Exemplo n.º 1
0
int lpx_mip_status(glp_prob *lp)
{     /* retrieve status of MIP solution */
      int status;
      switch (glp_mip_status(lp))
      {  case GLP_UNDEF:  status = LPX_I_UNDEF;  break;
         case GLP_OPT:    status = LPX_I_OPT;    break;
         case GLP_FEAS:   status = LPX_I_FEAS;   break;
         case GLP_NOFEAS: status = LPX_I_NOFEAS; break;
         default:         xassert(lp != lp);
      }
      return status;
}
Exemplo n.º 2
0
int CMyProblem::PrintMIPSolution(ostream &out)
{
	glp_create_index(lp);
	out << "MIP solution" << endl;
	out << "Dir;" << ((glp_get_obj_dir(lp)==GLP_MIN) ? "min" : "max") << endl;
	out << "f;" << glp_mip_obj_val(lp) << endl; 
	out << "Status;" << DecodeStatus(glp_mip_status(lp)) << endl;
	PrintSolArray(lp,"x",out,true);
	PrintSolArray(lp,"y",out,true);
	glp_delete_index(lp);
	return 0;
}
Exemplo n.º 3
0
Arquivo: lp.c Projeto: kleptog/pyglpk
static PyObject* LPX_getstatus(LPXObject *self, void *closure) {
  int status;
  switch (self->last_solver) {
  case -1:
  case 0: status=glp_get_status(LP); break;
  case 1: status=glp_ipt_status(LP); break;
  case 2: status=glp_mip_status(LP); break;
  default: 
    PyErr_SetString(PyExc_RuntimeError,
		    "bad internal state for last solver identifier");
    return NULL;
  }
  return glpstatus2string(status);
}
Exemplo n.º 4
0
int main()
{
   // Variáveis auxiliares
   int i, j, constraintNumber, *constraintIndices;
   double *constraintCoefficients;

   // Aloca os vetores utilizados para criar as restrições do problema
   // ***********************************************************************************************
   // ATENÇÃO ===> É importante dizer que estes vetores serão utilizados da posição 1 em diante
   //              Ou seja, no GLPK você aloca uma posição a mais e descarta a posição 0 dos vetores.
   // ***********************************************************************************************
   constraintIndices = (int*)malloc((n+1)*sizeof(int));
   constraintCoefficients = (double*)malloc((n+1)*sizeof(double));

   // Cria um modelo com nenhuma variável e nenhuma restrição
   glp_prob *model = glp_create_prob();

   // Define o sentido da otimização que, para este problema, é minimização
   glp_set_obj_dir(model, GLP_MIN);

   // Cria as variáveis (colunas) no modelo
   // Para este problema são necessárias n*n variáveis
   // Estas n*n variáveis são definidas pelo GLPK através dos indices que vão de 1 até n*n (x1, x2, ..., x(n*n))
   // Portanto, neste momento é importante determinar qual variável no GLPK (índice) representará qual variável x[i,j]
   // Para tanto, fazemos o mapeamento das variáveis x[i,j] utilizando a fórmula (i-1)*n + j
   // Isto é, a variável x[i,j] será representada pela variável de índice (i-1)*n + j no modelo do GLPK
   // Note que é imprescindível que cada índice (variável do GLPK) seja associado a no máximo uma variável x[i,j]
   // Caso contrário, uma variável do GLPK pode representar duas variáveis x[i,j] diferentes que assumem valores distintos nas soluções ótimas
   // Neste caso, o modelo estará incorreto
   glp_add_cols(model, n*n);
   
   // Ajuste dos tipos, limitantes e coeficientes da função objetivo das variáveis do modelo
   
   for (i = 1; i <= n; i++)
      for (j = 1; j <= n; j++)
      {
         // Define o tipo da variável como sendo binária (em outros modelos poderia ser contínua (GLP_CV) ou inteira (GLP_IV))
         glp_set_col_kind(model, (i-1)*n + j, GLP_BV);
         
         // Define o limitante inferior (0) e superior (1) da variável
         // Consultem no manual as outras forma para definir apenas o limitante inferior ou superior
         glp_set_col_bnds(model, (i-1)*n + j, GLP_DB, 0.0, 1.0);

         // Define o coeficiente da variável na função objetivo
         glp_set_obj_coef(model, (i-1)*n + j, c[i-1][j-1]);
      }
      
   // Cria no modelo 2n restrições (linhas) nulas (com os coeficientes e limitantes zerados)
   // Ou seja, neste momento é criada uma matriz de zeros que correspondem aos coeficientes das restrições do modelo
   // O próximo passo será modificar esta matriz de tal forma que ela represente as restrições do problema descrito
   glp_add_rows(model, 2*n);

   // Esta variável define qual das restrições (qual linha da matriz de coeficientes) estamos modificando
   // ************************************************************************************************************
   // ATENÇÃO: perceba que as restrições (linhas), assim como as variáveis (colunas), são indexadas a partir de 1.
   // ************************************************************************************************************
   constraintNumber = 1;
   
   // Preenchimento das restrições limitando a soma das linhas:  
   // sum{j in 1..n} w[i,j]*x[i,j] <= u[i] para i in 1..n

   for (i = 1; i <= n; i++)
   {
      // Define o limite superior (RHS) da restrição      
      glp_set_row_bnds(model, constraintNumber, GLP_UP, 0.0, u[i-1]);

      for (j = 1; j <= n; j++)
      {
         // Ajusta o índice da variável que será informado à rotina do GLPK
         constraintIndices[j] = (i-1)*n + j;
         
         // Ajusta o coeficiente da variável cujo índice foi definido na linha anterior para ser informado ao GLPK
         // ******************************************************************************************************
         // ATENÇÃO: perceba que na matriz w os índices e colunas são indexados a partir de ZERO !
         // ******************************************************************************************************
         constraintCoefficients[j] = w[i-1][j-1];
      }

      // Passa ao GLPK a restrição que acabou de ser definida nos vetores constraintIndices e constraintCoefficients
      glp_set_mat_row(model, constraintNumber, n, constraintIndices, constraintCoefficients);
      
      // atualiza o indice da próxima restrição a ser inserida
      constraintNumber++;
   }
 
   // Preenchimento das restrições limitando a soma das colunas: 
   //    sum{i in 1..n} w[i,j]*x[i,j] >= l[i] para j in 1..n   
   for (j = 1; j <= n; j++)
   {
      // Define o limite inferior (RHS)  da restrição      
      glp_set_row_bnds(model, constraintNumber, GLP_LO, l[j-1], 0.0);

      for (i = 1; i <= n; i++)
      {
         // Ajusta o índice da variável que será informado a rotina do GLPK
         constraintIndices[i] = (i-1)*n + j;
         
         // Ajusta o coeficiente da variável cujo índice foi definido na linha anterior para ser informado ao GLPK
         constraintCoefficients[i] = w[i-1][j-1];
      }

      // Passa ao GLPK a restrição que acabou de ser definida nos vetores constraintIndices e constraintCoefficients
      glp_set_mat_row(model, constraintNumber, n, constraintIndices, constraintCoefficients);
      
      // atualiza o indice da próxima restrição a ser inserida
      constraintNumber++;
   } 
 
   // Define os parâmetros que serão passados ao resolvedor   
   glp_iocp param;
   glp_init_iocp(&param);
   
   // Ativa o presolver
   param.presolve = GLP_ON;

   // Resolve o modelo
   int status = glp_intopt(model, &param);

   // Verifica se houve algum erro durante a otimização
   if (status)
   {
      printf("Ocorreu um erro durante o processo de otimizacao.\n");
   }
   else
   {
      // Verifica se o método encontrou uma solução
      
      status = glp_mip_status(model);
      
      if ((status == GLP_OPT) || (status == GLP_FEAS))
      {
         // Imprime a solução encontrada
         
         if (status == GLP_OPT)
            printf("Solucao otima encontrada!\n");
         else
            printf("A solucao encontrada pode nao ser otima!\n");
      
         printf("Custo da solucao: %f\n", glp_mip_obj_val(model));

         for (i = 1; i <= n; i++)
         {
            for (j = 1; j <= n; j++)
               printf("%f ", glp_mip_col_val(model, (i-1)*n + j));
         
            printf("\n");
         }
      }
      else
      {
         printf("Nenhuma solucao foi encontrada!\n");
      }
   }


