Exemplo n.º 1
0
void
CacheHash::Feed(uint32_t aVal, uint8_t aLen)
{
  switch (mPos) {
  case 0:
    mA += aVal;
    mPos ++;
    break;

  case 1:
    mB += aVal;
    mPos ++;
    break;

  case 2:
    mPos = 0;
    if (aLen == 4) {
      mC += aVal;
      hashmix(mA, mB, mC);
    }
    else {
      mC += aVal << 8;
    }
  }

  mLength += aLen;
}
Exemplo n.º 2
0
/*
--------------------------------------------------------------------
 This works on all machines.  To be useful, it requires
 -- that the key be an array of uint32_t's, and
 -- that the length be the number of uint32_t's in the key

 The function hashword() is identical to hashlittle() on little-endian
 machines, and identical to hashbig() on big-endian machines,
 except that the length has to be measured in uint32_ts rather than in
 bytes.  hashlittle() is more complicated than hashword() only because
 hashlittle() has to dance around fitting the key bytes into registers.
--------------------------------------------------------------------
*/
uint32_t hashword(
const uint32_t *k,                   /* the key, an array of uint32_t values */
size_t          length,               /* the length of the key, in uint32_ts */
uint32_t        initval)         /* the previous hash, or an arbitrary value */
{
  uint32_t a,b,c;

  /* Set up the internal state */
  a = b = c = 0xdeadbeef + (((uint32_t)length)<<2) + initval;

  /*------------------------------------------------- handle most of the key */
  while (length > 3)
  {
    a += k[0];
    b += k[1];
    c += k[2];
    hashmix(a,b,c);
    length -= 3;
    k += 3;
  }

  /*------------------------------------------- handle the last 3 uint32_t's */
  switch(length)                     /* all the case statements fall through */
  {
  case 3 : c+=k[2];
  case 2 : b+=k[1];
  case 1 : a+=k[0];
    hashfinal(a,b,c);
  case 0:     /* case 0: nothing left to add */
    break;
  }
  /*------------------------------------------------------ report the result */
  return c;
}
Exemplo n.º 3
0
CacheHash::Hash32_t
CacheHash::GetHash()
{
  if (!mFinalized)
  {
    if (mBufPos) {
      Feed(mBuf, mBufPos);
    }
    mC += mLength;
    hashmix(mA, mB, mC);
    mFinalized = true;
  }

  return mC;
}
Exemplo n.º 4
0
/*
--------------------------------------------------------------------
hashword2() -- same as hashword(), but take two seeds and return two
32-bit values.  pc and pb must both be nonnull, and *pc and *pb must
both be initialized with seeds.  If you pass in (*pb)==0, the output
(*pc) will be the same as the return value from hashword().
--------------------------------------------------------------------
*/
void hashword2 (
const uint32_t *k,                   /* the key, an array of uint32_t values */
size_t          length,               /* the length of the key, in uint32_ts */
uint32_t       *pc,                      /* IN: seed OUT: primary hash value */
uint32_t       *pb)               /* IN: more seed OUT: secondary hash value */
{
  uint32_t a,b,c;

  /* Set up the internal state */
  a = b = c = 0xdeadbeef + ((uint32_t)(length<<2)) + *pc;
  c += *pb;

  /*------------------------------------------------- handle most of the key */
  while (length > 3)
  {
    a += k[0];
    b += k[1];
    c += k[2];
    hashmix(a,b,c);
    length -= 3;
    k += 3;
  }

  /*------------------------------------------- handle the last 3 uint32_t's */
  switch(length)                     /* all the case statements fall through */
  {
  case 3 : c+=k[2];
  case 2 : b+=k[1];
  case 1 : a+=k[0];
    hashfinal(a,b,c);
  case 0:     /* case 0: nothing left to add */
    break;
  }
  /*------------------------------------------------------ report the result */
  *pc=c; *pb=b;
}
Exemplo n.º 5
0
/*
 * hashbig():
 * This is the same as hashword() on big-endian machines.  It is different
 * from hashlittle() on all machines.  hashbig() takes advantage of
 * big-endian byte ordering.
 */
uint32_t hashbig( const void *key, size_t length, uint32_t initval)
{
  uint32_t a,b,c;
  union { const void *ptr; size_t i; } u; /* to cast key to (size_t) happily */

