo")>1)
                        err("only one (or no) vnmo array must be specified");
                if (countparname("fnmo")>1)
                        err("only one (or no) tnmo array must be specified");
        }

	cdp = ealloc1float(ncdp);
        if (!getparfloat("cdp",cdp)) cdp[0] = tr.cdp;
        ovv = ealloc2float(nf,ncdp);

	for (icdp=0; icdp<ncdp; ++icdp) {
                nvnmo = countnparval(icdp+1,"vnmo");
                ntnmo = countnparval(icdp+1,"fnmo");
                if (nvnmo!=ntnmo && !(ncdp==1 && nvnmo==1 && ntnmo==0))
                        err("number of vnmo and tnmo values must be equal");
                if (nvnmo==0) nvnmo = 1;
                if (ntnmo==0) ntnmo = nvnmo;
                /* equal numbers of parameters vnmo, fnmo  */

                vnmo = ealloc1float(nvnmo);
                fnmo = ealloc1float(nvnmo);

                if (!getnparfloat(icdp+1,"vnmo",vnmo)) vnmo[0] = 400.0;
                if (!getnparfloat(icdp+1,"fnmo",fnmo)) fnmo[0] = 0.0;
		

		for (it=0; it<ntnmo; ++it)
			fnmo[it]*=TWOPI;

                for (it=1; it<ntnmo; ++it)
                        if (fnmo[it]<=fnmo[it-1])
                                err("tnmo values must increase monotonically");

		for (it=0,tn=0; it<nf; ++it,tn+=domega) {
			intlin(ntnmo,fnmo,vnmo,vnmo[0],vnmo[nvnmo-1],1,&tn,&v);
			ovv[icdp][it] = 1.0/(v); 
		}
                free1float(vnmo);
                free1float(fnmo);
        }



/* sort (by insertion) sloth and anis functions by increasing cdp */

        for (jcdp=1; jcdp<ncdp; ++jcdp) {
                acdp = cdp[jcdp];
                aovv = ovv[jcdp];
                for (icdp=jcdp-1; icdp>=0 && cdp[icdp]>acdp; --icdp) {
                        cdp[icdp+1] = cdp[icdp];
                        ovv[icdp+1] = ovv[icdp];
                }
                cdp[icdp+1] = acdp;
                ovv[icdp+1] = aovv;
        }

/* allocate workspace */


        ovvt = ealloc1float(nf);

/* interpolate sloth and anis function for first trace */

        interpovv(nf,ncdp,cdp,ovv,(float)tr.cdp,ovvt);

        /* set old cdp and old offset for first trace */
        oldcdp = tr.cdp;
        oldoffset = tr.offset-1;



	/* Allocate fft arrays */
	rt   = ealloc1float(nfft);
	ct   = ealloc1complex(nf);
	filt = ealloc1complex(nf);


		

	/* Loop over traces */
	do {

		/* if necessary, compute new sloth and anis function */
                	if (tr.cdp!=oldcdp && ncdp>1) {
                        interpovv(nt,ncdp,cdp,ovv,(float)tr.cdp,
                                  ovvt);
                        newsloth = 1;
                } else {
                        newsloth = 0;
                }

		/* if sloth and anis function or offset has changed */

                if (newsloth || tr.offset!=oldoffset) {

		doffs = (fabs)((float)(tr.offset));
		if (cm==1) doffs/=100;
		/* Load trace into rt (zero-padded) */
		memcpy( (void *) rt, (const void *) tr.data, ntsize);
		memset((void *) (rt + nt), (int) '\0', nzeros);

		/* FFT */
		pfarc(1, nfft, rt, ct);


		/* Apply filter */
		{ register int i;
		for (i = 0; i < nf; ++i){
			omega = i * domega;
			if (power < 0 && i == 0) omega = FLT_MAX;
			if (invert==0)
			phase = -1.0*omega*ovvt[i]*doffs;
			else
			phase = 1.0*omega*ovvt[i]*doffs;
			
		/*	filt[i] = cmplx(cos(phase),sin(phase)); */
			filt[i] = cwp_cexp(crmul(I,phase)); 
			filt[i] = crmul(filt[i], onfft);
			ct[i] = cmul(ct[i], filt[i]);
			
			}
		}
	  }
		/* Invert */
		pfacr(-1, nfft, ct, rt);


		/* Load traces back in, recall filter had nfft factor */
		{ register int i;
		for (i = 0; i < nt; ++i)  tr.data[i] = rt[i];
		}


		puttr(&tr);

	} while (gettr(&tr));


	return EXIT_SUCCESS;
}
Exemplo n.º 3
0
main(int argc, char **argv)
{
	char *s;
	short h, vh[N];
	unsigned short u, vu[N];
	long l, vl[N];
	unsigned long v, vv[N];
	int i, vi[N], ipar, npar, nval;
	unsigned int p, vp[N];
	float f, vf[N];
	double d, vd[N];

	initargs(argc, argv);

	/* int parameters */
	npar = countparname("i");
	printf("\nnumber of i pars = %d\n",npar);
	for (ipar=1; ipar<=npar; ++ipar) {
		getnparint(ipar,"i",&i);
		printf("occurence %d of i=%d\n",ipar,i);
	}
	if (getparint("i", &i))	
		printf("last occurence of i=%d\n",i);
	npar = countparname("vi");
	printf("number of vi pars = %d\n",npar);
	for (ipar=1; ipar<=npar; ++ipar) {
		nval = countnparval(ipar,"vi");
		printf("occurence %d has %d values\n",ipar,nval);
		nval = getnparint(ipar,"vi",vi);
		printf("vi=");
		for (i=0; i<nval; i++)
			printf("%d%c",vi[i],i==nval-1?'\n':',');
	}
	if (npar>0) {
		nval = countparval("vi");
		printf("last occurence has %d values\n",nval);
		getparint("vi",vi);
		printf("vi=");
		for (i=0; i<nval; i++)
			printf("%d%c",vi[i],i==nval-1?'\n':',');
	}

