Exemplo n.º 1
0
int main(int argc, char** argv) {

  double ri = 0.0;
  double rf = 1.0;
  std::vector<int> npts(3);
  npts[0]=51;npts[1]=51;npts[2]=51;

  double xcut=0.23;
  double ycut=0.67;

  const int nk0=1;
  const int nk1=1;
  const int nk2=1;

  //Create one-dimensional grids for three orthogonal directions
  typedef LinearGrid<double> GridType;
  GridType gridX, gridY, gridZ;
  gridX.set(ri,rf,npts[0]);
  gridY.set(ri,rf,npts[1]);
  gridZ.set(ri,rf,npts[2]);

  //Create an analytic function for assignment
  ComboFunc infunc;
  infunc.push_back(0.5,new TestFunc(1,1,1));
  //infunc.push_back(0.3,new TestFunc(1,1,2));
  //infunc.push_back(0.1,new TestFunc(1,2,1));
  //infunc.push_back(0.01,new TestFunc(2,1,1));
  //infunc.push_back(0.01,new TestFunc(2,2,1));
  //infunc.push_back(0.001,new TestFunc(2,1,2));
  //infunc.push_back(0.001,new TestFunc(2,2,2));
  //infunc.push_back(0.001,new TestFunc(5,5,5));
  //infunc.push_back(-0.3,new TestFunc(7,2,3));
  //infunc.push_back(0.01,new TestFunc(7,7,7));
  //infunc.push_back(0.001,new TestFunc(5,5,5));

  //Write to an array
  std::vector<double> inData(npts[0]*npts[1]*npts[2]);
  std::vector<double>::iterator it(inData.begin());

  Pooma::Clock timer;
  timer.start();
  //Assign the values
  for(int ix=0; ix<npts[0]; ix++) {
    double x(gridX(ix));
    for(int iy=0; iy<npts[1]; iy++) {
      double y(gridY(iy));
      for(int iz=0; iz<npts[2]; iz++) {
        (*it)=infunc.f(x,y,gridZ(iz));++it;
      }
    }
  }
  timer.stop();
  cout << "Time to evaluate " << timer.cpu_time() << endl;


  //Test TriCubicSplineT function
  //Create XYZCubicGrid
  XYZCubicGrid<double> grid3(&gridX,&gridY,&gridZ);
  //Create a TriCubicSpline with PBC: have to think more about fixed-boundary conditions
  TriCubicSplineT<double> aorb(&grid3);

  //Reset the coefficients
  aorb.reset(inData.begin(), inData.end());

  double lap,val;
  TinyVector<double,3> grad;

  //aorb.reset();
  //Write for vtk ImageData
  string fname("spline3d.vti");
  std::ofstream dfile(fname.c_str());
  dfile.setf(ios::scientific, ios::floatfield);
  dfile.setf(ios::left,ios::adjustfield);
  dfile.precision(10);

  dfile << "<?xml version=\"1.0\"?>" << endl;
  dfile << "<VTKFile type=\"ImageData\" version=\"0.1\">" << endl;
  dfile << "  <ImageData WholeExtent=\"0 " << npts[0]-2 << " 0 " << npts[1]-2 << " 0 " << npts[2]-2 
    << "\" Origin=\"0 0 0\" Spacing=\"1 1 1\">"<< endl;
  dfile << "    <Piece Extent=\"0 " << npts[0]-2 << " 0 " << npts[1]-2 << " 0 " << npts[2]-2 << "\">" << endl;
  dfile << "       <PointData Scalars=\"wfs\">" << endl;
  dfile << "          <DataArray type=\"Float32\" Name=\"wfs\">" << endl;
  timer.start();
  int ng=0;
  for(int ix=0; ix<npts[0]-1; ix++) {
    double x(gridX(ix));
    for(int iy=0; iy<npts[1]-1; iy++) {
      double y(gridY(iy));
      for(int iz=0; iz<npts[2]-1; iz++, ng++) {
         TinyVector<double,3> p(x,y,gridZ(iz));
         //aorb.setgrid(p);
         //Timing with the ofstream is not correct. 
         //Uncomment the line below and comment out the next two line.
         //double t=aorb.evaluate(p,grad,lap);
         dfile << setw(20) << aorb.evaluate(p,grad,lap);
         if(ng%5 == 4) dfile << endl;
      }
    }
  }
  timer.stop();
  cout << "Time to evaluate with spline " << timer.cpu_time() << endl;
  dfile << "          </DataArray>" << endl;
  dfile << "       </PointData>" << endl;
  dfile << "    </Piece>" << endl;
  dfile << "  </ImageData>" << endl;
  dfile << "</VTKFile>" << endl;

