Exemplo n.º 1
0
double FMIME (int J, int K, int M, int Q, int S, int j, int k, int m)
{
	double coeff1 = pow(-1.0,k+m); 
	double coeff2 = sqrt((2.0*J + 1.0)*(2.0*j+1.0)); 
	double J1 = gsl_sf_coupling_3j(2*J, 4, 2*j, 2*M, 2*Q, -2*m);
	double J2 = gsl_sf_coupling_3j(2*J, 4, 2*j, 2*K, 2*S, -2*k); 
	return coeff2*coeff1*J2*J1;  
}
Exemplo n.º 2
0
void
check_3j_family_j_gsl (const int two_j1, const int two_j2, 
		       const int two_m1, const int two_m2)
{
  double *a;
  int two_jmin, two_jmax, imax, i;
  int two_m3 = -(two_m1 + two_m2);

  wigner3j_family_j (two_j1, two_j2, two_m1, two_m2, &a, &two_jmin, &two_jmax);

  imax = (two_jmax-two_jmin)/2;

  printf ("two_j1: %d two_j2: %d two_m1: %d two_m2: %d\n", 
	  two_j1, two_j2, two_m1, two_m2);

  for(i=0; i<=imax; i++)
    {
      int two_j3=two_jmin+i*2;
      
      double gsl=gsl_sf_coupling_3j(two_j1, two_j2, two_j3,
				    two_m1, two_m2, two_m3);
      printf ("\ttwo_j3: %d\t\twigner: %g\tgsl: %g\tdiff: %g\n", 
	      two_j3, a[i], gsl, a[i]-gsl);
    }

  free (a);
}
Exemplo n.º 3
0
static VALUE rb_gsl_sf_coupling_3j(VALUE obj, VALUE two_ja, VALUE two_jb, VALUE two_jc, VALUE two_ma, VALUE two_mb, VALUE two_mc) 
{
  CHECK_FIXNUM(two_ja); CHECK_FIXNUM(two_jb); CHECK_FIXNUM(two_jc);
  CHECK_FIXNUM(two_ma); CHECK_FIXNUM(two_mb); CHECK_FIXNUM(two_mc);
  return rb_float_new(gsl_sf_coupling_3j(FIX2INT(two_ja), FIX2INT(two_jb),
					 FIX2INT(two_jc), FIX2INT(two_ma),
					 FIX2INT(two_mb), FIX2INT(two_mc)));
}
Exemplo n.º 4
0
void
check_3j_family_j_exact_2 (const int two_jmax)
{
  int two_j;

  printf("two_j\trecursive\tgsl\texact\trec-ex\tgsl-ex\n");

  for (two_j = 0; two_j <=two_jmax; two_j = (two_j + 1)*100)
    {
      double exact = 1.0 / sqrt (two_j + 1.0);
      double gsl = gsl_sf_coupling_3j(two_j, two_j, 0, 0, 0, 0);
      double *a;
      int tjmax, tjmin;

      wigner3j_family_j (two_j, two_j, 0, 0, &a, &tjmax, &tjmin);

      printf("%d\t%g\t%g\t%g\t%g\t%g\n", two_j, a[0],gsl, exact, a[0]-exact, gsl-exact);
      
      free (a);
    }

}
Exemplo n.º 5
0
void
check_3j_family_j_exact_1 (const int two_jmax)
{
  int two_j;

  for (two_j = 0; two_j <=two_jmax; two_j = (two_j + 1)*100-1)
    {
      double exact = 1.0 / sqrt (two_j + 1.0);
      double gsl = gsl_sf_coupling_3j(two_j, two_j, 0, two_j, -two_j, 0);
      double *a;
      int tjmax, tjmin;

      wigner3j_family_j (two_j, two_j, two_j, -two_j, &a, &tjmax, &tjmin);

      printf ("two_j: %d\trecursive: % .18e\t exact: % .18e\tdiff: % .18e\n",
	      two_j, a[0], exact, a[0]-exact);

      printf ("two_j: %d\t gsl: % .18e\t exact: % .18e\tdiff: % .18e\n",
	      two_j, gsl, exact, gsl-exact);