	/* float parameters */
	npar = countparname("f");
	printf("\nnumber of f pars = %d\n",npar);
	for (ipar=1; ipar<=npar; ++ipar) {
		getnparfloat(ipar,"f",&f);
		printf("occurence %d of f=%g\n",ipar,f);
	}
	if (getparfloat("f", &f))	
		printf("last occurence of f=%g\n",f);
	npar = countparname("vf");
	printf("number of vf pars = %d\n",npar);
	for (ipar=1; ipar<=npar; ++ipar) {
		nval = countnparval(ipar,"vf");
		printf("occurence %d has %d values\n",ipar,nval);
		nval = getnparfloat(ipar,"vf",vf);
		printf("vf=");
		for (i=0; i<nval; i++)
			printf("%g%c",vf[i],i==nval-1?'\n':',');
	}
	if (npar>0) {
		nval = countparval("vf");
		printf("last occurence has %d values\n",nval);
		getparfloat("vf",vf);
		printf("vf=");
		for (i=0; i<nval; i++)
			printf("%g%c",vf[i],i==nval-1?'\n':',');
	}

	/* string parameters */
	npar = countparname("s");
	printf("\nnumber of s pars = %d\n",npar);
	for (ipar=1; ipar<=npar; ++ipar) {
		getnparstring(ipar,"s",&s);
		printf("occurence %d of s=%s\n",ipar,s);
	}
	if (getparstring("s", &s))	
		printf("last occurence of s=%s\n",s);
	
	if( auxgetpar("aux","i","i",&i) ) 
		printf("in aux last occurence of i=%d\n",i);
	if( auxgetpar("aux","f","f",&f) )
		printf("in aux last occurence of f=%f\n",f);
	if( auxgetpar("aux","s","s",&s) ) 
		printf("in aux last occurence of s=%s\n",s);

	if (getparint("i", &i))	
		printf("last occurence of i=%d\n",i);
	if( auxgetpar("aux","junk","s",&s) ) 
		printf("in aux last occurence of junk=%s\n",s);

	return EXIT_SUCCESS;
}
Exemplo n.º 4
0
/**************** end self doc ********************************/

segy tr;	/* Input and output trace data of length nt */
int main (int argc, char **argv)
{
	int nt;
	int icmp;
	int j;
	int neta;
	int nv;
	int ncdps;
	int nc;
	int ic;
	int ic1=0;
	int ic2=0;
	int it;
	int iv;
	int ie;
	int nvel;
	int nvstack;


	float *c;
	float *v;
	float *t;
	float *e;

	float *time;
	float *eta;
	float *vel;
	float *p;

	float vminstack;
	float dt;
	float vmin;
	float vmax;
	float etamin;
	float etamax;
	float dv;
	float deta;
	float wc=0.0;
	float wv;
	float we;
	float ee;
	float vv;
	float vscale;

	initargs(argc,argv);
	requestdoc(1);

	if (!getparint("nv",&nv)) nv = 21;
	if (!getparint("neta",&neta)) neta=11;
	if (!getparint("ncdps",&ncdps)) ncdps = 1130;
	if (!getparfloat("vmin",&vmin)) vmin = 1500.;
	if (!getparfloat("vmax",&vmax)) vmax = 2500.;
	if (!getparfloat("etamin",&etamin)) etamin = 0.10;
	if (!getparfloat("etamax",&etamax)) etamax = 0.25;
	if (!getparint("nvstack",&nvstack)) nvstack = 0;
	if (!getparfloat("vminstack",&vminstack)) vminstack = 0.25;
	if (!getparfloat("vscale",&vscale)) vscale = 1.0;

	dv=(vmax-vmin)/MAX((nv-1),1);
	deta = (etamax-etamin)/MAX((neta-1),1);
	if(deta==0) {
		deta=1;
		neta=1;
	}
	if(nvstack>5) {
		etamin=0;
		etamax=0.;
		deta=1.;
		vmin=0.;
		nv=nvstack;
		neta=1;
		dv=1./(vminstack*vminstack*(nvstack-5));
	}

	if (!gettr(&tr))  err("can't get first trace");
	nt = tr.ns;
	dt = 0.000001*tr.dt;
	fprintf(stderr,"supaint: sample rate = %f s, number of samples = %d\n",
		dt,nt);
	p = ealloc1float(nv*neta*nt);

	nc = countparname("cdp");
	if(countparname("v")!=nc) err("v array must be specified for each cdp");
	if(countparname("t")!=nc) err("t array must be specified for each cdp");
	if(nvstack<6){
		if(countparname("eta")!=nc) err("eta array must be specified for each cdp");
	}
	vel=ealloc1float(nc*nt);
	eta=ealloc1float(nc*nt);
	time=ealloc1float(nt);
	c=ealloc1float(nc);
	for(it=0;it<nt;it++) time[it]=it*dt;
	if(nvstack>5) {
	    for(ic=0;ic<nc;ic++) {
		getnparfloat(ic+1,"cdp",&c[ic]);
		nvel=countnparval(ic+1,"v");
		fprintf(stderr,"cdp=%f, number of (time,velocity) values = %d\n",c[ic],nvel);
		if(countnparval(ic+1,"t")!=nvel)
			err("For each cdp control point, t and v must have the same number of values");
		v=ealloc1float(nvel);
		t=ealloc1float(nvel);
		getnparfloat(ic+1,"t",t);
		getnparfloat(ic+1,"v",v);
		for(j=0;j<nvel;j++) v[j]*=vscale;
		for(j=0;j<nvel;j++) fprintf(stderr,"	time=%f velocity=%f\n",t[j],v[j]);
		intlin(nvel,t,v,v[0],v[nvel-1],nt,time,&vel[ic*nt]);
		free(v);
		free(t);	
	    }
	    for(j=0;j<nt*nc;j++) {
		vel[j]=1./(vel[j]*vel[j]);
		eta[j]=0.;
	    }
	}else{
	    for(ic=0;ic<nc;ic++) {
		getnparfloat(ic+1,"cdp",&c[ic]);
		nvel=countnparval(ic+1,"v");
		fprintf(stderr,"cdp=%f, number of triplet values = %d\n",c[ic],nvel);
		if(countnparval(ic+1,"t")!=nvel || countnparval(ic+1,"eta")!=nvel ) 
			err("For each cdp control point, t,v,and eta must have the same number of values");
		v=ealloc1float(nvel);
		t=ealloc1float(nvel);
		e=ealloc1float(nvel);
		getnparfloat(ic+1,"t",t);
		getnparfloat(ic+1,"v",v);
		for(j=0;j<nvel;j++) v[j]*=vscale;
		getnparfloat(ic+1,"eta",e);
		for(j=0;j<nvel;j++) {
			fprintf(stderr,"	time=%f velocity=%f eta=%f\n",
				t[j],v[j],e[j]);
		}
		intlin(nvel,t,v,v[0],v[nvel-1],nt,time,&vel[ic*nt]);
		intlin(nvel,t,e,e[0],e[nvel-1],nt,time,&eta[ic*nt]);
		free(v);
		free(t);
		free(e);
	    }
	}
	free(time);
	for(icmp=0;icmp<ncdps;icmp++) {
		for(j=0;j<(nv*neta);j++) {
			if(icmp==0 && j==0 ) {
				/* data already in memory */
			}else{
				if (!gettr(&tr))  
					err("can't get input trace");
			}
			for(it=0;it<nt;it++)
				p[it+j*nt]=tr.data[it];
		}
		if(icmp<=c[0]) {
			ic1=0;
			ic2=0;
			wc=0.;
		}else if(icmp>=c[nc-1]) {
			ic1=nc-1;
			ic2=nc-1;
			wc=0.;
		}else{
			for(ic=1;ic<nc;ic++) {
				ic1=ic-1;
				ic2=ic;
				wc=(c[ic2]-icmp)/(c[ic2]-c[ic1]);
				if(icmp>c[ic1] && icmp<=c[ic2]) break;
			}
		}