  hid_t h_file = H5Fcreate("spline3d.h5",H5F_ACC_TRUNC,H5P_DEFAULT,H5P_DEFAULT);
  HDFAttribIO<std::vector<double> > dump(inData,npts);
  dump.write(h_file,"orb0000");
  HDFAttribIO<TriCubicSplineT<double> > dump1(aorb);
  dump1.write(h_file,"spline0000");
  H5Fclose(h_file);

  //double lap;
  //TinyVector<double,3> grad;
  //for(int k=0; k<nptY-1; k++) {
  //  //TinyVector<double,3> p(xcut,ycut,gridZ(k)+0.11*gridZ.dr(k));
  //  TinyVector<double,3> p(xcut,gridY(k)+0.11*gridY.dr(k),ycut);
  //  aorb.setgrid(p);
  //  double y=aorb.evaluate(p,grad,lap);
  //  dfile << setw(30) << p[1] << setw(30) << infunc.f(p) << setw(30) << y << setw(30) << infunc.d2f(p) << setw(30) << lap << endl;
  //}

  return 0;
}
Exemplo n.º 2
0
Scene * D3D::BuildScene(IDirect3DDevice9 *d3dDevice)
 {
	 // Setup some materials - we'll use these for 
	 // making the same mesh appear in multiple
	 // colors

	 D3DMATERIAL9 colors[8];
	 D3DUtil_InitMaterial( colors[0], 1.0f, 1.0f, 1.0f, 1.0f );	// white
	 D3DUtil_InitMaterial( colors[1], 0.0f, 1.0f, 1.0f, 1.0f );	// cyan
	 D3DUtil_InitMaterial( colors[2], 1.0f, 0.0f, 0.0f, 1.0f );	// red
	 D3DUtil_InitMaterial( colors[3], 0.0f, 1.0f, 0.0f, 1.0f );	// green
	 D3DUtil_InitMaterial( colors[4], 0.0f, 0.0f, 1.0f, 1.0f );	// blue
	 D3DUtil_InitMaterial( colors[5], 0.4f, 0.4f, 0.4f, 0.4f );	// 40% grey
	 D3DUtil_InitMaterial( colors[6], 0.25f, 0.25f, 0.25f, 0.25f );	// 25% grey
	 D3DUtil_InitMaterial( colors[7], 0.65f, 0.65f, 0.65f, 0.65f );	// 65% grey

	 // The identity matrix is always useful
	 D3DXMATRIX ident;
	 D3DXMatrixIdentity(&ident);

	 // We'll use these rotations for some teapots and grid objects
	 D3DXMATRIX rotateX, rotateY, rotateZ;

	 // Create the root, and the camera.
	 // Remeber how to use smart pointers?? I hope so!

	 boost::shared_ptr<TransformNode> root(new TransformNode(&ident));

	 boost::shared_ptr<CameraNode> camera(new CameraNode(&ident));
	 root->m_children.push_back(camera);



	 // We'll put the camera in the scene at (20,20,20) looking back at the Origin

	 D3DXMATRIX rotOnly, result, inverse;
	 float cameraYaw = - (3.0f * D3DX_PI) / 4.0f;
	 float cameraPitch = D3DX_PI / 4.0f;
	 D3DXQUATERNION q;
	 D3DXQuaternionIdentity(&q);
	 D3DXQuaternionRotationYawPitchRoll(&q, cameraYaw, cameraPitch, 0.0);
	 D3DXMatrixRotationQuaternion(&rotOnly, &q);