      
      free (a);
    }
}
Exemplo n.º 6
0
 /**
  * C++ version of gsl_sf_coupling_3j().
  * @param two_ja Coupling coefficient in half-integer units
  * @param two_jb Coupling coefficient in half-integer units
  * @param two_jc Coupling coefficient in half-integer units
  * @param two_ma Coupling coefficient in half-integer units
  * @param two_mb Coupling coefficient in half-integer units
  * @param two_mc Coupling coefficient in half-integer units
  * @return The Wigner 3-j coefficient
  */
 inline double coupling_3j( int two_ja, int two_jb, int two_jc, int two_ma, int two_mb, int two_mc ){
   return gsl_sf_coupling_3j( two_ja, two_jb, two_jc, two_ma, two_mb, two_mc ); } 
Exemplo n.º 7
0
// --- Utils ---
PetscReal wigner3j(int a, int b, int c, int d, int e, int f) {
  return gsl_sf_coupling_3j(2*a, 2*b, 2*c, 2*d, 2*e, 2*f);
}
Exemplo n.º 8
0
double
dmtxel (const int J, const int K, const int M, const int Jp, const int Kp,
	const int Mp, const int k, const int p, const int q)
     /* Matrix element of the rotation matrix <J K M|D^k_pq|Jp Kp Mp>.  
	Currently only defined for integer angular momentum. */
{

#ifdef DMTXEL_DEBUG
  if (p != Mp - M)
    {
      fprintf (stderr, "dmtxel warning: p != Mp - M.\n");
      return 0.0;
    }
  else if (q != Kp - K)
    {
      fprintf (stderr, "dmtxel warning: q != Kp - K.\n");
      return 0.0;
    }
  else if (abs (q) > k)
    {
      fprintf (stderr, "dmtxel warning: abs(q) > k.\n");
      return NAN;
    }
  else if (abs (p) > k)
    {
      fprintf (stderr, "dmtxel warning: abs(p) > k.\n");
      return NAN;
    }
  else if (abs (M) > J)
    {
      fprintf (stderr, "dmtxel warning: abs(M) > J.\n");
      return NAN;
    }
  else if (abs (K) > J)
    {
      fprintf (stderr, "dmtxel warning: abs(K) > J.\n");
      return NAN;
    }
  else if (abs (Mp) > Jp)
    {
      fprintf (stderr, "dmtxel warning: abs(Mp) > Jp.\n");
      return NAN;
    }
  else if (abs (Kp) > Jp)
    {
      fprintf (stderr, "dmtxel warning: abs(Kp) > Jp.\n");
      return NAN;
    }
  else if ((Jp > J + k) || (Jp < abs (J - k)))
    {
      fprintf (stderr, "dmtxel warning: (J, k, Jp) not triangle.\n");
      return 0.0;
    }
#undef NAN
#endif /* DMTXEL_DEBUG */

  double a = sqrt ((2.0 * J + 1.0) * (2.0 * Jp + 1.0)) *
    gsl_sf_coupling_3j (2 * J, 2 * k, 2 * Jp, 2 * M, 2 * p, -2 * Mp) *
    gsl_sf_coupling_3j (2 * J, 2 * k, 2 * Jp, 2 * K, 2 * q, -2 * Kp);

