Exemplo n.º 1
0
static VALUE rb_gsl_linalg_complex_householder_transform(int argc, VALUE *argv, VALUE obj)
{
  gsl_vector_complex *v = NULL;
  gsl_complex *z;
  switch (TYPE(obj)) {
  case T_MODULE:  case T_CLASS:  case T_OBJECT:
    if (argc < 1) rb_raise(rb_eArgError, "too few arguments.");
    CHECK_VECTOR_COMPLEX(argv[0]);
    Data_Get_Struct(argv[0], gsl_vector_complex, v);
    break;
  default:
    Data_Get_Struct(obj, gsl_vector_complex, v);
    break;
  }
  z = (gsl_complex*) malloc(sizeof(gsl_complex));
  *z = gsl_linalg_complex_householder_transform(v);
  return Data_Wrap_Struct(cgsl_complex, 0, free, z);
}
Exemplo n.º 2
0
Arquivo: test.c Projeto: lemahdi/mglib
void
create_random_complex_posdef_matrix(gsl_matrix_complex *m, gsl_rng *r,
                                    gsl_vector_complex *work)
{
  const size_t N = m->size1;
  size_t i, j;
  double x, y;
  gsl_complex z;
  gsl_complex tau;

  GSL_SET_IMAG(&z, 0.0);

  /* make a positive diagonal matrix */
  gsl_matrix_complex_set_zero(m);
  for (i = 0; i < N; ++i)
    {
      x = gsl_rng_uniform(r);
      GSL_SET_REAL(&z, x);
      gsl_matrix_complex_set(m, i, i, z);
    }

  /* now generate random householder reflections and form P D P^H */
  for (i = 0; i < N; ++i)
    {
      /* form complex vector */
      for (j = 0; j < N; ++j)
        {
          x = 2.0 * gsl_rng_uniform(r) - 1.0;
          y = 2.0 * gsl_rng_uniform(r) - 1.0;
          GSL_SET_COMPLEX(&z, x, y);
          gsl_vector_complex_set(work, j, z);
        }

      tau = gsl_linalg_complex_householder_transform(work);
      gsl_linalg_complex_householder_hm(tau, work, m);
      gsl_linalg_complex_householder_mh(gsl_complex_conjugate(tau), work, m);
    }
} /* create_random_complex_posdef_matrix() */
Exemplo n.º 3
0
 /**
  * C++ version of gsl_linalg_complex_householder_transform().
  * @param v A vector
  * @return The Householder transform
  */
 inline complex complex_householder_transform( vector_complex& v ){
   return gsl_linalg_complex_householder_transform( v.get() ); } 
Exemplo n.º 4
0
int 
gsl_linalg_hermtd_decomp (gsl_matrix_complex * A, gsl_vector_complex * tau)  
{
  if (A->size1 != A->size2)
    {
      GSL_ERROR ("hermitian tridiagonal decomposition requires square matrix",
                 GSL_ENOTSQR);
    }
  else if (tau->size + 1 != A->size1)
    {
      GSL_ERROR ("size of tau must be (matrix size - 1)", GSL_EBADLEN);
    }
  else
    {
      const size_t N = A->size1;
      size_t i;
  
      const gsl_complex zero = gsl_complex_rect (0.0, 0.0);
      const gsl_complex one = gsl_complex_rect (1.0, 0.0);
      const gsl_complex neg_one = gsl_complex_rect (-1.0, 0.0);

      for (i = 0 ; i < N - 1; i++)
        {
          gsl_vector_complex_view c = gsl_matrix_complex_column (A, i);
          gsl_vector_complex_view v = gsl_vector_complex_subvector (&c.vector, i + 1, N - (i + 1));
          gsl_complex tau_i = gsl_linalg_complex_householder_transform (&v.vector);
          
          /* Apply the transformation H^T A H to the remaining columns */

          if ((i + 1) < (N - 1) 
              && !(GSL_REAL(tau_i) == 0.0 && GSL_IMAG(tau_i) == 0.0)) 
            {
              gsl_matrix_complex_view m = 
                gsl_matrix_complex_submatrix (A, i + 1, i + 1, 
                                              N - (i+1), N - (i+1));
              gsl_complex ei = gsl_vector_complex_get(&v.vector, 0);
              gsl_vector_complex_view x = gsl_vector_complex_subvector (tau, i, N-(i+1));
              gsl_vector_complex_set (&v.vector, 0, one);
              
              /* x = tau * A * v */
              gsl_blas_zhemv (CblasLower, tau_i, &m.matrix, &v.vector, zero, &x.vector);

              /* w = x - (1/2) tau * (x' * v) * v  */
              {
                gsl_complex xv, txv, alpha;
                gsl_blas_zdotc(&x.vector, &v.vector, &xv);
                txv = gsl_complex_mul(tau_i, xv);
                alpha = gsl_complex_mul_real(txv, -0.5);
                gsl_blas_zaxpy(alpha, &v.vector, &x.vector);
              }
              
              /* apply the transformation A = A - v w' - w v' */
              gsl_blas_zher2(CblasLower, neg_one, &v.vector, &x.vector, &m.matrix);

              gsl_vector_complex_set (&v.vector, 0, ei);
            }
          
          gsl_vector_complex_set (tau, i, tau_i);
        }
      
      return GSL_SUCCESS;
    }
}