	 D3DXMATRIX trans;
	 D3DXMatrixTranslation(&trans, 15.0f, 15.0f, 15.0f);

	 D3DXMatrixMultiply(&result, &rotOnly, &trans);

	 D3DXMatrixInverse(&inverse, NULL, &result);
	 camera->VSetTransform(&result, &inverse);

	 D3DXMatrixRotationZ(&rotateZ, D3DX_PI / 2.0f);
	 D3DXMatrixRotationX(&rotateX, -D3DX_PI / 2.0f);
	 D3DXVECTOR3 target(30, 2, 15);

	 //

	

	 ID3DXMesh *teapot;
	 if( SUCCEEDED( D3DXCreateTeapot( d3dDevice, &teapot, NULL ) ) )
	 {
		 // Teapot #1 - a white one at (x=6,y=2,z=4)
		 D3DXMatrixTranslation(&trans,6,2,4);

		 boost::shared_ptr<SceneNode> mesh1(new MeshNode(teapot, &trans, colors[2]));
		 root->m_children.push_back(mesh1);

		 // Teapot #2 - a cyan one at (x=3,y=2,z=1)
		 //   with a 
		 D3DXMatrixTranslation(&trans, 3,2,1);
		 D3DXMATRIX result;
		 D3DXMatrixMultiply(&result, &rotateZ, &trans);

		 boost::shared_ptr<SceneNode> mesh2(new MeshNode(teapot, &result, colors[1]));
		 root->m_children.push_back(mesh2);

		 // Teapot #3 - another white one at (x=30, y=2, z=15)
		 D3DXMATRIX rotateY90;
		 D3DXMatrixRotationY(&rotateY90, D3DX_PI / 2.0f);
		 D3DXMatrixTranslation(&trans, target.x, target.y, target.z);
		 D3DXMatrixMultiply(&result, &rotateY90, &trans);
		 boost::shared_ptr<SceneNode> mesh3(new MeshNode(teapot, &result, colors[0]));
		 root->m_children.push_back(mesh3);

		 // We can release the teapot now, mesh1 and mesh2 AddRef'd it.
		 SAFE_RELEASE(teapot);
	 }

	 ID3DXMesh *sphere;
	 if ( SUCCEEDED( 
		 D3DXCreateSphere( 
		 d3dDevice, .25, 16, 16, &sphere, NULL) ) )
	 {
		 // We're going to create a spiral of spheres...
		 // starting at (x=3, y=0, z=3), and spiraling
		 // upward about a local Y axis.

		 D3DXMatrixTranslation(&trans, 3,0,3);

		 boost::shared_ptr<SceneNode> sphere1(new MeshNode(sphere, &trans, colors[4]) );
		 root->m_children.push_back(sphere1);

		 // Here's the local rotation and translation.
		 // We'll rotate about Y, and then translate
		 // up (along Y) and forward (along Z).
		 D3DXMatrixRotationY(&rotateY, D3DX_PI / 8.0f);
		 D3DXMATRIX trans2;
		 D3DXMatrixTranslation(&trans2, 0, 0.5, 0.5);
		 D3DXMatrixMultiply(&result, &trans2, &rotateY);

		 for (int i=0; i<25; i++)
		 {
			 // If you didn't think smart pointers were cool - 
			 // watch this! No leaked memory....