   // Desaloca os vetores
   free(constraintIndices);
   free(constraintCoefficients);

   return 0;
}
/**
 * Solves the MLP problem
 *
 * @param mlp the MLP Handle
 * @param s_ctx context to return results
 * @return GNUNET_OK if could be solved, GNUNET_SYSERR on failure
 */
int
mlp_solve_mlp_problem (struct GAS_MLP_Handle *mlp, struct GAS_MLP_SolutionContext *s_ctx)
{
  int res;
  struct GNUNET_TIME_Relative duration;
  struct GNUNET_TIME_Absolute end;
  struct GNUNET_TIME_Absolute start = GNUNET_TIME_absolute_get();

  /* solve MLP problem */
  res = glp_intopt(mlp->prob, &mlp->control_param_mlp);

  if (res == 0)
  {
    /* The MLP problem instance has been successfully solved. */
  }
  else if (res == GLP_EITLIM)
  {
    /* simplex iteration limit has been exceeded. */
    // TODO Increase iteration limit?
  }
  else if (res == GLP_ETMLIM)
  {
    /* Time limit has been exceeded.  */
    // TODO Increase time limit?
  }
  else
  {
    /* Problem was ill-defined, no way to handle that */
    GNUNET_log_from (GNUNET_ERROR_TYPE_DEBUG,
        "ats-mlp",
        "Solving MLP problem failed:  %s\n", mlp_solve_to_string(res));
    return GNUNET_SYSERR;
  }

  end = GNUNET_TIME_absolute_get ();
  duration = GNUNET_TIME_absolute_get_difference (start, end);
  mlp->mlp_solved++;
  mlp->mlp_total_duration =+ duration.rel_value;
  s_ctx->mlp_duration = duration;

  GNUNET_STATISTICS_update (mlp->stats,"# MLP problem solved", 1, GNUNET_NO);
  GNUNET_STATISTICS_set (mlp->stats,"# MLP execution time (ms)", duration.rel_value, GNUNET_NO);
  GNUNET_STATISTICS_set (mlp->stats,"# MLP execution time average (ms)",
                         mlp->mlp_total_duration / mlp->mlp_solved,  GNUNET_NO);

  /* Analyze problem status  */
  res = glp_mip_status(mlp->prob);
  switch (res) {
    /* solution is optimal */
    case GLP_OPT:
    /* solution is feasible */
    case GLP_FEAS:
      break;

    /* Problem was ill-defined, no way to handle that */
    default:
      GNUNET_log_from (GNUNET_ERROR_TYPE_DEBUG,
          "ats-mlp",
          "Solving MLP problem failed, %s\n\n", mlp_status_to_string(res));
      return GNUNET_SYSERR;
      break;
  }

  return GNUNET_OK;
}
Exemplo n.º 6
0
int glp_print_mip(glp_prob *P, const char *fname)
{   /* write MIP solution in printable format */
    glp_file *fp;
    GLPROW *row;
    GLPCOL *col;
    int i, j, t, ae_ind, re_ind, ret;
    double ae_max, re_max;
    xprintf("Writing MIP solution to '%s'...\n", fname);
    fp = glp_open(fname, "w");
    if (fp == NULL)
    {   xprintf("Unable to create '%s' - %s\n", fname, get_err_msg());
        ret = 1;
        goto done;
    }
    xfprintf(fp, "%-12s%s\n", "Problem:",
             P->name == NULL ? "" : P->name);
    xfprintf(fp, "%-12s%d\n", "Rows:", P->m);
    xfprintf(fp, "%-12s%d (%d integer, %d binary)\n", "Columns:",
             P->n, glp_get_num_int(P), glp_get_num_bin(P));
    xfprintf(fp, "%-12s%d\n", "Non-zeros:", P->nnz);
    t = glp_mip_status(P);
    xfprintf(fp, "%-12s%s\n", "Status:",
             t == GLP_OPT    ? "INTEGER OPTIMAL" :
             t == GLP_FEAS   ? "INTEGER NON-OPTIMAL" :
             t == GLP_NOFEAS ? "INTEGER EMPTY" :
             t == GLP_UNDEF  ? "INTEGER UNDEFINED" : "???");
    xfprintf(fp, "%-12s%s%s%.10g (%s)\n", "Objective:",
             P->obj == NULL ? "" : P->obj,
             P->obj == NULL ? "" : " = ", P->mip_obj,
             P->dir == GLP_MIN ? "MINimum" :
             P->dir == GLP_MAX ? "MAXimum" : "???");
    xfprintf(fp, "\n");
    xfprintf(fp, "   No.   Row name        Activity     Lower bound  "
             " Upper bound\n");
    xfprintf(fp, "------ ------------    ------------- ------------- "
             "-------------\n");
    for (i = 1; i <= P->m; i++)
    {   row = P->row[i];
        xfprintf(fp, "%6d ", i);
        if (row->name == NULL || strlen(row->name) <= 12)
            xfprintf(fp, "%-12s ", row->name == NULL ? "" : row->name);
        else
            xfprintf(fp, "%s\n%20s", row->name, "");
        xfprintf(fp, "%3s", "");
        xfprintf(fp, "%13.6g ",
                 fabs(row->mipx) <= 1e-9 ? 0.0 : row->mipx);
        if (row->type == GLP_LO || row->type == GLP_DB ||
                row->type == GLP_FX)
            xfprintf(fp, "%13.6g ", row->lb);
        else
            xfprintf(fp, "%13s ", "");
        if (row->type == GLP_UP || row->type == GLP_DB)
            xfprintf(fp, "%13.6g ", row->ub);
        else
            xfprintf(fp, "%13s ", row->type == GLP_FX ? "=" : "");
        xfprintf(fp, "\n");
    }
    xfprintf(fp, "\n");
    xfprintf(fp, "   No. Column name       Activity     Lower bound  "
             " Upper bound\n");
    xfprintf(fp, "------ ------------    ------------- ------------- "
             "-------------\n");
    for (j = 1; j <= P->n; j++)
    {   col = P->col[j];
        xfprintf(fp, "%6d ", j);
        if (col->name == NULL || strlen(col->name) <= 12)
            xfprintf(fp, "%-12s ", col->name == NULL ? "" : col->name);
        else
            xfprintf(fp, "%s\n%20s", col->name, "");
        xfprintf(fp, "%s  ",
                 col->kind == GLP_CV ? " " :
                 col->kind == GLP_IV ? "*" : "?");
        xfprintf(fp, "%13.6g ",
                 fabs(col->mipx) <= 1e-9 ? 0.0 : col->mipx);
        if (col->type == GLP_LO || col->type == GLP_DB ||
                col->type == GLP_FX)
            xfprintf(fp, "%13.6g ", col->lb);
        else
            xfprintf(fp, "%13s ", "");
        if (col->type == GLP_UP || col->type == GLP_DB)
            xfprintf(fp, "%13.6g ", col->ub);
        else
            xfprintf(fp, "%13s ", col->type == GLP_FX ? "=" : "");
        xfprintf(fp, "\n");
    }
    xfprintf(fp, "\n");
    xfprintf(fp, "Integer feasibility conditions:\n");
    xfprintf(fp, "\n");
    glp_check_kkt(P, GLP_MIP, GLP_KKT_PE, &ae_max, &ae_ind, &re_max,
                  &re_ind);
    xfprintf(fp, "KKT.PE: max.abs.err = %.2e on row %d\n",
             ae_max, ae_ind);
    xfprintf(fp, "        max.rel.err = %.2e on row %d\n",
             re_max, re_ind);
    xfprintf(fp, "%8s%s\n", "",
             re_max <= 1e-9 ? "High quality" :
             re_max <= 1e-6 ? "Medium quality" :
             re_max <= 1e-3 ? "Low quality" : "SOLUTION IS WRONG");
    xfprintf(fp, "\n");
    glp_check_kkt(P, GLP_MIP, GLP_KKT_PB, &ae_max, &ae_ind, &re_max,
                  &re_ind);
    xfprintf(fp, "KKT.PB: max.abs.err = %.2e on %s %d\n",
             ae_max, ae_ind <= P->m ? "row" : "column",
             ae_ind <= P->m ? ae_ind : ae_ind - P->m);
    xfprintf(fp, "        max.rel.err = %.2e on %s %d\n",
             re_max, re_ind <= P->m ? "row" : "column",
             re_ind <= P->m ? re_ind : re_ind - P->m);
    xfprintf(fp, "%8s%s\n", "",
             re_max <= 1e-9 ? "High quality" :
             re_max <= 1e-6 ? "Medium quality" :
             re_max <= 1e-3 ? "Low quality" : "SOLUTION IS INFEASIBLE");
    xfprintf(fp, "\n");
    xfprintf(fp, "End of output\n");
#if 0 /* FIXME */
    xfflush(fp);
#endif
    if (glp_ioerr(fp))
    {   xprintf("Write error on '%s' - %s\n", fname, get_err_msg());
        ret = 1;
        goto done;
    }
    ret = 0;
done:
    if (fp != NULL) glp_close(fp);
    return ret;
}
Exemplo n.º 7
0
static void
maybe_check_results(const int ppl_status, const double ppl_optimum_value) {
  const char* ppl_status_string;
  const char* glpk_status_string;
  int glpk_status;
  int treat_as_lp = 0;
  glp_smcp glpk_smcp;