		for(it=0;it<nt;it++) {
			ee=(wc*eta[it+ic1*nt]+(1.-wc)*eta[it+ic2*nt]-etamin)/deta;
			vv=(wc*vel[it+ic1*nt]+(1.-wc)*vel[it+ic2*nt]-vmin)/dv;
			ie=ee;
			we=ee-ie;
			iv=vv;
			wv=vv-iv;
			tr.data[it]=0.;
			if(neta==1) {
				if(iv>=0 && iv<nv-1) {
					tr.data[it]=(1-wv)*p[it+iv*nt] + 
							wv*p[it+(iv+1)*nt];	
				}
			}else if(iv>=0 && iv<nv-1 && ie>=0 && ie<neta-1) {
				tr.data[it]=(1-we)*(1-wv)*p[it+(ie*nv+iv)*nt]+
					(1-we)*wv*p[it+(ie*nv+iv+1)*nt]+
					we*(1-wv)*p[it+((ie+1)*nv+iv)*nt]+
					we*wv*p[it+((ie+1)*nv+iv+1)*nt];
				}
		}
		tr.f2=0.;
		tr.d2=1.;
		tr.f1=0.;
		tr.d1=dt;
		tr.offset=0;
		tr.cdp=icmp;
		tr.igc=0;
		tr.igi=0;
		tr.sx=0.5*(tr.sx+tr.gx);
		tr.gx=tr.sx;
		tr.cdpt=0;
		puttr(&tr);
		if(icmp==20*(icmp/20)) fprintf(stderr,"supaint: have output cmp %d\n",icmp);
	}
	free(p);
	free(c);
	free(eta);
	free(vel);
	return EXIT_SUCCESS;
}
Exemplo n.º 5
0
main(int argc, char **argv)
{
        float **filter;         /* filter arrays                        */
        float *tf;              /* times at which filters are centered  */
        int *itf;               /* ... as integers                      */
	int jmin;		/* index of first filter itf value	*/
	int jmax;		/* index of last filter itf value	*/
        int nfft;     	        /* fft sizes in each time gate          */
        int nfreq;     	        /* number of frequencies  	        */
        float **ftrace;         /* filtered sub-traces                  */
        int nfilter;            /* number of filters specified          */
      	float dt;               /* sample spacing                       */
        float tmin;             /* first time on traces                 */
        int nt;                 /* number of points on input trace      */
	float *data;
	FILE *infp=stdin, *outfp=stdout;
        
        /* Initialize */
        initargs(argc, argv);
        requestdoc(1);


        /* Get info from first trace */ 
	file2g(infp);
	file2g(outfp);
        if (!fgettr(infp,&tr))  err("can't get first trace");
        if (tr.trid && tr.trid != TREAL)
                err("input is not seismic data, trid=%d", tr.trid);
        nt = tr.ns;
        if (!getparfloat("dt", &dt))    dt = (float)tr.dt/1000000.0;
        if (!dt) err("dt field is zero and not getparred");
	tmin = tr.delrt/1000.0;


        /* Get number of filters and center times */
        if (!(nfilter = countparval("tf")))  MUSTGETPARFLOAT("tf", tf);
	if (countparname("f") != nfilter)
		err("must give one f 4-tuple for each"
		    " (%d) tf value", nfilter);
		
	/* Leave room for possibly missing filters at endpoints */
	tf = ealloc1float(nfilter+4);  /* never use ist2 or last 2 */
	itf = ealloc1int(nfilter+4);
        getparfloat("tf", tf+2); jmin = 2; jmax = nfilter + 1;
	{ register int j;
          for (j = jmin; j <= jmax; ++j)  itf[j] = NINT((tf[j] - tmin)/dt);
        }

	

        /* Make filters with scale for inverse transform */
	nfft = npfaro(nt, LOOKFAC * nt);
	if (nfft >= MIN(SU_NFLTS, PFA_MAX))
		err("Padded nt=%d -- too big", nfft);
	nfreq = nfft/2 + 1;
	filter = ealloc2float(nfreq, nfilter+4); /* never use 1st & last */
        { register int j;
          for (j = jmin; j <= jmax; ++j) {
                float *f = ealloc1float(4);

                if (getnparfloat(j-jmin+1, "f", f) != 4)
                        err("must give 4 corner frequencies in f=");
        	if (f[0] < 0.0 || f[0] > f[1] ||
				  f[1] >= f[2] || f[2] > f[3])
               		err("Filter #%d has bad frequencies", j - jmin + 1);
                makefilter(f, nfft, nfreq, dt, filter[j]);
          }
        }
	