  if (GSL_IS_ODD (Mp - Kp))	/* phase */
    return -a;
  else
    return a;
}
Exemplo n.º 9
0
// antisymmetrized matrix elements of Minnesota potential in spherical HO basis
// V_acbd, where a-b and c-d are pairs of the same l,j (i.e. are coupled to J=0)
// direct term: a-b integrated over r1, c-d integrated over r2
// exchange term: a-d integrated over r1, c-b integrated over r2
// Uses multipolar expansion of gaussian in Minnesota: exp(-mu(vec{r1}-vec{r2})^2)
//  = exp(-mu(r1-r2)^2) * 4pi * sum_LM iL(2*mu*r1*r2)/exp(2*mu*r1*r2) * Y*_LM(1) * Y_LM(2)
// where iL(2*mu*r1*r2)/exp(2*mu*r1*r2) is scaled modified spherical Bessel function
void V_me(Vi1_t *V, double hw)
{
  // i1 and i2 label (j,l) subspaces (Ni elements)
  // ir1, ir2 are integration indices (converted later to r1, r2)
  // a,b are n-quantum numbers in i1=(j1,l1) subspace
  // c,d are n-quantum numbers in i2=(j2,l2) subspace
  int i1, i2, ir1, ir2, a, b, c, d, L, _2l1, _2l2;
  double r1, r2, mw, rm2, rp2;
  double sumR, sumS, sumRp, sumSp, bess, coef;
  double ***sho_nlr, *halfint1, *halfint2, *halfint3, *coef1, *coef2;
  Vi2_t *Vi2;
  mw = hw / H2M;
  // matrix elements use double integration by Gauss-Laguerre quadrature
  gaulag_init(GLNODES, 1., 0.04 / sqrt(mw));  // then use gl.x[i] and gl.w[i]
  halfint1 = (double*)malloc(gl.N * sizeof(double));
  halfint2 = (double*)malloc(gl.N * sizeof(double));
  halfint3 = (double*)malloc(gl.N * sizeof(double));
  coef1 = (double*)malloc(Ni * sizeof(double));
  coef2 = (double*)malloc(Ni * sizeof(double));
  if ((halfint1 == NULL) || (halfint2 == NULL) || (halfint3 == NULL)
      || (coef1 == NULL) || (coef2 == NULL)) {
    fprintf(stderr, "V_me: failed allocation of auxiliary arrays halfint[%d] or coef[%d]\n", gl.N, Ni);
    exit(1);
  }
  sho_nlr = make_sho_table(mw, N_jl[0], (Ni+1)/2); // tabulate SHO w.f.
  for (i1 = 0; i1 < Ni; i1++) {  // zeroing the pairing matrix elements
    for (a = 0; a < V[i1].N; a++) {
      for (b = 0; b < V[i1].N; b++) {
        Vi2 = V[i1].V_ab[a][b].Vi2;
        for (i2 = 0; i2 < Ni; i2++) {
          for (c = 0; c < Vi2[i2].N; c++) {
            for (d = 0; d < Vi2[i2].N; d++)
              Vi2[i2].V_cd_pair[c][d] = 0.;
          }
        }
      }
    }
  }