  if (!check_results)
    return;

  if (no_mip || glpk_lp_num_int == 0)
    treat_as_lp = 1;

  glp_set_obj_dir(glpk_lp, (maximize ? GLP_MAX : GLP_MIN));

  glp_init_smcp(&glpk_smcp);
  /* Disable GLPK output. */
  glpk_smcp.msg_lev = GLP_MSG_OFF;

  if (treat_as_lp) {
    /* Set the problem class to LP: MIP problems are thus treated as
       LP ones. */
    glp_exact(glpk_lp, &glpk_smcp);
    glpk_status = glp_get_status(glpk_lp);
  }
  else {
    /* MIP case. */
    glp_simplex(glpk_lp, &glpk_smcp);
    glpk_status = glp_get_status(glpk_lp);
    if (glpk_status != GLP_NOFEAS && glpk_status != GLP_UNBND) {
      glp_iocp glpk_iocp;
      glp_init_iocp(&glpk_iocp);
      /* Disable GLPK output. */
      glpk_iocp.msg_lev = GLP_MSG_OFF;
      glp_intopt(glpk_lp, &glpk_iocp);
      glpk_status = glp_mip_status(glpk_lp);
    }
  }
  /* If no_optimization is enabled, the second case is not possibile. */
  if (!((ppl_status == PPL_MIP_PROBLEM_STATUS_UNFEASIBLE
         && glpk_status == GLP_NOFEAS)
        || (ppl_status == PPL_MIP_PROBLEM_STATUS_UNBOUNDED
            && glpk_status == GLP_UNBND)
        || (ppl_status == PPL_MIP_PROBLEM_STATUS_OPTIMIZED
            && (glpk_status == GLP_OPT
                /* If no_optimization is enabled, check if the problem is
                   unbounded for GLPK.  */
                || (no_optimization && (glpk_status == GLP_UNBND
                                        || glpk_status == GLP_UNDEF))))))  {

    if (ppl_status == PPL_MIP_PROBLEM_STATUS_UNFEASIBLE)
      ppl_status_string = "unfeasible";
    else if (ppl_status == PPL_MIP_PROBLEM_STATUS_UNBOUNDED)
      ppl_status_string = "unbounded";
    else if (ppl_status == PPL_MIP_PROBLEM_STATUS_OPTIMIZED)
      ppl_status_string = "optimizable";
    else
      ppl_status_string = "<?>";

    switch (glpk_status) {
    case GLP_NOFEAS:
      glpk_status_string = "unfeasible";
      break;
    case GLP_UNBND:
      glpk_status_string = "unbounded";
      break;
    case GLP_OPT:
      glpk_status_string = "optimizable";
      break;
    case GLP_UNDEF:
      glpk_status_string = "undefined";
      break;
    default:
      glpk_status_string = "<?>";
      break;
    }

    error("check failed: for GLPK the problem is %s, not %s",
          glpk_status_string, ppl_status_string);

    check_results_failed = 1;
  }
  else if (!no_optimization
           && ppl_status == PPL_MIP_PROBLEM_STATUS_OPTIMIZED) {

    double glpk_optimum_value
      = (treat_as_lp ? glp_get_obj_val(glpk_lp) : glp_mip_obj_val(glpk_lp));

    if (fabs(ppl_optimum_value - glpk_optimum_value) > check_threshold) {
      error("check failed: for GLPK the problem's optimum is %.20g,"
            " not %.20g", glpk_optimum_value, ppl_optimum_value);
      check_results_failed = 1;
    }
  }
  return;
}
Exemplo n.º 8
0
OptSolutionData* GLPKRunSolver(int ProbType) {
	OptSolutionData* NewSolution = NULL;

	int NumVariables = glp_get_num_cols(GLPKModel);

	int Status = 0;
	if (ProbType == MILP) {
		Status = glp_simplex(GLPKModel, NULL); // Use default settings
		if (Status != 0) {
			FErrorFile() << "Failed to optimize problem." << endl;
			FlushErrorFile();
			return NULL;
		}
		Status = glp_intopt(GLPKModel, NULL); // Use default settings
		if (Status != 0) {
			FErrorFile() << "Failed to optimize problem." << endl;
			FlushErrorFile();
			return NULL;
		}
		NewSolution = new OptSolutionData;

		Status = glp_mip_status(GLPKModel);
		if (Status == GLP_UNDEF || Status == GLP_NOFEAS) {
			NewSolution->Status = INFEASIBLE;
			return NewSolution;
		} else if (Status == GLP_FEAS) {
			NewSolution->Status = UNBOUNDED;
			return NewSolution;
		} else if (Status == GLP_OPT) {
			NewSolution->Status = SUCCESS;
		} else {
			delete NewSolution;
			FErrorFile() << "Problem status unrecognized." << endl;
			FlushErrorFile();
			return NULL;
		}

		NewSolution->Objective = glp_mip_obj_val(GLPKModel);
	
		NewSolution->SolutionData.resize(NumVariables);
		for (int i=0; i < NumVariables; i++) {
			NewSolution->SolutionData[i] = glp_mip_col_val(GLPKModel, i+1);
		}
	} else if (ProbType == LP) {
		//First we check the basis matrix to ensure it is not singular
		if (glp_warm_up(GLPKModel) != 0) {
			glp_adv_basis(GLPKModel, 0);
		}
		Status = glp_simplex(GLPKModel, NULL); // Use default settings
		if (Status == GLP_EBADB) {  /* the basis is invalid; build some valid basis */
			glp_adv_basis(GLPKModel, 0);
			Status = glp_simplex(GLPKModel, NULL); // Use default settings
		}
		if (Status != 0) {
			FErrorFile() << "Failed to optimize problem." << endl;
			FlushErrorFile();
			return NULL;
		}
		NewSolution = new OptSolutionData;

		Status = glp_get_status(GLPKModel);
		if (Status == GLP_INFEAS || Status == GLP_NOFEAS || Status == GLP_UNDEF) {
			cout << "Model is infeasible" << endl;
			FErrorFile() << "Model is infeasible" << endl;
			FlushErrorFile();
			NewSolution->Status = INFEASIBLE;
			return NewSolution;
		} else if (Status == GLP_FEAS || Status == GLP_UNBND) {
			cout << "Model is unbounded" << endl;
			FErrorFile() << "Model is unbounded" << endl;
			FlushErrorFile();
			NewSolution->Status = UNBOUNDED;
			return NewSolution;
		} else if (Status == GLP_OPT) {
			NewSolution->Status = SUCCESS;
		} else {
			delete NewSolution;
			FErrorFile() << "Problem status unrecognized." << endl;
			FlushErrorFile();
			return NULL;
		}