	/* User may not have given a filter for tmin and/or tmax--	*/
	/* Extend array so can always assume these filters are present.	*/
	/* Note don't really use any of the extra storage in **filter!	*/
	if (itf[jmin] > 0) {
		filter[jmin-1] = filter[jmin]; 
		itf[jmin-1] = 0;
		--jmin;
	}
	if (itf[jmax] < nt - 1) {
		filter[jmax+1] = filter[jmax];
		itf[jmax+1] = nt - 1;
		++jmax;
	}
	
	
	/* Extend array so can always consider time points to be interior */
	itf[jmin-1] = 0;      /* now jmin - 1 is a valid index */
	itf[jmax+1] = nt - 1; /* now jmax + 1 is a valid index */


        /* Main loop over traces */
        ftrace = ealloc2float(nt, nfilter+4); /* never use 1st & last */
	data = ealloc1float(nt);
        do {
                register int i, j;
		
		/* Construct filtered sub-traces */
		for (j = jmin; j <= jmax; ++j) {			
			bzero(data, nt*FSIZE);
			for (i = itf[j-1]; i <= itf[j+1]; ++i)
				data[i] = tr.data[i];
                        bandpass(data,nt,nfft,nfreq,filter[j],ftrace[j]);
                }

               /* Compose filtered trace from sub-traces */
               for (j = jmin; j < jmax; ++j) {
	       		float fitfj;
                        for (fitfj = i = itf[j]; i <= itf[j+1]; ++i) {
                                float a = (i - fitfj)/(itf[j+1] - fitfj);
                                tr.data[i] = (1-a)*ftrace[j][i] +
                                                 a*ftrace[j+1][i];
			}
                }
                
                fputtr(outfp,&tr);
        } while (fgettr(infp,&tr));

        return EXIT_SUCCESS;
}
Exemplo n.º 6
0
int main(int argc, char **argv)
{
  FILE *fpint, *fpcp, *fpcs, *fpro;
  int   example, verbose, writeint, nb;
  int	above, diffrwidth, dtype;
  int   Ngp, Ngs, Ngr, Np, Ns, Nr, Ng, Ni, Nv, Nvi, No, Noi;
  int   jint, jcount, j, ix, iz, nx, nz, nxp, nzp, *zp, nmaxx, nminx, optgrad, poly, gradt; 
  int	ncp, nro, ncs, nvel, skip, rayfile, store_int;
	long lseed;
  size_t  nwrite;
  float *data_out, orig[2], cp0, cs0, ro0;
  float	*x, *z, *var, *interface, **inter;
  float back[3], sizex, sizez, dx, dz;
  float **cp ,**cs, **ro, aver, gradlen, gradcp, gradcs, gradro;
  
  /* Gradient unit flag    */
  /* ------------------    */
  /* - 0 Unit : m/s per dz */
  /* - 1 Unit : m/s per m  */
  int gradunit;
  /* Number of Z-reference points (one per layer) */
  int Nzr=0;
  
  float   **gridcp, **gridcs, **gridro;
  segy    *hdrs;
  FILE    *fpout;
  char    *file, intt[10], *file_base, filename[150];
  
  initargs(argc, argv);
  requestdoc(1);
  
  if (!getparint("example", &example)) example=0;
  else { plotexample(); exit(0); }
  
  if(getparstring("file",&file_base)) 
    vwarn("parameters file is changed to file_base");
  else {
    if(!getparstring("file_base",&file_base))
      verr("file_base not specified.");
  }
  if(getparfloat("back", back)) {
    vwarn("parameters back is not used anymore");
    vwarn("it has changed into cp0 (ro0,cs0 are optional)");
    nb = countparval("back");
    if (nb == 1) {
      vwarn("The new call should be cp0=%.1f",back[0]);
      cp0 = back[0];
    }
    if (nb == 2) {
      vwarn("The new call should be cp0=%.1f",back[0]);
      vwarn("                       ro0=%.1f",back[1]);
      cp0 = back[0];
      ro0 = back[1];
    }
    if (nb == 3) {
      vwarn("The new call should be cp0=%.1f",back[0]);
      vwarn("                       cs0=%.1f",back[1]);
      vwarn("                       ro0=%.1f",back[2]);
      cp0 = back[0];
      cs0 = back[1];
      ro0 = back[2];
    }
    vmess("Don't worry everything still works fine");
  }
  else {
    if(!getparfloat("cp0", &cp0)) verr("cp0 not specified.");
    if(!getparfloat("cs0", &cs0)) cs0 = -1;
    if(!getparfloat("ro0", &ro0)) ro0 = -1;
  }
  if(!getparfloat("sizex", &sizex)) verr("x-model size not specified.");
  if(!getparfloat("sizez", &sizez)) verr("z-model size not specified.");
  if(!getparfloat("dx", &dx)) verr("grid distance dx not specified.");
  if(!getparfloat("dz", &dz)) verr("grid distance dz not specified.");
  if(!getparfloat("orig", orig)) orig[0] = orig[1] = 0.0;
  if(!getparint("gradt", &gradt)) gradt = 1;
  if(!getparint("gradunit", &gradunit)) gradunit = 0;
  if(!getparint("writeint", &writeint)) writeint = 0;
  if(!getparint("rayfile", &rayfile)) rayfile = 0;
  if(!getparint("skip", &skip)) skip = 5;
  if(!getparint("above", &above)) above=0;
  if(!getparint("verbose", &verbose)) verbose=0;
  if(!getparint("dtype", &dtype)) dtype = 0;
  
  if ((writeint == 1) || (rayfile == 1)) store_int = 1;
  else store_int = 0;
  
  /*=================== check parameters =================*/
  
  Np = countparname("cp");
  Ns = countparname("cs");
  Nr = countparname("ro");
  Ng = countparname("grad");
  No = countparname("poly");
  Ni = countparname("intt");
  Nv = countparname("var");
  Ngp = countparname("gradcp");
  Ngs = countparname("gradcs");
  Ngr = countparname("gradro");
  