			 // Notice this is a heirarchy....
			 boost::shared_ptr<SceneNode> sphere2(new MeshNode(sphere, &result, colors[i%5]) );
			 sphere1->m_children.push_back(sphere2);
			 sphere1 = sphere2;
		 }

		 // We can release the sphere now, all the cylinders AddRef'd it.
		 SAFE_RELEASE(sphere);
	 }
	 

	 //
	 D3DXMatrixTranslation(&trans,-25,20,20);
	 //D3DXMatrixScaling(&trans, -10, -10, -10);
	 ScaleMtrl scale;
	 scale.x = -50.0f;
	 scale.y = -50.0f;
	 scale.z = -50.0f;
	 boost::shared_ptr<SceneNode> xmesh1(new XMeshNode(L"gf3.x", d3dDevice, &trans, &scale));
	 root->m_children.push_back(xmesh1);

	 
	  root->m_children.push_back(xmesh1);

	 /*D3DXMatrixTranslation(&trans,-45,20,20);
	 boost::shared_ptr<SceneNode> xmesh11(new XMeshNode(L"gf3.x", d3dDevice, &trans, &scale));
	 root->m_children.push_back(xmesh11);*/


	  XMeshNode *mm = new XMeshNode(L"gow_m1.x", d3dDevice, &trans, &scale);

	 D3DXMatrixTranslation(&trans,10,10,10);
	 //D3DXMatrixScaling(&trans, -10, -10, -10);
	 //ScaleMtrl scale;
	 scale.x = 100.0f;
	 scale.y = 100.0f;
	 scale.z = 100.0f;
	 boost::shared_ptr<SceneNode> xmesh2( new XMeshNode(L"gow_m1.x", d3dDevice, &trans, &scale));
	 root->m_children.push_back(xmesh2);

	 
	 
	 /*D3DXMatrixTranslation(&trans,20,20,20);
	 boost::shared_ptr<SceneNode> xmesh3(new XMeshNode(mm->m_mesh, mm->Mtrls, mm->Textures, &trans, 0));
	 root->m_children.push_back(xmesh3);*/

	 int col = 10;
	 int row= 10;
	 int zoom = 10;
	 const int COUNT = 13;
	 for(int i = 0; i < COUNT; i++)
	 {
		 for (int j = 0; j< COUNT; j++)
		 {
			 for(int z = 0; z< COUNT; z++)
			 {
				 D3DXMatrixTranslation(&trans, col + i, row + j , zoom + z);
				 boost::shared_ptr<SceneNode> xmeshNew(new XMeshNode(mm->m_mesh, mm->Mtrls, mm->Textures, &trans, 0));
				 root->m_children.push_back(xmeshNew);
			 }
		 }
	 }


	 //D3DXMatrixScaling(&trans, 10, 10, 10);

	 // Here are the grids...they make it easy for us to 
	 // see where the coordinates are in 3D space.
	 boost::shared_ptr<SceneNode> grid1(new Grid(40, 0x00404040, L"Textures\\grid.dds", &ident));
	 root->m_children.push_back(grid1);
	 boost::shared_ptr<SceneNode> grid2(new Grid(40, 0x00004000, L"Textures\\grid.dds", &rotateX));
	 root->m_children.push_back(grid2);
	 boost::shared_ptr<SceneNode> grid3(new Grid(40, 0x00000040, L"Textures\\grid.dds", &rotateZ));
	 root->m_children.push_back(grid3);

	 //  Here's the sky node that never worked!!!!
	 boost::shared_ptr<SkyNode> sky(new SkyNode(_T("Sky2"), camera));
	 root->m_children.push_back(sky);

	 D3DXMatrixTranslation(&trans,15,2,15);
	 D3DXMatrixRotationY(&rotateY, D3DX_PI / 4.0f);
	 D3DXMatrixMultiply(&result, &rotateY, &trans);

	 boost::shared_ptr<SceneNode> arrow1(new ArrowNode(2, &result, colors[0], d3dDevice));
	 root->m_children.push_back(arrow1);

	 D3DXMatrixRotationY(&rotateY, D3DX_PI / 2.0f);
	 D3DXMatrixMultiply(&result, &rotateY, &trans);
	 boost::shared_ptr<SceneNode> arrow2(new ArrowNode(2, &result, colors[5], d3dDevice));
	 root->m_children.push_back(arrow2);

	 D3DXMatrixMultiply(&result, &rotateX, &trans);
	 boost::shared_ptr<SceneNode> arrow3(new ArrowNode(2, &result, colors[0], d3dDevice));
	 root->m_children.push_back(arrow3);


	 // Everything has been attached to the root. Now
	 // we attach the root to the scene.