		NewSolution->Objective = glp_get_obj_val(GLPKModel);
	
		NewSolution->SolutionData.resize(NumVariables);
		for (int i=0; i < NumVariables; i++) {
			NewSolution->SolutionData[i] = glp_get_col_prim(GLPKModel, i+1);
		}
	} else {
		FErrorFile() << "Optimization problem type cannot be handled by GLPK solver." << endl;
		FlushErrorFile();
		return NULL;
	}

	return NewSolution;
}
Exemplo n.º 9
0
int glpk (int sense, int n, int m, double *c, int nz, int *rn, int *cn,
      	 double *a, double *b, char *ctype, int *freeLB, double *lb,
      	 int *freeUB, double *ub, int *vartype, int isMIP, int lpsolver,
      	 int save_pb, char *save_filename, char *filetype, 
         double *xmin, double *fmin, double *status,
      	 double *lambda, double *redcosts, double *time, double *mem)
{
  int typx = 0;
  int method;

  clock_t t_start = clock();

  // Obsolete
  //lib_set_fault_hook (NULL, glpk_fault_hook);

  //Redirect standard output
  if (glpIntParam[0] > 1) glp_term_hook (glpk_print_hook, NULL);
  else glp_term_hook (NULL, NULL);

  //-- Create an empty LP/MILP object
  glp_prob *lp = glp_create_prob ();

  //-- Set the sense of optimization
  if (sense == 1)
    glp_set_obj_dir (lp, GLP_MIN);
  else
    glp_set_obj_dir (lp, GLP_MAX);

  //-- Define the number of unknowns and their domains.
  glp_add_cols (lp, n);
  for (int i = 0; i < n; i++)
  {
    //-- Define type of the structural variables
    if (! freeLB[i] && ! freeUB[i])
      glp_set_col_bnds (lp, i+1, GLP_DB, lb[i], ub[i]);
    else
	  {
      if (! freeLB[i] && freeUB[i])
        glp_set_col_bnds (lp, i+1, GLP_LO, lb[i], ub[i]);
      else
      {
        if (freeLB[i] && ! freeUB[i])
		      glp_set_col_bnds (lp, i+1, GLP_UP, lb[i], ub[i]);
	      else
		      glp_set_col_bnds (lp, i+1, GLP_FR, lb[i], ub[i]);
	    }
	  }
  
  // -- Set the objective coefficient of the corresponding
  // -- structural variable. No constant term is assumed.
  glp_set_obj_coef(lp,i+1,c[i]);

  if (isMIP)
    glp_set_col_kind (lp, i+1, vartype[i]);
  }

  glp_add_rows (lp, m);

  for (int i = 0; i < m; i++)
  {
    /*  If the i-th row has no lower bound (types F,U), the
        corrispondent parameter will be ignored.
        If the i-th row has no upper bound (types F,L), the corrispondent
        parameter will be ignored.
        If the i-th row is of S type, the i-th LB is used, but
        the i-th UB is ignored.
    */

    switch (ctype[i])
    {
      case 'F': typx = GLP_FR; break;
      // upper bound
	    case 'U': typx = GLP_UP; break;
      // lower bound
	    case 'L': typx = GLP_LO; break;
      // fixed constraint
	    case 'S': typx = GLP_FX; break;
      // double-bounded variable
      case 'D': typx = GLP_DB; break;
	  }
      
    glp_set_row_bnds (lp, i+1, typx, b[i], b[i]);

  }
  // Load constraint matrix A
  glp_load_matrix (lp, nz, rn, cn, a);

  // Save problem
  if (save_pb) {
    if (!strcmp(filetype,"cplex")){
      if (lpx_write_cpxlp (lp, save_filename) != 0) {
	        mexErrMsgTxt("glpkcc: unable to write the problem");
	        longjmp (mark, -1);
      }
    }else{
      if (!strcmp(filetype,"fixedmps")){
        if (lpx_write_mps (lp, save_filename) != 0) {
          mexErrMsgTxt("glpkcc: unable to write the problem");
	        longjmp (mark, -1);  
        }
      }else{
        if (!strcmp(filetype,"freemps")){
          if (lpx_write_freemps (lp, save_filename) != 0) {
            mexErrMsgTxt("glpkcc: unable to write the problem");
	          longjmp (mark, -1);
          }
        }else{// plain text
          if (lpx_print_prob (lp, save_filename) != 0) {
            mexErrMsgTxt("glpkcc: unable to write the problem");
	          longjmp (mark, -1);
          } 
        } 
      }    
    } 
  }
  //-- scale the problem data (if required)
  if (glpIntParam[1] && (! glpIntParam[16] || lpsolver != 1))
    lpx_scale_prob (lp);

  //-- build advanced initial basis (if required)
  if (lpsolver == 1 && ! glpIntParam[16])
    lpx_adv_basis (lp);

  glp_smcp sParam;
  glp_init_smcp(&sParam);
  
  //-- set control parameters
  if (lpsolver==1){
    //remap of control parameters for simplex method
    sParam.msg_lev=glpIntParam[0];	// message level
    // simplex method: primal/dual
    if (glpIntParam[2]==0) sParam.meth=GLP_PRIMAL;		
    else sParam.meth=GLP_DUALP;
    // pricing technique
    if (glpIntParam[3]==0) sParam.pricing=GLP_PT_STD;
    else sParam.pricing=GLP_PT_PSE;
    //sParam.r_test not available
    sParam.tol_bnd=glpRealParam[1];	// primal feasible tollerance
    sParam.tol_dj=glpRealParam[2];	// dual feasible tollerance
    sParam.tol_piv=glpRealParam[3];	// pivot tollerance
    sParam.obj_ll=glpRealParam[4];	// lower limit
    sParam.obj_ul=glpRealParam[5];	// upper limit
    // iteration limit
    if (glpIntParam[5]==-1) sParam.it_lim=INT_MAX;
    else sParam.it_lim=glpIntParam[5];   
    // time limit
    if (glpRealParam[6]==-1) sParam.tm_lim=INT_MAX;
    else sParam.tm_lim=(int) glpRealParam[6];	
    sParam.out_frq=glpIntParam[7];	// output frequency
    sParam.out_dly=(int) glpRealParam[7];	// output delay
    // presolver
    if (glpIntParam[16]) sParam.presolve=GLP_ON;
    else sParam.presolve=GLP_OFF;
  }else{
	for(int i = 0; i < NIntP; i++)
		lpx_set_int_parm (lp, IParam[i], glpIntParam[i]);
		
	for (int i = 0; i < NRealP; i++)
		lpx_set_real_parm (lp, RParam[i], glpRealParam[i]);
  }
  

  // Choose simplex method ('S') or interior point method ('T') to solve the problem
  if (lpsolver == 1)
    method = 'S';
  else
    method = 'T';
	
  int errnum;

  switch (method){
    case 'S': {
      if (isMIP){
	    method = 'I';
	    errnum = lpx_intopt (lp);
      }
      else{
		errnum = glp_simplex(lp, &sParam);
		errnum += 100; //this is to avoid ambiguity in the return codes.
	  }
    }
    break;

    case 'T': errnum = lpx_interior(lp); break;

    default:  xassert (method != method);
  }

  /*  errnum assumes the following results:
      errnum = 0 <=> No errors
      errnum = 1 <=> Iteration limit exceeded.
      errnum = 2 <=> Numerical problems with basis matrix.
  */
  if (errnum == LPX_E_OK || errnum==100){
    // Get status and object value
    if (isMIP)
    {
      *status = glp_mip_status (lp);
      *fmin = glp_mip_obj_val (lp);
    }
    else
    {
      if (lpsolver == 1)
      {
        *status = glp_get_status (lp);
        *fmin = glp_get_obj_val (lp);
	    }
      else
      {
        *status = glp_ipt_status (lp);
        *fmin = glp_ipt_obj_val (lp);
	    }
    }
    // Get optimal solution (if exists)
    if (isMIP)
    {
      for (int i = 0; i < n; i++)
        xmin[i] = glp_mip_col_val (lp, i+1);
    }
    else
    {
      /* Primal values */
      for (int i = 0; i < n; i++)
      {
        if (lpsolver == 1)
          xmin[i] = glp_get_col_prim (lp, i+1);
        else
		      xmin[i] = glp_ipt_col_prim (lp, i+1);
      }
      /* Dual values */
      for (int i = 0; i < m; i++)
      {
        if (lpsolver == 1) lambda[i] = glp_get_row_dual (lp, i+1);
	     else lambda[i] = glp_ipt_row_dual (lp, i+1);
      }
      /* Reduced costs */
      for (int i = 0; i < glp_get_num_cols (lp); i++)
      {
        if (lpsolver == 1) redcosts[i] = glp_get_col_dual (lp, i+1);
        else redcosts[i] = glp_ipt_col_dual (lp, i+1);
      }
    }