  Nvi = 0;
  for (jint = 1; jint <= Ni; jint++) {
    getnparstring(jint,"intt", &file);
    strcpy(intt, file);
    if (strstr(intt,"sin") != NULL) Nvi++;
    if (strstr(intt,"rough") != NULL) Nvi++;
    if (strstr(intt,"fract") != NULL) Nvi++;
    if (strstr(intt,"elipse") != NULL) Nvi++;
	if (strstr(intt,"random") != NULL) Nvi++;
//	if (strstr(intt,"randdf") != NULL) Nvi++;
    if (strstr(intt,"diffr") != NULL || strstr(intt,"randdf") != NULL) {
	  Nvi++;
//      if (Ng != 0) Ng++; 
//      if (No != 0) No++;
    }
  }
//  fprintf(stderr,"Nvi=%d ng=%d No=%d np=%d,", Nvi,Ng,No,Np);
  
  if (Np != Nr && ro0 > 0) verr("number of cp and ro not equal.");
  if (Np != Ni) verr("number of cp and interfaces not equal.");
  if (Nvi != Nv) verr("number of interface variables(var) not correct.");
  if (Ns == 0 && Nr == 0) if (verbose>=2) vmess("Velocity model.");
  if (Ns == 0) { if (verbose>=2) vmess("Acoustic model."); }
  else {
    if (verbose>=2) vmess("Elastic model.");
    if (Np != Ns) verr("number of cp and cs not equal");
  }
  
  if (Ng == 0) {
    if (verbose>=2) vmess("No boundary gradients are defined.");
  }
  else if (Ng != Np) {
    verr("number of boundary gradients and interfaces are not equal.");
  }
  if (Ngp == 0) {
    if (verbose>=2) vmess("No interface gradients for cp defined.");
  }
  else if (Ngp != Np) {
    verr("gradcp gradients and interfaces are not equal.");
  }
  if (Ngs == 0) {
    if (verbose>=2) vmess("No interface gradients for cs defined.");
  }
  else if (Ngs != Np) {
    verr("gradcs gradients and interfaces are not equal.");
  }
  if (Ngr == 0) {
    if (verbose>=2) vmess("No interface gradients for rho defined.");
  }
  else if (Ngr != Np) {
    verr("gradro gradients and interfaces are not equal.");
  }
  if (No == 0) {
    if (verbose>=2) vmess("All interfaces are linear.");
  }
//  else if (No != Np) {
//    verr("number of poly variables and interfaces are not equal.");
//  }
  
  if (Np > 0) {
    if (countparname("x") != Np)
      verr("a x array must be specified for each interface.");
    if (countparname("z") != Np)
      verr("a z array must be specified for each interface.");
  } 
  else Np = 1;

  if (Nzr != Np && Nzr !=0) {
    verr("number of zref gradients not equal to number of interfaces");
  }
  
  /*=================== initialization of arrays =================*/
  
  nz = NINT(sizez/dz)+1;
  nx = NINT(sizex/dx)+1;
  
  zp = (int *)malloc(nx*sizeof(int));
  interface = (float *)malloc(nx*sizeof(float));
  var = (float *)malloc(8*sizeof(float));
  gridcp = alloc2float(nz, nx);
  if(gridcp == NULL) verr("memory allocation error gridcp");
  if (Ns || (NINT(cs0*1e3) >= 0)) {
    gridcs = alloc2float(nz, nx);
    if(gridcs == NULL) verr("memory allocation error gridcs");
  }
  else gridcs = NULL;
  if (Nr || (NINT(ro0*1e3) >= 0)) {
    gridro = alloc2float(nz, nx);
    if(gridro == NULL) verr("memory allocation error gridro");
  }
  else gridro = NULL;
  
  cp = alloc2float(nx,3);
  cs = alloc2float(nx,3);
  ro = alloc2float(nx,3);
  if (store_int == 1) inter = alloc2float(nx, 2*Np);
  
  if (verbose) {
    vmess("Origin top left (x,z) . = %.1f, %.1f", orig[0], orig[1]);
    vmess("Base name ............. = %s", file_base);
    vmess("Number of interfaces .. = %d", Np);
    vmess("length in x ........... = %f (=%d)", sizex, nx);
    vmess("length in z ........... = %f (=%d)", sizez, nz);
    vmess("delta x ............... = %f", dx);
    vmess("delta z ............... = %f", dz);
    vmess("cp0 ................... = %f", cp0);
    if (Ns) vmess("cs0 ................... = %f", cs0);
    if (Nr) vmess("ro0 ................... = %f", ro0);
    vmess("write interfaces ...... = %d", writeint);
    vmess("store interfaces ...... = %d", store_int);
    if (above) vmess("define model above interface");
    else vmess("define model below interface");
  }

  /*========== initializing for homogeneous background =============*/
  
  nminx = 0;
  nmaxx = nx;
  for (j = nminx; j < nmaxx; j++) {
    cp[0][j] = cp0;
    cs[0][j] = cs0;
    ro[0][j] = ro0;
    zp[j] = 0;
    cp[1][j] = cp0;
    cs[1][j] = cs0;
    ro[1][j] = ro0;
  }
  
  gradlen = 0.0;
  gradcp = gradcs = gradro = 0.0;
  optgrad = 3;
  if (above == 0) {
    Nvi = 1; Noi = 1;
  } else {
    Nvi = Ngp; Noi = Ngp;
  }
  grid(gridcp, gridcs, gridro, zp, cp, cs, ro, nminx, nmaxx, optgrad,
       gradlen, gradcp, gradcs, gradro, dx, dz, nz);
  
  nxp = nzp = 2;
  x = (float *)malloc(nxp*sizeof(float));
  z = (float *)malloc(nzp*sizeof(float));
  
  if (Ni == 0) {
    if (verbose) vmess("No interfaces are defined, Homogeneous model.");
    Np = 0;
  }
  
