Exemplo n.º 1
0
static void
quaternion_matrix_to_from (mutest_spec_t *spec)
{
  graphene_quaternion_t *q1, *q2;
  graphene_matrix_t *m;

  m = graphene_matrix_init_identity (graphene_matrix_alloc ());

  q1 = graphene_quaternion_init_from_matrix (graphene_quaternion_alloc (), m);
  q2 = graphene_quaternion_init_identity (graphene_quaternion_alloc ());
  mutest_expect ("initializing from an identity matrix yields an identity quaternion",
                 mutest_bool_value (graphene_quaternion_equal (q1, q2)),
                 mutest_to_be_true,
                 NULL);

  graphene_matrix_rotate_x (m, 30.f);
  graphene_matrix_rotate_y (m, 45.f);
  graphene_matrix_rotate_z (m, -135.f);
  graphene_quaternion_init_from_matrix (q1, m);
  mutest_expect ("initializing from a rotation matrix does not yield an identity quaternion",
                 mutest_bool_value (graphene_quaternion_equal (q1, q2)),
                 mutest_to_be_false,
                 NULL);

  graphene_matrix_init_identity (m);
  graphene_matrix_rotate_quaternion (m, q1);
  graphene_quaternion_init_from_matrix (q2, m);
  mutest_expect ("rotating a matrix with a quaternion yields the same quaternion",
                 mutest_bool_value (graphene_quaternion_equal (q1, q2)),
                 mutest_to_be_true,
                 NULL);

  graphene_quaternion_free (q2);
  graphene_quaternion_free (q1);

  graphene_matrix_free (m);
}
Exemplo n.º 2
0
GRAPHENE_TEST_UNIT_END

GRAPHENE_TEST_UNIT_BEGIN (ray_matrix_transform)
{
  graphene_ray_t r, res;
  graphene_matrix_t m;

  if (g_test_verbose ())
    g_test_message ("Identity matrix...");
  graphene_ray_init (&r, &one3, graphene_vec3_z_axis ());
  graphene_matrix_init_identity (&m);
  graphene_matrix_transform_ray (&m, &r, &res);
  g_assert_true (graphene_ray_equal (&r, &res));

  if (g_test_verbose ())
    g_test_message ("Rotation matrix: rotateZ(90deg)");
  graphene_ray_init (&r, &zero3, graphene_vec3_z_axis ());
  graphene_matrix_init_rotate (&m, 90, graphene_vec3_z_axis ());
  graphene_matrix_transform_ray (&m, &r, &res);
  g_assert_true (graphene_ray_equal (&r, &res));
}
Exemplo n.º 3
0
void
ops_finish (RenderOpBuilder *builder)
{
  if (builder->mv_stack)
    g_array_free (builder->mv_stack, TRUE);
  builder->mv_stack = NULL;

  if (builder->clip_stack)
    g_array_free (builder->clip_stack, TRUE);
  builder->clip_stack = NULL;

  builder->buffer_size = 0;
  builder->dx = 0;
  builder->dy = 0;
  builder->current_modelview = NULL;
  builder->current_clip = NULL;
  builder->current_render_target = 0;
  builder->current_texture = 0;
  builder->current_program = NULL;
  builder->current_program_state = NULL;
  graphene_matrix_init_identity (&builder->current_projection);
  builder->current_viewport = GRAPHENE_RECT_INIT (0, 0, 0, 0);
}
Exemplo n.º 4
0
/**
 * graphene_euler_to_matrix:
 * @e: a #graphene_euler_t
 * @res: (out caller-allocates): return location for a #graphene_matrix_t
 *
 * Converts a #graphene_euler_t into a transformation matrix expressing
 * the extrinsic composition of rotations described by the Euler angles.
 *
 * The rotations are applied over the reference frame axes in the order
 * associated with the #graphene_euler_t; for instance, if the order
 * used to initialize @e is %GRAPHENE_EULER_ORDER_XYZ:
 *
 *  * the first rotation moves the body around the X axis with
 *    an angle φ
 *  * the second rotation moves the body around the Y axis with
 *    an angle of ϑ
 *  * the third rotation moves the body around the Z axis with
 *    an angle of ψ
 *
 * The rotation sign convention is left-handed, to preserve compatibility
 * between Euler-based, quaternion-based, and angle-axis-based rotations.
 *
 * Since: 1.2
 */
void
graphene_euler_to_matrix (const graphene_euler_t *e,
                          graphene_matrix_t      *res)
{
  graphene_euler_order_t order = graphene_euler_get_order (e);