    *time = (clock () - t_start) / CLOCKS_PER_SEC;
    
   	glp_ulong tpeak;
    lib_mem_usage(NULL, NULL, NULL, &tpeak);
    *mem=(double)(4294967296.0 * tpeak.hi + tpeak.lo) / (1024);
       
	  glp_delete_prob (lp);
    return 0;
  }

  glp_delete_prob (lp);

  *status = errnum;

  return errnum;
}
Exemplo n.º 10
0
int glpk (int sense, int n, int m, double *c, int nz, int *rn, int *cn,
      	 double *a, double *b, char *ctype, int *freeLB, double *lb,
      	 int *freeUB, double *ub, int *vartype, int isMIP, int lpsolver,
      	 int save_pb, char *save_filename, char *filetype,
         double *xmin, double *fmin, double *status,
      	 double *lambda, double *redcosts, double *time, double *mem)
{
  int typx = 0;
  int method;

  clock_t t_start = clock();

  //Redirect standard output
  if (glpIntParam[0] > 1) glp_term_hook (glpk_print_hook, NULL);
  else glp_term_hook (NULL, NULL);

  //-- Create an empty LP/MILP object
  LPX *lp = lpx_create_prob ();

  //-- Set the sense of optimization
  if (sense == 1)
    glp_set_obj_dir (lp, GLP_MIN);
  else
    glp_set_obj_dir (lp, GLP_MAX);

  //-- Define the number of unknowns and their domains.
  glp_add_cols (lp, n);
  for (int i = 0; i < n; i++)
  {
    //-- Define type of the structural variables
    if (! freeLB[i] && ! freeUB[i]) {
      if ( lb[i] == ub[i] )
        glp_set_col_bnds (lp, i+1, GLP_FX, lb[i], ub[i]);
      else
        glp_set_col_bnds (lp, i+1, GLP_DB, lb[i], ub[i]);
    }
    else
	  {
      if (! freeLB[i] && freeUB[i])
        glp_set_col_bnds (lp, i+1, GLP_LO, lb[i], ub[i]);
      else
      {
        if (freeLB[i] && ! freeUB[i])
		      glp_set_col_bnds (lp, i+1, GLP_UP, lb[i], ub[i]);
	      else
		      glp_set_col_bnds (lp, i+1, GLP_FR, lb[i], ub[i]);
	    }
	  }

  // -- Set the objective coefficient of the corresponding
  // -- structural variable. No constant term is assumed.
  glp_set_obj_coef(lp,i+1,c[i]);

  if (isMIP)
    glp_set_col_kind (lp, i+1, vartype[i]);
  }

  glp_add_rows (lp, m);

  for (int i = 0; i < m; i++)
  {
    /*  If the i-th row has no lower bound (types F,U), the
        corrispondent parameter will be ignored.
        If the i-th row has no upper bound (types F,L), the corrispondent
        parameter will be ignored.
        If the i-th row is of S type, the i-th LB is used, but
        the i-th UB is ignored.
    */

    switch (ctype[i])
    {
      case 'F': typx = GLP_FR; break;
      // upper bound
	  case 'U': typx = GLP_UP; break;
      // lower bound
	  case 'L': typx = GLP_LO; break;
      // fixed constraint
	  case 'S': typx = GLP_FX; break;
      // double-bounded variable
      case 'D': typx = GLP_DB; break;
	}

    if ( typx == GLP_DB && -b[i] < b[i]) {
        glp_set_row_bnds (lp, i+1, typx, -b[i], b[i]);
    }
    else if(typx == GLP_DB && -b[i] == b[i]) {
        glp_set_row_bnds (lp, i+1, GLP_FX, b[i], b[i]);
    }
    else {
    // this should be glp_set_row_bnds (lp, i+1, typx, -b[i], b[i]);
        glp_set_row_bnds (lp, i+1, typx, b[i], b[i]);
    }

  }
  // Load constraint matrix A
  glp_load_matrix (lp, nz, rn, cn, a);

  // Save problem
  if (save_pb) {
    if (!strcmp(filetype,"cplex")){
      if (glp_write_lp (lp, NULL, save_filename) != 0) {
	        mexErrMsgTxt("glpk: unable to write the problem");
	        longjmp (mark, -1);
      }
    }else{
      if (!strcmp(filetype,"fixedmps")){
        if (glp_write_mps (lp, GLP_MPS_DECK, NULL, save_filename) != 0) {
            mexErrMsgTxt("glpk: unable to write the problem");
	        longjmp (mark, -1);
        }
      }else{
        if (!strcmp(filetype,"freemps")){
          if (glp_write_mps (lp, GLP_MPS_FILE, NULL, save_filename) != 0) {
              mexErrMsgTxt("glpk: unable to write the problem");
	          longjmp (mark, -1);
          }
        }else{// plain text
          if (lpx_print_prob (lp, save_filename) != 0) {
              mexErrMsgTxt("glpk: unable to write the problem");
	          longjmp (mark, -1);
          }
        }
      }
    }
  }
  //-- scale the problem data (if required)
  if (! glpIntParam[16] || lpsolver != 1) {
    switch ( glpIntParam[1] ) {
        case ( 0 ): glp_scale_prob( lp, GLP_SF_SKIP ); break;
        case ( 1 ): glp_scale_prob( lp, GLP_SF_GM ); break;
        case ( 2 ): glp_scale_prob( lp, GLP_SF_EQ ); break;
        case ( 3 ): glp_scale_prob( lp, GLP_SF_AUTO  ); break;
        case ( 4 ): glp_scale_prob( lp, GLP_SF_2N ); break;
        default :
            mexErrMsgTxt("glpk: unrecognized scaling option");
            longjmp (mark, -1);
    }
  }
  else {
    /* do nothing? or unscale?
        glp_unscale_prob( lp );
    */
  }

  //-- build advanced initial basis (if required)
  if (lpsolver == 1 && ! glpIntParam[16])
    glp_adv_basis (lp, 0);

  glp_smcp sParam;
  glp_init_smcp(&sParam);

  //-- set control parameters for simplex/exact method
  if (lpsolver == 1 || lpsolver == 3){
    //remap of control parameters for simplex method
    sParam.msg_lev=glpIntParam[0];	// message level

    // simplex method: primal/dual
    switch ( glpIntParam[2] ) {
        case 0: sParam.meth=GLP_PRIMAL; break;
        case 1: sParam.meth=GLP_DUAL;   break;
        case 2: sParam.meth=GLP_DUALP;  break;
        default:
            mexErrMsgTxt("glpk: unrecognized primal/dual method");
            longjmp (mark, -1);
    }

    // pricing technique
    if (glpIntParam[3]==0) sParam.pricing=GLP_PT_STD;
    else sParam.pricing=GLP_PT_PSE;

    // ratio test
    if (glpIntParam[20]==0) sParam.r_test = GLP_RT_STD;
    else sParam.r_test=GLP_RT_HAR;