  /*========== filling gridded model with interfaces =============*/
  
  for (jcount = 1; jcount <= Np; jcount++) {
    
    /* for above interface definition reverse	*/
    /* order of interfaces to scan 			*/
    if (above == 0) jint=jcount;
    else jint=Np+1-jcount;
    
    if (verbose) vmess("***** Interface number %d *****", jint);
    
    getnparstring(jint,"intt", &file);
    strcpy(intt, file);
    
    nxp = countnparval(jint,"x");
    nzp = countnparval(jint,"z");
    if (nxp != nzp) {
      vmess("nxp = %d nzp =%d for interface %d",nxp, nzp, jint);
      verr("Number of x and z values not equal for interface %d",jint);
    }
    ncp = countnparval(jint,"cp");
    nro = countnparval(jint,"ro");
    ncs = countnparval(jint,"cs");
    
    if (ncp == 1) {
      if (verbose>=2) vmess("No lateral gradient in P velocity");
    }
    else if (ncp == 2) {
      if (verbose) vmess("lateral P-gradient from begin to end");
    }
    else if (ncp != nxp) {
      vmess("ncp = %d nxp =%d for interface %d",ncp, nxp, jint);
      verr("Number of cp's and x not equal for interface %d",jint);
    }
    if (nro <= 1) {
      if (verbose>=2) vmess("No lateral gradient in density");
    }
    else if (nro == 2) {
      if (verbose) vmess("lateral Rho-gradient from begin to end");
    }
    else if (nro != nxp) {
      vmess("nro = %d nxp =%d for interface %d",nro, nxp, jint);
      verr("Number of ro's and x not equal for interface %d",jint);
    }
    if (ncs <= 1) {
      if (verbose>=2) vmess("No lateral gradient in S velocity");
    }
    else if (ncs == 2) {
      if (verbose) vmess("lateral S-gradient from begin to end");
    }
    else if (ncs != nxp) {
      vmess("ncs = %d nxp =%d for interface %d",ncs, nxp, jint);
      verr("Number of cs's and x not equal for interface %d",jint);
    }
    
    nvel = MAX(ncp, MAX(nro, ncs));
    
    free(x);
    free(z);
    x = (float *)malloc(nxp*sizeof(float));
    z = (float *)malloc(nzp*sizeof(float));
	memset(interface, 0, nx*sizeof(float));
    
    getnparfloat(jint,"x",x);
    getnparfloat(jint,"z",z);
    getnparfloat(jint,"cp",cp[2]);
    if (Nr == 0) ro[2][0] = 0.0;
    else getnparfloat(jint,"ro", ro[2]);
    if (Ns == 0) cs[2][0] = 0.0;
    else getnparfloat(jint,"cs", cs[2]);
    if (Ng == 0) gradlen = 0.0;
    else getnparfloat(Noi,"grad", &gradlen);
    if (No == 0) poly = 0;
    else getnparint(Noi,"poly", &poly);
    if (Ngp == 0) gradcp = 0.0;
    else getnparfloat(Noi,"gradcp", &gradcp);
    if (Ngs == 0) gradcs = 0.0;
    else getnparfloat(Noi,"gradcs", &gradcs);
    if (Ngr == 0) gradro = 0.0;
    else getnparfloat(Noi,"gradro", &gradro);
    /* if gradunit is in meters, recalculate gradcp,gradcs and gradro */
    if (gradunit > 0) {
      gradcs = gradcs * dz;
      gradcp = gradcp * dz;
      gradro = gradro * dz;
    }
    
    if (nvel != 1) {
      if (ncp == 1) {
	for (j = 1; j < nvel; j++) cp[2][j] = cp[2][0];
      }
      if (ncs == 1) {
	for (j = 1; j < nvel; j++) cs[2][j] = cs[2][0];
      }
      if (nro == 1) {
	for (j = 1; j < nvel; j++) ro[2][j] = ro[2][0];
      }
    }
    
    if (verbose) {
      vmess("Interface type .......... = %s", intt);
      vmess("Boundary gradient ....... = %f", gradlen);
      vmess("Interface gradient cp ... = %f", gradcp);
      if (Ns) vmess("Interface gradient cs ... = %f", gradcs);
      if (Nr) vmess("Interface gradient ro ... = %f", gradro);
      if (verbose>=2) {
	vmess("Polynomal ............... = %d", poly);
	vmess("Number of (x,z) points... = %d", nxp);
	vmess("P-wave velocities ....... = %d", ncp);
	if (Ns) vmess("S-wave velocities ....... = %d", ncs);
	if (Nr) vmess("Densities ............... = %d", nro);
      }
      for (j = 0; j < nxp; j++) {
	vmess("x = %6.1f \t z = %6.1f", x[j], z[j]);
	if (nvel != 1) {
	  vmess("    cp = %f", cp[2][j]);
	  if (Ns) vmess("    cs = %f", cs[2][j]);
	  if (Nr) vmess("   rho = %f", ro[2][j]);
	}
      }
      if (nvel == 1) {
	vmess("    cp = %f", cp[2][0]);
	if (Ns) vmess("    cs = %f", cs[2][0]);
	if (Nr) vmess("    rho = %f", ro[2][0]);
      }
    }
    
    for (j = 0; j < nxp; j++) {
      x[j] -= orig[0];
      z[j] -= orig[1];
    }
    for (j = 0; j < nxp; j++) {
      if(x[j] > sizex) verr("x coordinate bigger than model");
      if(z[j] > sizez) verr("z coordinate bigger than model");
    }
    if (gradlen > 0) optgrad = gradt;
    else optgrad = 3;
    
	if (strstr(intt,"random") != NULL) {
		Nv = countnparval(Nvi,"var");
		if (Nv != 1) verr("Random interface must have 1 variables.");
		getnparfloat(Nvi,"var", var);
		lseed = (long)var[0];
		srand48(lseed);
		gradcp=gradcs=gradro=var[0];
		optgrad = 4;
        if (above == 0) Noi++; else Noi--;
        if (above == 0) Nvi++; else Nvi--;
	}
	  
    if ((strstr(intt,"diffr") == NULL) && (strstr(intt,"randdf") == NULL)) {
      interpolation(x, z, nxp, nx, poly, &nminx, &nmaxx, dx, 
		    cp, cs, ro, nvel, interface);
    }

    if ( (strstr(intt,"def") != NULL) || (strstr(intt,"random") != NULL) ) {
      linearint(zp, nminx, nmaxx, dz, interface);
      if (above == 0) Noi++; else Noi--;
    }