  /* Set up the internal state */
  a = b = c = 0xdeadbeef + ((uint32_t)length) + initval;

  u.ptr = key;
  if (HASH_BIG_ENDIAN && ((u.i & 0x3) == 0)) {
    const uint32_t *k = (const uint32_t *)key;         /* read 32-bit chunks */

    /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
    while (length > 12)
    {
      a += k[0];
      b += k[1];
      c += k[2];
      hashmix(a,b,c);
      length -= 12;
      k += 3;
    }

    /*----------------------------- handle the last (probably partial) block */
    /*
     * "k[2]<<8" actually reads beyond the end of the string, but
     * then shifts out the part it's not allowed to read.  Because the
     * string is aligned, the illegal read is in the same word as the
     * rest of the string.  Every machine with memory protection I've seen
     * does it on word boundaries, so is OK with this.  But VALGRIND will
     * still catch it and complain.  The masking trick does make the hash
     * noticably faster for short strings (like English words).
     */
#ifndef VALGRIND

    switch(length)
    {
    case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
    case 11: c+=k[2]&0xffffff00; b+=k[1]; a+=k[0]; break;
    case 10: c+=k[2]&0xffff0000; b+=k[1]; a+=k[0]; break;
    case 9 : c+=k[2]&0xff000000; b+=k[1]; a+=k[0]; break;
    case 8 : b+=k[1]; a+=k[0]; break;
    case 7 : b+=k[1]&0xffffff00; a+=k[0]; break;
    case 6 : b+=k[1]&0xffff0000; a+=k[0]; break;
    case 5 : b+=k[1]&0xff000000; a+=k[0]; break;
    case 4 : a+=k[0]; break;
    case 3 : a+=k[0]&0xffffff00; break;
    case 2 : a+=k[0]&0xffff0000; break;
    case 1 : a+=k[0]&0xff000000; break;
    case 0 : return c;              /* zero length strings require no hashmixing */
    }

#else  /* make valgrind happy */
{
    const uint8_t  *k8 = (const uint8_t *)k;
    switch(length)                   /* all the case statements fall through */
    {
    case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
    case 11: c+=((uint32_t)k8[10])<<8;  /* fall through */
    case 10: c+=((uint32_t)k8[9])<<16;  /* fall through */
    case 9 : c+=((uint32_t)k8[8])<<24;  /* fall through */
    case 8 : b+=k[1]; a+=k[0]; break;
    case 7 : b+=((uint32_t)k8[6])<<8;   /* fall through */
    case 6 : b+=((uint32_t)k8[5])<<16;  /* fall through */
    case 5 : b+=((uint32_t)k8[4])<<24;  /* fall through */
    case 4 : a+=k[0]; break;
    case 3 : a+=((uint32_t)k8[2])<<8;   /* fall through */
    case 2 : a+=((uint32_t)k8[1])<<16;  /* fall through */
    case 1 : a+=((uint32_t)k8[0])<<24; break;
    case 0 : return c;
    }
}
#endif /* !VALGRIND */

  } else {                        /* need to read the key one byte at a time */
    const uint8_t *k = (const uint8_t *)key;

    /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
    while (length > 12)
    {
      a += ((uint32_t)k[0])<<24;
      a += ((uint32_t)k[1])<<16;
      a += ((uint32_t)k[2])<<8;
      a += ((uint32_t)k[3]);
      b += ((uint32_t)k[4])<<24;
      b += ((uint32_t)k[5])<<16;
      b += ((uint32_t)k[6])<<8;
      b += ((uint32_t)k[7]);
      c += ((uint32_t)k[8])<<24;
      c += ((uint32_t)k[9])<<16;
      c += ((uint32_t)k[10])<<8;
      c += ((uint32_t)k[11]);
      hashmix(a,b,c);
      length -= 12;
      k += 12;
    }