    //tollerances
    sParam.tol_bnd=glpRealParam[1];	// primal feasible tollerance
    sParam.tol_dj=glpRealParam[2];	// dual feasible tollerance
    sParam.tol_piv=glpRealParam[3];	// pivot tollerance
    sParam.obj_ll=glpRealParam[4];	// lower limit
    sParam.obj_ul=glpRealParam[5];	// upper limit

    // iteration limit
    if (glpIntParam[5]==-1) sParam.it_lim=INT_MAX;
    else sParam.it_lim=glpIntParam[5];

    // time limit
    if (glpRealParam[6]==-1) sParam.tm_lim=INT_MAX;
    else sParam.tm_lim=(int) glpRealParam[6];
    sParam.out_frq=glpIntParam[7];	// output frequency
    sParam.out_dly=(int) glpRealParam[7];	// output delay
    // presolver
    if (glpIntParam[16]) sParam.presolve=GLP_ON;
    else sParam.presolve=GLP_OFF;
  }else{
	for(int i = 0; i < NIntP; i++) {
        // skip assinging ratio test or
        if ( i == 18 || i == 20) continue;
		lpx_set_int_parm (lp, IParam[i], glpIntParam[i]);
    }

	for (int i = 0; i < NRealP; i++) {
		lpx_set_real_parm (lp, RParam[i], glpRealParam[i]);
    }
  }

  //set MIP params if MIP....
  glp_iocp iParam;
  glp_init_iocp(&iParam);

  if ( isMIP ){
    method = 'I';

    switch (glpIntParam[0]) { //message level
         case 0:  iParam.msg_lev = GLP_MSG_OFF;   break;
         case 1:  iParam.msg_lev = GLP_MSG_ERR;   break;
         case 2:  iParam.msg_lev = GLP_MSG_ON;    break;
         case 3:  iParam.msg_lev = GLP_MSG_ALL;   break;
         default:  mexErrMsgTxt("glpk: msg_lev bad param");
    }
    switch (glpIntParam[14]) { //branching param
         case 0:  iParam.br_tech = GLP_BR_FFV;    break;
         case 1:  iParam.br_tech = GLP_BR_LFV;    break;
         case 2:  iParam.br_tech = GLP_BR_MFV;    break;
         case 3:  iParam.br_tech = GLP_BR_DTH;    break;
         default: mexErrMsgTxt("glpk: branch bad param");
    }
    switch (glpIntParam[15]) { //backtracking heuristic
        case 0:  iParam.bt_tech = GLP_BT_DFS;    break;
        case 1:  iParam.bt_tech = GLP_BT_BFS;    break;
        case 2:  iParam.bt_tech = GLP_BT_BLB;    break;
        case 3:  iParam.bt_tech = GLP_BT_BPH;    break;
        default: mexErrMsgTxt("glpk: backtrack bad param");
    }

    if (  glpRealParam[8] > 0.0 && glpRealParam[8] < 1.0 )
        iParam.tol_int = glpRealParam[8];  // absolute tolorence
    else
        mexErrMsgTxt("glpk: tolint must be between 0 and 1");

    iParam.tol_obj = glpRealParam[9];  // relative tolarence
    iParam.mip_gap = glpRealParam[10]; // realative gap tolerance

    // set time limit for mip
    if ( glpRealParam[6] < 0.0 || glpRealParam[6] > 1e6 )
       iParam.tm_lim = INT_MAX;
    else
       iParam.tm_lim = (int)(1000.0 * glpRealParam[6] );

    // Choose Cutsets for mip
    // shut all cuts off, then start over....
    iParam.gmi_cuts = GLP_OFF;
    iParam.mir_cuts = GLP_OFF;
    iParam.cov_cuts = GLP_OFF;
    iParam.clq_cuts = GLP_OFF;

    switch( glpIntParam[17] ) {
        case 0: break;
        case 1: iParam.gmi_cuts = GLP_ON; break;
        case 2: iParam.mir_cuts = GLP_ON; break;
        case 3: iParam.cov_cuts = GLP_ON; break;
        case 4: iParam.clq_cuts = GLP_ON; break;
        case 5: iParam.clq_cuts = GLP_ON;
                iParam.gmi_cuts = GLP_ON;
                iParam.mir_cuts = GLP_ON;
                iParam.cov_cuts = GLP_ON;
                iParam.clq_cuts = GLP_ON; break;
        default: mexErrMsgTxt("glpk: cutset bad param");
    }

    switch( glpIntParam[18] ) { // pre-processing for mip
        case 0: iParam.pp_tech = GLP_PP_NONE; break;
        case 1: iParam.pp_tech = GLP_PP_ROOT; break;
        case 2: iParam.pp_tech = GLP_PP_ALL;  break;
        default:  mexErrMsgTxt("glpk: pprocess bad param");
    }

    if (glpIntParam[16])  iParam.presolve=GLP_ON;
    else                  iParam.presolve=GLP_OFF;

    if (glpIntParam[19])  iParam.binarize = GLP_ON;
    else                  iParam.binarize = GLP_OFF;

  }
  else {
     /* Choose simplex method ('S')
     or interior point method ('T')
     or Exact method          ('E')
     to solve the problem  */
    switch (lpsolver) {
      case 1: method = 'S'; break;
      case 2: method = 'T'; break;
      case 3: method = 'E'; break;
      default:
            mexErrMsgTxt("glpk:  lpsolver != lpsolver");
            longjmp (mark, -1);
    }
  }

	// now run the problem...
	int errnum = 0;

	switch (method) {
	case 'I':
		errnum = glp_intopt( lp, &iParam );
		errnum += 200; //this is to avoid ambiguity in the return codes.
		break;

	case 'S':
		errnum = glp_simplex(lp, &sParam);
		errnum += 100; //this is to avoid ambiguity in the return codes.
		break;

	case 'T':
		errnum = glp_interior(lp, NULL );
		errnum += 300; //this is to avoid ambiguity in the return codes.
		break;

	case 'E':
		errnum = glp_exact(lp, &sParam);
		errnum += 100; //this is to avoid ambiguity in the return codes.
		break;

	default:  /*xassert (method != method); */
		mexErrMsgTxt("glpk: method != method");
		longjmp (mark, -1);
	}

    if (errnum==100 || errnum==200 || errnum==300 || errnum==106 || errnum==107 || errnum==108 || errnum==109 || errnum==209 || errnum==214 || errnum==308) {

    // Get status and object value
    if (isMIP) {
      *status = glp_mip_status (lp);
      *fmin = glp_mip_obj_val (lp);
    }
    else {

      if (lpsolver == 1 || lpsolver == 3) {
        *status = glp_get_status (lp);
        *fmin = glp_get_obj_val (lp);
	  }
      else {
        *status = glp_ipt_status (lp);
        *fmin = glp_ipt_obj_val (lp);
	  }
    }

    // Get optimal solution (if exists)
    if (isMIP) {

      for (int i = 0; i < n; i++)
        xmin[i] = glp_mip_col_val (lp, i+1);
    }
    else {

      /* Primal values */
      for (int i = 0; i < n; i++) {

        if (lpsolver == 1 || lpsolver == 3)
              xmin[i] = glp_get_col_prim (lp, i+1);
        else
		      xmin[i] = glp_ipt_col_prim (lp, i+1);
      }

      /* Dual values */
      for (int i = 0; i < m; i++) {

        if (lpsolver == 1 || lpsolver == 3)
            lambda[i] = glp_get_row_dual (lp, i+1);
	    else
            lambda[i] = glp_ipt_row_dual (lp, i+1);
      }

      /* Reduced costs */
      for (int i = 0; i < glp_get_num_cols (lp); i++) {

        if (lpsolver == 1 || lpsolver == 3)
            redcosts[i] = glp_get_col_dual (lp, i+1);
        else
            redcosts[i] = glp_ipt_col_dual (lp, i+1);
      }

    }

    *time = (clock () - t_start) / CLOCKS_PER_SEC;

    size_t tpeak;
    glp_mem_usage(NULL, NULL, NULL, &tpeak);
    *mem=((double) tpeak) / (1024);

	lpx_delete_prob(lp);

    return 0;
  }
  else {
   // printf("errnum is %d\n", errnum);
  }

  lpx_delete_prob(lp);