    if (strstr(intt,"sin") != NULL) {
      Nv = countnparval(Nvi,"var");
      if (Nv != 2) verr("Sinus interface must have 2 variables.");
      getnparfloat(Nvi,"var", var);
      sinusint(zp, nminx, nmaxx, dz, interface, dx, var[0], var[1]);
      if (above == 0) Noi++; else Noi--;
      if (above == 0) Nvi++; else Nvi--;
    }
    else if (strstr(intt,"rough") != NULL) {
      Nv = countnparval(Nvi,"var");
      if (Nv != 3) verr("Rough interface must have 3 variables.");
      getnparfloat(Nvi,"var", var);
      roughint(zp, nminx, nmaxx, dz, interface, var[0],var[1],var[2]);
      if (above == 0) Noi++; else Noi--;
      if (above == 0) Nvi++; else Nvi--;
    }
    else if (strstr(intt,"fract") != NULL) {
      Nv = countnparval(Nvi, "var");
      if (Nv != 6) verr("Fractal interface must have 6 variables.");
      getnparfloat(Nvi,"var", var);
      fractint(zp, nminx, nmaxx, dx, dz, interface, var[0], var[1], 
	       var[2], var[3], var[4], var[5]);
      if (above == 0) Noi++; else Noi--;
      if (above == 0) Nvi++; else Nvi--;
    }
   	else if (strstr(intt,"randdf") != NULL) {
		float x0, z0, dsx, dsz;
		int i;
		Nv = countnparval(Nvi, "var");
		if (Nv != 2) verr("randdf interface must have 2 variables: number of points, width.");
		getnparfloat(Nvi,"var", var);
        if(!getparint("dtype", &dtype)) dtype = -1;
        
        randdf(x, z, nxp, dx, dz, gridcp, gridcs, gridro, cp, cs, ro,
              interface, zp, nx, sizex, sizez, var[0], (int)var[1], dtype);

		if (above == 0) Noi++; else Noi--;
		if (above == 0) Nvi++; else Nvi--;
	}
	else if (strstr(intt,"elipse") != NULL) {
		Nv = countnparval(Nvi, "var");
		if (Nv != 2) verr("Elipse interface must have 2 variables.");
		getnparfloat(Nvi,"var", var);
		elipse(x, z, nxp, dx, dz, gridcp, gridcs, gridro, 
			cp, cs, ro, interface, zp, nz, nx, var[0], var[1], gradcp, gradcs, gradro);
		if (above == 0) Noi++; else Noi--;
		if (above == 0) Nvi++; else Nvi--;
	}
	else if ((strstr(intt,"diffr") != NULL)) {
		Nv = countnparval(Nvi, "var");
        if (Nv == 2 || Nv == 1) {
            getnparfloat(Nvi,"var", var);
            diffrwidth=(int)var[0];
            if (Nv==1) {
            	if(!getparint("dtype", &dtype)) dtype = 0;
			}
            else dtype=(int)var[1];
        }
        else {
            verr("diffr interface must have 1 or 2 variables: width,type.");
        }
        
		diffraction(x, z, nxp, dx, dz, gridcp, gridcs, gridro,
			cp, cs, ro, interface, zp, nx, diffrwidth, dtype);
		if (above == 0) Noi++; else Noi--;
		if (above == 0) Nvi++; else Nvi--;
	}
    else {
		if (above == 0) {
			grid(gridcp, gridcs, gridro, zp, cp, cs, ro, nminx, nmaxx, 
				optgrad, gradlen, gradcp, gradcs, gradro, dx, dz, nz);
		} 
		else {
			gridabove(gridcp, gridcs, gridro, zp, cp, cs, ro, nminx, nmaxx, 
				optgrad, gradlen, gradcp, gradcs, gradro, dx, dz, nz);
		}
	}
    
    if (store_int == 1) {
      for(j = 0; j < nminx; j++) inter[jint-1][j] = 0.0;
      for(j = nminx; j < nmaxx; j++) inter[jint-1][j] = interface[j];
      for(j = nmaxx; j < nx; j++) inter[jint-1][j] = 0.0;
      
      for(j = 0; j < nminx; j++) inter[jint-1+Np][j] = 0.0;
      for(j = nminx; j < nmaxx; j++) inter[jint-1+Np][j] = zp[j]*dz;
      for(j = nmaxx; j < nx; j++) inter[jint-1+Np][j] = 0.0;
    }
  } /* end of loop over interfaces */
  
  if (verbose) vmess("Writing data to disk.");
  
  hdrs = (segy *) calloc(nx,sizeof(segy));
  for(j = 0; j < nx; j++) {
	hdrs[j].f1= orig[1];
	hdrs[j].f2= orig[0];
	hdrs[j].d1= dz;
	hdrs[j].d2= dx;
    hdrs[j].ns= nz;
	hdrs[j].trwf= nx;
	hdrs[j].tracl= j;
	hdrs[j].tracf= j;
    hdrs[j].gx = (orig[0] + j*dx)*1000;
    hdrs[j].scalco = -1000;
    hdrs[j].timbas = 25;
    hdrs[j].trid = TRID_DEPTH;
  }

  /* due to bug in SU, int-file has to be opened before other files are closed */
  if (writeint == 1) {
    strcpy(filename, file_base);
    name_ext(filename, "_int");
    fpint = fopen(filename,"w");
    assert(fpint != NULL);
  }
  
  /* write P-velocities in file */
  strcpy(filename, file_base);
  name_ext(filename, "_cp");
  fpcp = fopen(filename,"w");
  assert(fpcp != NULL);
  
  data_out = (float *)malloc(nx*nz*sizeof(float));
  for(ix = 0; ix < nx; ix++) {
    for(iz = 0; iz < nz; iz++) {
      data_out[ix*nz+iz] = gridcp[ix][iz];
	}
    nwrite = fwrite( &hdrs[ix], 1, TRCBYTES, fpcp);
    assert(nwrite == TRCBYTES);
    nwrite = fwrite( &data_out[ix*nz], sizeof(float), nz, fpcp);
    assert(nwrite == nz);
  }
  fclose(fpcp);
  free2float(gridcp);
  