	 Scene *scene = new Scene(d3dDevice, root);
	 scene->Restore();

	 // A movement controller is going to control the camera, 
	 // but it could be constructed with any of the objects you see in this
	 // function. You can have your very own remote controlled sphere. What fun...
	 boost::shared_ptr<MovementController> m_pMovementController(new MovementController(camera, cameraYaw, cameraPitch));

	 scene->m_pMovementController = m_pMovementController;
	 return scene;
 }
Exemplo n.º 3
0
/*  BEGIN Module Compute Routine */
int module_compute( AVSfield *data, 
                    AVSfield *coords, 
                    AVSfield *weights, 
                    AVSfield *table, 
                    AVSfield **out, 
                    float *radiusFOVproduct, 
                    int width_in, 
                    float *OverSampFact, 
                    float *windowLength, 
                    float *taper_start, 
                    float *taper_length, 
                    int num_threads,
                    int veclen, /* if data is not present */
                    int compute)
{
    
    /* check to see if the body should run or not */
    if(!compute) 
    {
        /* don't signal downstream modules */
        AVSmark_output_unchanged("spectrum");  
        return(1);
    }

    /* grid size */
    int width = (float)width_in * (*OverSampFact);

    /* allocate kernel table */
    unsigned long dim[1];
    dim[0] = DEFAULT_KERNEL_TABLE_SIZE;
    dataArray_double *kern = (dataArray_double*) new_dataArray_double(1,dim);

    for(long i=0;i<kern->num_elem;i++) kern->data[i]=0.;
    loadGrid3Kernel(kern);

    /* make dataArray_double copies of input data */
    dataArray_double *data_tmp = AVSfield_2_dataArray( (AVSfield_double*)data   );
    dataArray_double *crds_tmp = AVSfield_2_dataArray( (AVSfield_double*)coords );
    dataArray_double *wght_tmp = NULL; 
    if (weights != NULL) wght_tmp = AVSfield_2_dataArray( (AVSfield_double*)weights );
    unsigned long dims[4];
    dims[0] = 2; /* complex */
    dims[1] = width;
    dims[2] = width;
    dims[3] = width;
    dataArray_double *out_tmp = new_dataArray_double(4,dims);
	
    /* choose either octant split gridding or single thread */
    if(num_threads == 8)
    {

        /* GRID3_threaded */

        /* 1) map threads */
        dataArray_double *threadMask = NULL;
        dataArray_double *centerPts  = NULL;
        int partsize = -1;
        double rfp_d = *radiusFOVproduct;
        partitionGrid_octants(crds_tmp,
                              rfp_d,
                              width,
                              &threadMask,
                              &centerPts,
                              &partsize);

        /* 2) grid it */
		grid3_threaded(data_tmp, 
                       crds_tmp, 
                       wght_tmp, 
                       out_tmp, 
                       kern, 
                       *radiusFOVproduct, 
                       *windowLength, 
                       num_threads, 
                       threadMask, 
                       centerPts, 
                       partsize); 

        /* free tmp data */
        free_dataArray_double(threadMask);
        free_dataArray_double(centerPts);

    }
    else
    {
        /* GRID3 non-threaded */
        int nt = 1;
        int ct = 0;
        double rfp_d = *radiusFOVproduct;
        double win_d = *windowLength;
        grid3 ( &nt, &ct, 
                data_tmp, 
                crds_tmp, 
                wght_tmp, 
                &out_tmp, 
                kern, 
                NULL,
                NULL,
                &width,
                &rfp_d,
                &win_d );
    }

    /* allocate output array */
    if(*out != NULL) AVSfield_free((AVSfield*)*out);
    *out = (AVSfield *)dataArray_2_AVSfield(out_tmp);

    /* free kernel table */
    free_dataArray_double(kern);
    free_dataArray_double(out_tmp);

	return 1;
}