    /*-------------------------------- last block: affect all 32 bits of (c) */
    switch(length)                   /* all the case statements fall through */
    {
    case 12: c+=k[11];
    case 11: c+=((uint32_t)k[10])<<8;
    case 10: c+=((uint32_t)k[9])<<16;
    case 9 : c+=((uint32_t)k[8])<<24;
    case 8 : b+=k[7];
    case 7 : b+=((uint32_t)k[6])<<8;
    case 6 : b+=((uint32_t)k[5])<<16;
    case 5 : b+=((uint32_t)k[4])<<24;
    case 4 : a+=k[3];
    case 3 : a+=((uint32_t)k[2])<<8;
    case 2 : a+=((uint32_t)k[1])<<16;
    case 1 : a+=((uint32_t)k[0])<<24;
             break;
    case 0 : return c;
    }
  }

  hashfinal(a,b,c);
  return c;
}
Exemplo n.º 6
0
/*
 * hashlittle2: return 2 32-bit hash values
 *
 * This is identical to hashlittle(), except it returns two 32-bit hash
 * values instead of just one.  This is good enough for hash table
 * lookup with 2^^64 buckets, or if you want a second hash if you're not
 * happy with the first, or if you want a probably-unique 64-bit ID for
 * the key.  *pc is better hashmixed than *pb, so use *pc first.  If you want
 * a 64-bit value do something like "*pc + (((uint64_t)*pb)<<32)".
 */
void hashlittle2(
  const void *key,       /* the key to hash */
  size_t      length,    /* length of the key */
  uint32_t   *pc,        /* IN: primary initval, OUT: primary hash */
  uint32_t   *pb)        /* IN: secondary initval, OUT: secondary hash */
{
  uint32_t a,b,c;                                          /* internal state */
  union { const void *ptr; size_t i; } u;     /* needed for Mac Powerbook G4 */

  /* Set up the internal state */
  a = b = c = 0xdeadbeef + ((uint32_t)length) + *pc;
  c += *pb;

  u.ptr = key;
  if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) {
    const uint32_t *k = (const uint32_t *)key;         /* read 32-bit chunks */


    /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
    while (length > 12)
    {
      a += k[0];
      b += k[1];
      c += k[2];
      hashmix(a,b,c);
      length -= 12;
      k += 3;
    }

    /*----------------------------- handle the last (probably partial) block */
    /*
     * "k[2]&0xffffff" actually reads beyond the end of the string, but
     * then masks off the part it's not allowed to read.  Because the
     * string is aligned, the masked-off tail is in the same word as the
     * rest of the string.  Every machine with memory protection I've seen
     * does it on word boundaries, so is OK with this.  But VALGRIND will
     * still catch it and complain.  The masking trick does make the hash
     * noticably faster for short strings (like English words).
     */
#ifndef VALGRIND

    switch(length)
    {
    case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
    case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break;
    case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break;
    case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break;
    case 8 : b+=k[1]; a+=k[0]; break;
    case 7 : b+=k[1]&0xffffff; a+=k[0]; break;
    case 6 : b+=k[1]&0xffff; a+=k[0]; break;
    case 5 : b+=k[1]&0xff; a+=k[0]; break;
    case 4 : a+=k[0]; break;
    case 3 : a+=k[0]&0xffffff; break;
    case 2 : a+=k[0]&0xffff; break;
    case 1 : a+=k[0]&0xff; break;
    case 0 : *pc=c; *pb=b; return;  /* zero length strings require no hashmixing */
    }

#else /* make valgrind happy */
{
    const uint8_t  *k8 = (const uint8_t *)k;
    switch(length)
    {
    case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
    case 11: c+=((uint32_t)k8[10])<<16;  /* fall through */
    case 10: c+=((uint32_t)k8[9])<<8;    /* fall through */
    case 9 : c+=k8[8];                   /* fall through */
    case 8 : b+=k[1]; a+=k[0]; break;
    case 7 : b+=((uint32_t)k8[6])<<16;   /* fall through */
    case 6 : b+=((uint32_t)k8[5])<<8;    /* fall through */
    case 5 : b+=k8[4];                   /* fall through */
    case 4 : a+=k[0]; break;
    case 3 : a+=((uint32_t)k8[2])<<16;   /* fall through */
    case 2 : a+=((uint32_t)k8[1])<<8;    /* fall through */
    case 1 : a+=k8[0]; break;
    case 0 : *pc=c; *pb=b; return;  /* zero length strings require no hashmixing */
    }
}
#endif /* !valgrind */

  } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) {
    const uint16_t *k = (const uint16_t *)key;         /* read 16-bit chunks */
    const uint8_t  *k8;

    /*--------------- all but last block: aligned reads and different hashmixing */
    while (length > 12)
    {
      a += k[0] + (((uint32_t)k[1])<<16);
      b += k[2] + (((uint32_t)k[3])<<16);
      c += k[4] + (((uint32_t)k[5])<<16);
      hashmix(a,b,c);
      length -= 12;
      k += 6;
    }

    /*----------------------------- handle the last (probably partial) block */
    k8 = (const uint8_t *)k;
    switch(length)
    {
    case 12: c+=k[4]+(((uint32_t)k[5])<<16);
             b+=k[2]+(((uint32_t)k[3])<<16);
             a+=k[0]+(((uint32_t)k[1])<<16);
             break;
    case 11: c+=((uint32_t)k8[10])<<16;     /* fall through */
    case 10: c+=k[4];
             b+=k[2]+(((uint32_t)k[3])<<16);
             a+=k[0]+(((uint32_t)k[1])<<16);
             break;
    case 9 : c+=k8[8];                      /* fall through */
    case 8 : b+=k[2]+(((uint32_t)k[3])<<16);
             a+=k[0]+(((uint32_t)k[1])<<16);
             break;
    case 7 : b+=((uint32_t)k8[6])<<16;      /* fall through */
    case 6 : b+=k[2];
             a+=k[0]+(((uint32_t)k[1])<<16);
             break;
    case 5 : b+=k8[4];                      /* fall through */
    case 4 : a+=k[0]+(((uint32_t)k[1])<<16);
             break;
    case 3 : a+=((uint32_t)k8[2])<<16;      /* fall through */
    case 2 : a+=k[0];
             break;
    case 1 : a+=k8[0];
             break;
    case 0 : *pc=c; *pb=b; return;  /* zero length strings require no hashmixing */
    }

  } else {                        /* need to read the key one byte at a time */
    const uint8_t *k = (const uint8_t *)key;

    /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
    while (length > 12)
    {
      a += k[0];
      a += ((uint32_t)k[1])<<8;
      a += ((uint32_t)k[2])<<16;
      a += ((uint32_t)k[3])<<24;
      b += k[4];
      b += ((uint32_t)k[5])<<8;
      b += ((uint32_t)k[6])<<16;
      b += ((uint32_t)k[7])<<24;
      c += k[8];
      c += ((uint32_t)k[9])<<8;
      c += ((uint32_t)k[10])<<16;
      c += ((uint32_t)k[11])<<24;
      hashmix(a,b,c);
      length -= 12;
      k += 12;
    }

    /*-------------------------------- last block: affect all 32 bits of (c) */
    switch(length)                   /* all the case statements fall through */
    {
    case 12: c+=((uint32_t)k[11])<<24;
    case 11: c+=((uint32_t)k[10])<<16;
    case 10: c+=((uint32_t)k[9])<<8;
    case 9 : c+=k[8];
    case 8 : b+=((uint32_t)k[7])<<24;
    case 7 : b+=((uint32_t)k[6])<<16;
    case 6 : b+=((uint32_t)k[5])<<8;
    case 5 : b+=k[4];
    case 4 : a+=((uint32_t)k[3])<<24;
    case 3 : a+=((uint32_t)k[2])<<16;
    case 2 : a+=((uint32_t)k[1])<<8;
    case 1 : a+=k[0];
             break;
    case 0 : *pc=c; *pb=b; return;  /* zero length strings require no hashmixing */
    }
  }

  hashfinal(a,b,c);
  *pc=c; *pb=b;
}