  /* this shouldn't be nessiary with glp_deleted_prob, but try it
  if we have weird behavior again... */
  glp_free_env();


  *status = errnum;

  return errnum;
}
Exemplo n.º 11
0
void fence_insertert::solve() {
#ifdef HAVE_GLPK
  ilpt ilp;

  instrumenter.message.statistics() << "po^+ edges considered:"
    << unique << " cycles:" << instrumenter.set_of_cycles.size() 
    << messaget::eom;

  /* sets the variables and coefficients */
  //nb of po+ considered * types of fences (_e)
  unsigned i=1;
  mip_set_var(ilp, i);

  /* sets the constraints */
  mip_set_cst(ilp, i);

  instrumenter.message.debug() << "3: " << i << messaget::eom;
  assert(i-1==constraints_number);

  const unsigned const_constraints_number=constraints_number;
  const unsigned const_unique=unique;
 
  const unsigned mat_size=const_unique*fence_options*const_constraints_number;
  instrumenter.message.statistics() << "size of the system: " << mat_size
    << messaget::eom;
  instrumenter.message.statistics() << "# of constraints: " 
    << const_constraints_number << messaget::eom;
  instrumenter.message.statistics() << "# of variables: " 
    << const_unique*fence_options << messaget::eom;

  ilp.set_size(mat_size);

#ifdef DEBUG
  print_vars();
#endif

  /* fills the constraints coeff */
  /* tables read from 1 in glpk -- first row/column ignored */
  mip_fill_matrix(ilp, i, const_constraints_number, const_unique);

  instrumenter.message.statistics() << "i: " << i << " mat_size: " << mat_size 
    << messaget::eom;
  //assert(i-1==mat_size);

#ifdef DEBUG
  for(i=1; i<=mat_size; ++i)
    instrumenter.message.debug() << i << "[" << ilp.imat[i] << "," 
      << ilp.jmat[i] << "]=" << ilp.vmat[i] << messaget::eom;
#endif

  /* solves MIP by branch-and-cut */
  ilp.solve();

#ifdef DEBUG
  print_vars();
#endif

  /* checks optimality */
  switch(glp_mip_status(ilp.lp)) {
    case GLP_OPT:
      instrumenter.message.result() << "Optimal solution found" 
        << messaget::eom;
      break;
    case GLP_UNDEF:
      instrumenter.message.result() << "Solution undefined" << messaget::eom;
      assert(0);
    case GLP_FEAS:
      instrumenter.message.result() << "Solution feasible, yet not proven \
        optimal, due to early termination" << messaget::eom;
      break;
    case GLP_NOFEAS:
      instrumenter.message.result() 
        << "No feasible solution, the system is UNSAT" << messaget::eom;
      assert(0);
  }

  event_grapht& egraph=instrumenter.egraph;

  /* loads results (x_i) */
  instrumenter.message.statistics() << "minimal cost: " 
    << glp_mip_obj_val(ilp.lp) << messaget::eom;
  for(unsigned j=1; j<=const_unique*fence_options; ++j)
  {
    if(glp_mip_col_val(ilp.lp, j)>=1)
    {
      /* insert that fence */
      assert(map_to_e.find(col_to_var(j))!=map_to_e.end());
      const edget& delay = map_to_e.find(col_to_var(j))->second;
      instrumenter.message.statistics() << delay.first << " -> " 
        << delay.second << " : " << to_string(col_to_fence(j)) 
        << messaget::eom;
      instrumenter.message.statistics() << "(between " 
        << egraph[delay.first].source_location << " and "
        << egraph[delay.second].source_location << messaget::eom;
      fenced_edges.insert(std::pair<edget,fence_typet>(delay, col_to_fence(j)));
    }
  }
#else
  throw "Sorry, musketeer requires glpk; please recompile\
    musketeer with glpk.";
#endif
}
Exemplo n.º 12
0
int DBWorker::_RememberRun(CMyProblem &P, int idobjectives, const char* modelfile, double time, bool mip, int idruns)
{
    int idrun = -1;
    try {
        sql::PreparedStatement *PrepStmt;
        sql::ResultSet *res;

        PrepStmt = con->prepareStatement(
                       "INSERT INTO runs(idobjectives,modelfile,runtype,res_status,res_value,time_in_seconds,idruns) VALUES(?,?,?,?,?,?,?)"
                   );
        PrepStmt->setInt(1, idobjectives);
        PrepStmt->setString(2, modelfile);
        PrepStmt->setString(3, mip ? "mip" : "lp");
        if(!mip)
        {
            PrepStmt->setInt(4, glp_get_status(P.GetProblem()));
            PrepStmt->setDouble(5, glp_get_obj_val(P.GetProblem()));
            PrepStmt->setNull(7,0);
        }
        else
        {
            PrepStmt->setInt(4, glp_mip_status(P.GetProblem()));
            PrepStmt->setDouble(5, glp_mip_obj_val(P.GetProblem()));
            PrepStmt->setInt(7,idruns);
        }
        PrepStmt->setDouble(6, time);

        PrepStmt->execute();
        delete PrepStmt;

        if(!mip)
        {
            PrepStmt = con->prepareStatement(
                           "SELECT LAST_INSERT_ID()"
                       );
            res = PrepStmt->executeQuery();
            delete PrepStmt;
            res->next();
            idrun = res->getInt(1);
            delete res;
        }
        else
        {
            idrun = idruns;
        }

        cout << "Run ID " << idrun << endl;

        PrepStmt = con->prepareStatement(
                       "INSERT INTO results(idrun,var_name,i,j,value,runtype) VALUES(?,?,?,?,?,?)"
                   );
        PrepStmt->setInt(1, idrun);
        PrepStmt->setString(6, mip ? "mip" : "lp");

        vector<vector<double>> arr;
        for (int vvv=1; vvv>=0; vvv--)
        {
            char* var_name = (vvv ? "x" : "y");
            GetSolArray(P.GetProblem(),var_name,arr,mip);
            PrepStmt->setString(2, var_name);
            int i=1;
            for (std::vector<vector<double>>::iterator it = arr.begin() ; it != arr.end(); ++it)
            {
                int j=1;
                for (std::vector<double>::iterator it2 = (*it).begin() ; it2 != (*it).end(); ++it2)
                {
                    PrepStmt->setInt(3, i);
                    PrepStmt->setInt(4, j);
                    PrepStmt->setDouble(5, *it2);
                    PrepStmt->execute();
                    j++;
                }
                i++;
            }
        }

        delete PrepStmt;

    }
    catch (sql::SQLException &e) {
        SQLError(e);
    }
    return idrun;
}
Exemplo n.º 13
0
double solve_glp_grb(glp_prob *mip, wrapper_params *par){


	GLPK_out = par->glp_out;
	GRB_out = par->grb_out;
	double obj_val;



	/** GLPK: Generate Variable indexing **/
	glp_create_index(mip);

	/** GLPK: Generate LP **/
	glp_write_mps(mip, GLP_MPS_FILE, NULL, "tmp.mps");


	/************/
	/** GUROBI **/
	/************/

	retGRB = GRBloadenv(&env, NULL);
	if (retGRB || env == NULL)
	{
		fprintf(stderr, "Error: could not create environment\n");
		exit(1);
	}

	retGRB = GRBsetintparam(env, "OutputFlag", GRB_out?1:0);
	if (retGRB) freeMem();

	//retGRB = GRBsetintparam(env, "Sensitivity", 1);
	//if (retGRB) freeMem();

	/** GUROBI: Read model **/
	retGRB = GRBreadmodel(env, "tmp.mps", &model);
	if (retGRB) freeMem();

	/** Remove utility files from disk **/
	//remove("tmp.mps");

	/** GUROBI: Get environment **/
	mipenv = GRBgetenv(model);
	if (!mipenv) freeMem();

