Exemplo n.º 1
0
static VALUE rb_gsl_linalg_complex_householder_mh(VALUE obj, VALUE t, VALUE vv, VALUE aa)
{
  gsl_vector_complex *v = NULL;
  gsl_complex *tau;
  gsl_matrix_complex *A = NULL;
  CHECK_COMPLEX(t);  
  CHECK_VECTOR_COMPLEX(vv);
  CHECK_MATRIX_COMPLEX(aa);
  Data_Get_Struct(t, gsl_complex, tau);
  Data_Get_Struct(vv, gsl_vector_complex, v);
  Data_Get_Struct(aa, gsl_matrix_complex, A);
  gsl_linalg_complex_householder_hm(*tau, v, A);
  return aa;
}
Exemplo n.º 2
0
Arquivo: test.c Projeto: lemahdi/mglib
void
create_random_complex_posdef_matrix(gsl_matrix_complex *m, gsl_rng *r,
                                    gsl_vector_complex *work)
{
  const size_t N = m->size1;
  size_t i, j;
  double x, y;
  gsl_complex z;
  gsl_complex tau;

  GSL_SET_IMAG(&z, 0.0);

  /* make a positive diagonal matrix */
  gsl_matrix_complex_set_zero(m);
  for (i = 0; i < N; ++i)
    {
      x = gsl_rng_uniform(r);
      GSL_SET_REAL(&z, x);
      gsl_matrix_complex_set(m, i, i, z);
    }

  /* now generate random householder reflections and form P D P^H */
  for (i = 0; i < N; ++i)
    {
      /* form complex vector */
      for (j = 0; j < N; ++j)
        {
          x = 2.0 * gsl_rng_uniform(r) - 1.0;
          y = 2.0 * gsl_rng_uniform(r) - 1.0;
          GSL_SET_COMPLEX(&z, x, y);
          gsl_vector_complex_set(work, j, z);
        }

      tau = gsl_linalg_complex_householder_transform(work);
      gsl_linalg_complex_householder_hm(tau, work, m);
      gsl_linalg_complex_householder_mh(gsl_complex_conjugate(tau), work, m);
    }
} /* create_random_complex_posdef_matrix() */
Exemplo n.º 3
0
 /**
  * C++ version of gsl_linalg_complex_householder_hm().
  * @param tau A scalar
  * @param v A vector
  * @param A A matrix
  * @return Error code on failure
  */
 inline int complex_householder_hm( complex& tau, vector_complex const& v, matrix_complex& A ){
   return gsl_linalg_complex_householder_hm( tau.get(), v.get(), A.get() ); } 
Exemplo n.º 4
0
int
gsl_linalg_hermtd_unpack (const gsl_matrix_complex * A, 
                          const gsl_vector_complex * tau,
                          gsl_matrix_complex * U, 
                          gsl_vector * diag, 
                          gsl_vector * sdiag)
{
  if (A->size1 !=  A->size2)
    {
      GSL_ERROR ("matrix A must be sqaure", GSL_ENOTSQR);
    }
  else if (tau->size + 1 != A->size1)
    {
      GSL_ERROR ("size of tau must be (matrix size - 1)", GSL_EBADLEN);
    }
  else if (U->size1 != A->size1 || U->size2 != A->size1)
    {
      GSL_ERROR ("size of U must match size of A", GSL_EBADLEN);
    }
  else if (diag->size != A->size1)
    {
      GSL_ERROR ("size of diagonal must match size of A", GSL_EBADLEN);
    }
  else if (sdiag->size + 1 != A->size1)
    {
      GSL_ERROR ("size of subdiagonal must be (matrix size - 1)", GSL_EBADLEN);
    }
  else
    {
      const size_t N = A->size1;

      size_t i;

      /* Initialize U to the identity */

      gsl_matrix_complex_set_identity (U);

      for (i = N - 1; i-- > 0;)
        {
          gsl_complex ti = gsl_vector_complex_get (tau, i);

          gsl_vector_complex_const_view c = gsl_matrix_complex_const_column (A, i);

          gsl_vector_complex_const_view h = 
            gsl_vector_complex_const_subvector (&c.vector, i + 1, N - (i+1));

          gsl_matrix_complex_view m = 
            gsl_matrix_complex_submatrix (U, i + 1, i + 1, N-(i+1), N-(i+1));

          gsl_linalg_complex_householder_hm (ti, &h.vector, &m.matrix);
        }

      /* Copy diagonal into diag */

      for (i = 0; i < N; i++)
        {
          gsl_complex Aii = gsl_matrix_complex_get (A, i, i);
          gsl_vector_set (diag, i, GSL_REAL(Aii));
        }

      /* Copy subdiagonal into sdiag */

      for (i = 0; i < N - 1; i++)
        {
          gsl_complex Aji = gsl_matrix_complex_get (A, i+1, i);
          gsl_vector_set (sdiag, i, GSL_REAL(Aji));
        }

      return GSL_SUCCESS;
    }
}