  const float x = graphene_vec3_get_x (&e->angles);
  const float y = graphene_vec3_get_y (&e->angles);
  const float z = graphene_vec3_get_z (&e->angles);

  float c1, s1, c2, s2, c3, s3;
  float c3c2, s3c1, c3s2s1, s3s1;
  float c3s2c1, s3c2, c3c1, s3s2s1;
  float c3s1, s3s2c1, c2s1, c2c1;

  graphene_sincos (x, &c1, &s1);
  graphene_sincos (y, &c2, &s2);
  graphene_sincos (z, &c3, &s3);

  c3c2 = c3 * c2;
  s3c1 = s3 * c1;
  c3s2s1 = c3 * s2 * s1;
  s3s1 = s3 * s1;
  c3s2c1 = c3 * s2 * c1;
  s3c2 = s3 * c2;
  c3c1 = c3 * c1;
  s3s2s1 = s3 * s2 * s1;
  c3s1 = c3 * s1;
  s3s2c1 = s3 * s2 * c1;
  c2s1 = c2 * s1;
  c2c1 = c2 * c1;

  switch (order)
    {
    case GRAPHENE_EULER_ORDER_XYZ:
      {
        /* ⎡  c3 s3 0 ⎤ ⎡ c2  0 -s2 ⎤ ⎡ 1   0  0 ⎤
         * ⎢ -s3 c3 0 ⎥ ⎢  0  1   0 ⎥ ⎢ 0  c1 s1 ⎥
         * ⎣   0  0 1 ⎦ ⎣ s2  0  c2 ⎦ ⎣ 0 -s1 c1 ⎦
         */
        res->value.x = graphene_simd4f_init ( c3c2, s3c1 + c3s2s1, s3s1 - c3s2c1, 0.f);
        res->value.y = graphene_simd4f_init (-s3c2, c3c1 - s3s2s1, c3s1 + s3s2c1, 0.f);
        res->value.z = graphene_simd4f_init (   s2,         -c2s1,          c2c1, 0.f);
        res->value.w = graphene_simd4f_init (  0.f,           0.f,           0.f, 1.f);
      }
      break;

    case GRAPHENE_EULER_ORDER_YXZ:
      {
        /* ⎡  c3 s3 0 ⎤ ⎡ 1   0  0 ⎤ ⎡ c1 0 -s1 ⎤
         * ⎢ -s2 c3 0 ⎥ ⎢ 0  c2 s2 ⎥ ⎢  0 1   0 ⎥
         * ⎣   0  0 1 ⎦ ⎣ 0 -s2 c2 ⎦ ⎣ s1 0  c1 ⎦
         */
        res->value.x = graphene_simd4f_init ( c3c1 + s3s2s1, s3c2, -c3s1 + s3s2c1, 0.f);
        res->value.y = graphene_simd4f_init (-s3c1 + c3s2s1, c3c2,  s3s1 + c3s2c1, 0.f);
        res->value.z = graphene_simd4f_init (          c2s1,  -s2,           c2c1, 0.f);
        res->value.w = graphene_simd4f_init (           0.f,  0.f,            0.f, 1.f);
      }
      break;