	/** GUROBI: Set parameters **/

	/** GUROBI: Ask for more precision **/
	retGRB = GRBsetdblparam(mipenv, "FeasibilityTol", 10E-6);
	if (retGRB) freeMem();
	retGRB = GRBsetdblparam(mipenv, "IntFeasTol", 10E-5);
	if (retGRB) freeMem();
	retGRB = GRBsetdblparam(mipenv, "MIPgap", 10E-6);
	if (retGRB) freeMem();

	/* * Playing with gurobi parameters and attr*/

	//gurobi_set_basis();
	retGRB = GRBsetintparam(mipenv, "Cuts", 3);
	if (retGRB) freeMem();

	retGRB = GRBsetintparam(mipenv, "RootMethod", 1);
	if (retGRB) freeMem();

	retGRB = GRBsetintparam(mipenv, "Symmetry", -1);
	if (retGRB) freeMem();

	

	/** GUROBI: get numvars and numrows **/
	retGRB = GRBgetintattr(model, "NumVars", &numvars);
	if (retGRB) freeMem();


	/** Test variable names */
	for(int j=0;j<numvars;j++){	
		retGRB = GRBgetstrattrelement(model, "VarName", j, &nameGRB);
		printf("GRB Var %d Name %s\n",j,nameGRB); 
	}
	/** GUROBI: get model type **/
	retGRB = GRBgetintattr(model, "IsMIP", &GRB_IsMIP);
	if (retGRB) freeMem();

	/** GUROBI: Optimize model **/
	retGRB = GRBoptimize(model);
	if (retGRB) freeMem();

	
	
	/** GUROBI: Retreive the optimization status **/
	GRBgetintattr(model, "Status", &retGRB);
	switch(retGRB){
	case GRB_OPTIMAL:
		break;
	case GRB_INFEASIBLE :
		fprintf(stderr, "Error GRB optimization failed with code GRB_INFEASIBLE\n");
	case GRB_INF_OR_UNBD :
		fprintf(stderr, "Error GRB optimization failed with code GRB_INF_OR_UNBD \n");
	case GRB_UNBOUNDED :
		fprintf(stderr, "Error GRB optimization failed with code GRB_UNBOUNDED \n");
	case GRB_CUTOFF :
		fprintf(stderr, "Error GRB optimization failed with code GRB_CUTOFF \n");
	case GRB_ITERATION_LIMIT :
		fprintf(stderr, "Error GRB optimization failed with code GRB_ITERATION_LIMIT \n");
	case GRB_NODE_LIMIT :
		fprintf(stderr, "Error GRB optimization failed with code GRB_NODE_LIMIT \n");
	case GRB_TIME_LIMIT :
		fprintf(stderr, "Error GRB optimization failed with code GRB_TIME_LIMIT \n");
	case GRB_SOLUTION_LIMIT :
		fprintf(stderr, "Error GRB optimization failed with code GRB_SOLUTION_LIMIT \n");
	case GRB_INTERRUPTED :
		fprintf(stderr, "Error GRB optimization failed with code GRB_INTERRUPTED \n");
	case GRB_SUBOPTIMAL :
		fprintf(stderr, "Error GRB optimization failed with code GRB_SUBOPTIMAL \n");
	case GRB_NUMERIC :
		fprintf(stderr, "Error GRB optimization failed with code GRB_NUMERIC \n");

		/** GUROBI: Quit in any case non optimal **/
		freeMem();
	}

	/** GUROBI: Get obj function value **/
	retGRB = GRBgetdblattr(model, "IntVio", &tmp);
	if (retGRB) freeMem();


	retGRB = GRBgetdblattr(model, "ObjBound", &bound);
	if (retGRB) freeMem();

	retGRB = GRBgetdblattr(model, "ObjVal", &tmp);
	if (retGRB) freeMem();

	/* ********************** */

	obj_val = tmp;


	/* ************ */
	if (verbose) printf ("Objective %lf\n", tmp);
	if (verbose) printf ("Best bound %lf\n", bound);
	if (verbose) printf ("Absolute gap %lf\n", fabs(tmp - bound));

	/** GUROBI: Get variable values **/
	for (j = 0; j < numvars; ++j){

		retGRB = GRBgetdblattrelement(model, "X", j, &tmp);
		if (retGRB) freeMem();

		retGRB = GRBgetstrattrelement(model, "VarName", j, &nameGRB);
		printf("GRB Var %d Name %s\n",j,nameGRB); 
		if (retGRB) freeMem();

		retGRB = GRBgetcharattrelement(model, "VType", j, &type);
		if (retGRB) freeMem();

		/** GLPK search variable index by name **/
		col_index = glp_find_col(mip, nameGRB);

		if (col_index != 0){
			/** GLPK set variable bounds **/
			if ((type == 'B') || (type == 'I')){
				if (verbose) printf ("Variable %s is of type %c value %lf fixed to %lf\n", nameGRB, type, tmp, round(tmp));
				glp_set_col_bnds(mip, col_index, GLP_FX, round(tmp), round(tmp));
			}
			else{
				if (verbose) printf ("Variable %s is of type %c value %lf fixed to %lf\n", nameGRB, type, tmp, tmp);
				glp_set_col_bnds(mip, col_index, GLP_FX, tmp, tmp);
			}
		}
	}

	if (GRB_IsMIP){

		/** GLPK initialize parameters **/
		iparm = (glp_iocp*) malloc(sizeof(glp_iocp));
		glp_init_iocp(iparm);
		iparm->presolve = GLP_ON;
		iparm->mip_gap = glpk_iparm_mip_gap;
		iparm->tol_int = glpk_iparm_tol_int;
		iparm->tol_obj = glpk_iparm_tol_obj;

		/** GLPK get the optimal integer solution **/
		ret = glp_intopt(mip, iparm);
		if (ret){
			fprintf(stderr, "glp_intopt, Error on optimizing the model : %d \n", ret);
			freeMem();
		}

		ret = glp_mip_status(mip);
		switch (ret){
		case GLP_OPT:
			break;
		case GLP_FEAS:
			fprintf(stderr, "Error GLPK simplex is not optimal, GLP_FEAS, code %d\n", ret);
			freeMem();
		case GLP_NOFEAS:
			fprintf(stderr, "Error GLPK simplex is not optimal, GLP_NOFEAS, code %d\n", ret);
			freeMem();
		case GLP_UNDEF:
			fprintf(stderr, "Error GLPK simplex is not optimal, GLP_UNDEF, code %d\n", ret);
			freeMem();
		}
	}
	else{

		/*GLPK initialize parameters */
		parm = (glp_smcp*) malloc(sizeof(glp_smcp));
		glp_init_smcp(parm);
		parm->meth = GLP_DUALP;
		parm->tol_bnd = 10E-4;
		parm->tol_dj = 10E-4;

		/* GLPK get the optimal basis */
		//ret = glp_simplex(mip, parm);
		if (ret){
			fprintf(stderr, "glp_simplex, Error on optimizing the model : %d \n", ret);
			freeMem();
		}
		ret = glp_get_status(mip);
		switch (ret){
		case GLP_OPT:
			break;
		case GLP_FEAS:
			fprintf(stderr, "Error GLPK simplex is not optimal, GLP_FEAS, code %d\n", ret);
			freeMem();
		case GLP_INFEAS:
			fprintf(stderr, "Error GLPK simplex is not optimal, GLP_INFEAS, code %d\n", ret);
			freeMem();
		case GLP_NOFEAS:
			fprintf(stderr, "Error GLPK simplex is not optimal, GLP_NOFEAS, code %d\n", ret);
			freeMem();
		case GLP_UNBND:
			fprintf(stderr, "Error GLPK simplex is not optimal, GLP_UNBND, code %d\n", ret);
			freeMem();
		case GLP_UNDEF:
			fprintf(stderr, "Error GLPK simplex is not optimal, GLP_UNDEF, code %d\n", ret);
			freeMem();
		}


	}

	//GRBmodel *fmod = fixed_model(model);
	//gurobi_sens_output(fmod, "/tmp/sens.sol");
        GRBwrite(model, "/tmp/model.sol");






	/** GUROBI: free structures **/
	if (model) GRBfreemodel(model);
	if (env) GRBfreeenv(env);

	return obj_val;
}