  for (i1 = 0; i1 < Ni; i1++) {  // j,l of the first pair
    for (a = 0; a < V[i1].N; a++) {
      for (b = 0; b <= a; b++) {
        for (ir2 = 0; ir2 < gl.N; ir2++) {
          halfint1[ir2] = 0.;  // for storage of r1-integrated direct term
          r2 = gl.x[ir2];
          for (ir1 = 0; ir1 < gl.N; ir1++) {
            r1 = gl.x[ir1];
            rm2 = (r1-r2)*(r1-r2);
            rp2 = (r1+r2)*(r1+r2);
            halfint1[ir2] += gl.w[ir1] * r1 * sho_nlr[a][V[i1].l1][ir1] * sho_nlr[b][V[i1].l1][ir1]
                              * (V0R*(exp(-kR*rm2)-exp(-kR*rp2))/(16*kR)
                               - V0S*(exp(-kS*rm2)-exp(-kS*rp2))/(16*kS));
          }
        }
        Vi2 = V[i1].V_ab[a][b].Vi2;
        for (i2 = 0; i2 <= i1; i2++) {  // j,l of the second pair
          _2l1 = 2 * V[i1].l1;
          _2l2 = 2 * Vi2[i2].l2;
          for (L = Vi2[i2].Lmin; L <= Vi2[i2].Lmax; L += 2) {
            // Clebsch-Gordan coeficients and 6j symbols for exchange term
            coef = gsl_sf_coupling_3j(_2l1, _2l2, 2*L, 0, 0, 0);
            coef2[L] = coef1[L] = (2*L+1) * coef * coef;
            coef = gsl_sf_coupling_6j(V[i1]._2j1, Vi2[i2]._2j2, 2*L, _2l2, _2l1, 1);
            coef = (_2l1 + 1) * (_2l2 + 1) * coef * coef;
            coef1[L] *= 1. - coef;
            coef2[L] *= coef + (_2l1 + 1) * (_2l2 + 1)
                        * gsl_sf_coupling_9j(2*L,_2l2,_2l1, _2l2,Vi2[i2]._2j2, 1, _2l1,1,V[i1]._2j1);
          }
          for (c = 0; c < Vi2[i2].N; c++) {
            for (ir1 = 0; ir1 < gl.N; ir1++) {
              halfint2[ir1] = 0.;  // for storage of r2-integrated exchange term
              halfint3[ir1] = 0.;  // for storage of r2-integrated pairing term
              r1 = gl.x[ir1];
              for (ir2 = 0; ir2 < gl.N; ir2++) {
                r2 = gl.x[ir2];
                rm2 = (r1-r2) * (r1-r2);
                rp2 = 2 * r1 * r2;
                sumR = 0.; sumS = 0.;  // storage for terms from L-expansion
                sumRp = 0.; sumSp = 0.;  // terms for pairing
                for (L = Vi2[i2].Lmin; L <= Vi2[i2].Lmax; L += 2) {
                  bess = gsl_sf_bessel_il_scaled(L, kR*rp2);
                  sumR += bess * coef1[L];
                  sumRp += bess * coef2[L];
                  bess = gsl_sf_bessel_il_scaled(L, kS*rp2);
                  sumS += bess * coef1[L];
                  sumSp += bess * coef2[L];
                }
                halfint2[ir1] += gl.w[ir2] * r2 * r2 * sho_nlr[c][Vi2[i2].l2][ir2] * sho_nlr[b][V[i1].l1][ir2]
                              * 0.5 * (V0R * exp(-kR*rm2) * sumR - V0S * exp(-kS*rm2) * sumS);
                halfint3[ir1] += gl.w[ir2] * r2 * r2 * sho_nlr[c][Vi2[i2].l2][ir2] * sho_nlr[b][V[i1].l1][ir2]
                              * 0.5 * (V0R * exp(-kR*rm2) * sumRp - V0S * exp(-kS*rm2) * sumSp);
              }
              halfint2[ir1] *= sho_nlr[a][V[i1].l1][ir1];
              halfint3[ir1] *= sho_nlr[a][V[i1].l1][ir1];
            }
            for (d = 0; d < Vi2[i2].N; d++) {
              sumR = 0.;   // for direct + exchange integral
              sumRp = 0.;  // for pairing integral
              for (ir1 = 0; ir1 < gl.N; ir1++) {
                r1 = gl.x[ir1]; // direct integral is done over r2, exchange and pairing over r1
                sumR += gl.w[ir1] * (
                        halfint1[ir1] * sho_nlr[c][Vi2[i2].l2][ir1]   // direct integral
                        + halfint2[ir1] * r1  // exchange integral
                        ) * r1 * sho_nlr[d][Vi2[i2].l2][ir1];
                sumRp += gl.w[ir1] * halfint3[ir1] * r1 * r1 * sho_nlr[d][Vi2[i2].l2][ir1];
              }
              // term (2j+1) is from the summation over m-degenerate density matrices
              sumS = sumR * (Vi2[i2]._2j2 + 1);
              sumSp = sumRp * (Vi2[i2]._2j2 + 1);
              V[i1].V_ab[a][b].Vi2[i2].V_cd[c][d] = sumS;
              V[i1].V_ab[a][b].Vi2[i2].V_cd_pair[c][d] += sumSp;
              V[i1].V_ab[a][b].Vi2[i2].V_cd_pair[d][c] += sumSp;
              if (a != b) {
                V[i1].V_ab[b][a].Vi2[i2].V_cd[d][c] = sumS;
                V[i1].V_ab[b][a].Vi2[i2].V_cd_pair[d][c] += sumSp;
                V[i1].V_ab[b][a].Vi2[i2].V_cd_pair[c][d] += sumSp;
              }
              if (i1 > i2) {  // symmetry V_acbd = V_cadb  (and V_abcd = V_cdab for pairing)
                sumS = sumR * (V[i1]._2j1 + 1);
                sumSp = sumRp * (V[i1]._2j1 + 1);
                V[i2].V_ab[c][d].Vi2[i1].V_cd[a][b] = sumS;
                V[i2].V_ab[c][d].Vi2[i1].V_cd_pair[a][b] += sumSp;
                V[i2].V_ab[d][c].Vi2[i1].V_cd_pair[a][b] += sumSp;
                if (a != b) {
                  V[i2].V_ab[d][c].Vi2[i1].V_cd[b][a] = sumS;
                  V[i2].V_ab[d][c].Vi2[i1].V_cd_pair[b][a] += sumSp;
                  V[i2].V_ab[c][d].Vi2[i1].V_cd_pair[b][a] += sumSp;
                }
              }
            }  // d
          }    // c
        }  // i2
      }  // b
    }    // a
  }  // i1
  free(halfint1);
  free(halfint2);
  free(coef1);
  free(coef2);
  free(sho_nlr[0][0]); free(sho_nlr[0]); free(sho_nlr);
}