    case GRAPHENE_EULER_ORDER_ZXY:
      {
        /* ⎡ 1   0  0 ⎤ ⎡ c2  0 -s2 ⎤ ⎡  c1 s1 0 ⎤
         * ⎢ 0  c3 s3 ⎥ ⎢  0  1   0 ⎥ ⎢ -s1 c1 0 ⎥
         * ⎣ 0 -s3 c3 ⎦ ⎣ s2  0  c2 ⎦ ⎣   0  0 1 ⎦
         */
        res->value.x = graphene_simd4f_init (c3c1 - s3s2s1, c3s1 + s3s2c1, -s3c2, 0.f);
        res->value.y = graphene_simd4f_init (        -c2s1,          c2c1,    s2, 0.f);
        res->value.z = graphene_simd4f_init (s3c1 + c3s2s1, s3s1 - c3s2c1,  c3c2, 0.f);
        res->value.w = graphene_simd4f_init (          0.f,           0.f,   0.f, 1.f);
      }
      break;

    case GRAPHENE_EULER_ORDER_ZYX:
      {
        /* ⎡ 1   0  0 ⎤ ⎡ c2  0 -s2 ⎤ ⎡  c1 s1 0 ⎤
         * ⎢ 0  c3 s3 ⎥ ⎢  0  1   0 ⎥ ⎢ -s1 c1 0 ⎥
         * ⎣ 0 -s3 c3 ⎦ ⎣ s2  0  c2 ⎦ ⎣   0  0 1 ⎦
         */
        res->value.x = graphene_simd4f_init (         c2c1,          c2s1,  -s2, 0.f);
        res->value.y = graphene_simd4f_init (s3s2c1 - c3s1, s3s2s1 + c3c1, s3c2, 0.f);
        res->value.z = graphene_simd4f_init (c3s2c1 + s3s1, c3s2s1 - s3c1, c3c2, 0.f);
        res->value.w = graphene_simd4f_init (          0.f,           0.f,  0.f, 1.f);
      }
      break;

    case GRAPHENE_EULER_ORDER_YZX:
      {
        /* ⎡ 1   0  0 ⎤ ⎡  c2 s2 0 ⎤ ⎡ c1 0 -s1 ⎤
         * ⎢ 0  c3 s3 ⎥ ⎢ -s2 c2 0 ⎥ ⎢  0 1   0 ⎥
         * ⎣ 0 -s3 c3 ⎦ ⎣   0  0 1 ⎦ ⎣ s1 0  c1 ⎦
         */
        res->value.x = graphene_simd4f_init (          c2c1,    s2,          -c2s1, 0.f);
        res->value.y = graphene_simd4f_init (-c3s2c1 + s3s1,  c3c2,  c3s2s1 + s3c1, 0.f);
        res->value.z = graphene_simd4f_init ( s3s2c1 + c3s1, -s3c2, -s3s2s1 + c3c1, 0.f);
        res->value.w = graphene_simd4f_init (           0.f,   0.f,            0.f, 1.f);
      }
      break;

    case GRAPHENE_EULER_ORDER_XZY:
      {
        /* ⎡ c3 0 -s3 ⎤ ⎡  c2 s2 0 ⎤ ⎡ 1   0  0 ⎤
         * ⎢  0 1   0 ⎥ ⎢ -s2 c2 0 ⎥ ⎢ 0  c1 s1 ⎥
         * ⎣ s3 0  c3 ⎦ ⎣   0  0 1 ⎦ ⎣ 0 -s1 c1 ⎦
         */
        res->value.x = graphene_simd4f_init (c3c2, c3s2c1 + s3s1, c3s2s1 - s3c1, 0.f);
        res->value.y = graphene_simd4f_init ( -s2,          c2c1,          c2s1, 0.f);
        res->value.z = graphene_simd4f_init (s3c2, s3s2c1 - c3s1, s3s2s1 + c3c1, 0.f);
        res->value.w = graphene_simd4f_init ( 0.f,           0.f,           0.f, 1.f);
      }
      break;

    default:
      graphene_matrix_init_identity (res);
      break;
    }
}