  /* write S-velocities in file */
  if (Ns > 0 || getparfloat("cs0", &cs0)) {
    strcpy(filename, file_base);
    name_ext(filename, "_cs");
    fpcs = fopen(filename,"w");
    assert(fpcs != NULL);
    
    for(ix = 0; ix < nx; ix++) {
      for(iz = 0; iz < nz; iz++) {
	     data_out[ix*nz+iz] = gridcs[ix][iz];
      }
      nwrite = fwrite( &hdrs[ix], 1, TRCBYTES, fpcs);
      assert(nwrite == TRCBYTES);
      nwrite = fwrite( &data_out[ix*nz], sizeof(float), nz, fpcs);
      assert(nwrite == nz);
    }
    fclose(fpcs);
    free2float(gridcs);
    
  } /* end of writing S-velocity file */
  
  /* write densities in file */
  if (Nr > 0 || getparfloat("ro0", &ro0)) {
    strcpy(filename, file_base);
    name_ext(filename, "_ro");
    fpro = fopen(filename,"w");
    assert(fpro != NULL);
    
    for(ix = 0; ix < nx; ix++) {
      for(iz = 0; iz < nz; iz++) {
	     data_out[ix*nz+iz] = gridro[ix][iz];
      }
      nwrite = fwrite( &hdrs[ix], 1, TRCBYTES, fpro);
      assert(nwrite == TRCBYTES);
      nwrite = fwrite( &data_out[ix*nz], sizeof(float), nz, fpro);
      assert(nwrite == nz);
    }
    fclose(fpro);
    free2float(gridro);
  } /* end of writing density file */
  
  /* write depths of the interfaces */
  if (writeint == 1) {
    free(hdrs);
    hdrs = (segy *) calloc(Np,sizeof(segy));
    for(j = 0; j < Np; j++) {
      hdrs[j].fldr = 1;
      hdrs[j].timbas = 25;
	  hdrs[j].f1= orig[0];
	  hdrs[j].f2= 0.0;
	  hdrs[j].d1= dx;
	  hdrs[j].d2= dz;
	  hdrs[j].ns= nx;
	  hdrs[j].trwf= Np;
	  hdrs[j].tracl= j;
	  hdrs[j].tracf= j;
	  hdrs[j].trid= TRID_DEPTH;
    }
    
    /* note that due to bug in SU, interface file ha salready been opened */
    strcpy(filename, file_base);
    name_ext(filename, "_int");

    free(data_out);
    data_out = (float *)malloc(nx*Np*sizeof(float));
    for(jint = 0; jint < Np; jint++) {
      for(j = 0; j < nx; j++) {
	    data_out[jint*nx+j] = inter[jint][j]+orig[1];
      }
      nwrite = fwrite( &hdrs[ix], 1, TRCBYTES, fpint);
      assert(nwrite == TRCBYTES);
      nwrite = fwrite( &data_out[jint*nx], sizeof(float), nx, fpint);
      assert(nwrite == nx);
    }
    
	for(j = 0; j < Np; j++) hdrs[j].fldr = 2;
    for(jint = 0; jint < Np; jint++) {
      for(j = 0; j < nx; j++) {
	     data_out[jint*nx+j] = inter[jint+Np][j]+orig[1];
      }
      nwrite = fwrite( &hdrs[ix], 1, TRCBYTES, fpint);
      assert(nwrite == TRCBYTES);
      nwrite = fwrite( &data_out[jint*nx], sizeof(float), nx, fpint);
      assert(nwrite == nx);
    }
    fclose(fpint);
    
  } /* end of writing interface file */
  
  if (rayfile == 1) {
    strcpy(filename, file_base);
    strcpy(strrchr(filename, '.'), ".mod");
    
    fpout = fopen(filename, "w+");
    fprintf(fpout,"RAYTRACE MODEL FILE\n");
    fprintf(fpout,"# ASCII file for ray-tracer\n\n");
    fprintf(fpout,"# Top interface\n\n");
    fprintf(fpout,"x=0,%.1f\n", sizex);
    fprintf(fpout,"z=0.,0.\n");
    
    /*		for(i = 1; i <= Np; i++) {
		fprintf(fpout,"\n# %d th interface\n\nx=",i);
		nxp = countnparval(i,"x");
		nzp = countnparval(i,"z");
		free(x);
		free(z);
		x = (float *)malloc(nxp*sizeof(float));
		z = (float *)malloc(nzp*sizeof(float));
		getnparfloat(i,"x",x);
		getnparfloat(i,"z",z);
		for(j = 0; j < (nxp-1); j ++) fprintf(fpout,"%.1f,", x[j]);
		fprintf(fpout,"%.1f\nz=", x[nxp-1]);
		for(j = 0; j < (nxp-1); j ++) fprintf(fpout,"%.1f,", z[j]);
		fprintf(fpout,"%.1f\n", z[nxp-1]);
		}
    */
    for(jint = 0; jint < Np; jint++) {
      fprintf(fpout,"\n# %d th interface\n\nx=0",jint+1);
      for(j = skip; j < nx; j += skip) 
	fprintf(fpout,",%.1f", (float)j*dx);
      
      fprintf(fpout,"\nz=%.1f", inter[jint][0]);
      for(j = skip; j < nx; j += skip) 
	fprintf(fpout,",%.1f", inter[jint][j]);
      fprintf(fpout,"\n");
    }
    fprintf(fpout,"\n# %d th interface\n\nx=0",jint+1);
    for(j = skip; j < nx; j += skip) 
      fprintf(fpout,",%.1f", (float)j*dx);
    
    fprintf(fpout,"\nz=%.1f", sizez);
    for(j = skip; j < nx; j += skip) 
      fprintf(fpout,",%.1f", sizez);
    fprintf(fpout,"\n");
    
    /**/
    fprintf(fpout,"\n\n");
    fprintf(fpout,"cp=%.1f,", back[0]);
    for(jint = 1; jint <= Np; jint++) {
      aver = 0.0;
      ncp = countnparval(jint,"cp");
      getnparfloat(jint,"cp",cp[2]);
      for(j = 0; j < ncp; j++) 
	aver += cp[2][j];
      aver = aver/((float)ncp);
      if (jint == Np ) fprintf(fpout,"%.1f", aver);
      else fprintf(fpout,"%.1f,", aver);
    }
    
    fclose(fpout);
    free2float(inter);
  }
  
  free(hdrs);
  
  return 0;
}