Exemplo n.º 1
0
static int compute_dest_tuplen(TupleDesc tupdesc, MemTupleBinding *pbind, bool hasnull, Datum *d, bool *isnull)
{
	if(pbind) 
	{
		uint32 nullsave_dummy;
		return (int) compute_memtuple_size(pbind, d, isnull, hasnull, &nullsave_dummy, true /* aligned */);
	}

	return heap_compute_data_size(tupdesc, d, isnull);
}
Exemplo n.º 2
0
/* ----------
 * toast_flatten_tuple_attribute -
 *
 *	If a Datum is of composite type, "flatten" it to contain no toasted fields.
 *	This must be invoked on any potentially-composite field that is to be
 *	inserted into a tuple.	Doing this preserves the invariant that toasting
 *	goes only one level deep in a tuple.
 *
 *	Note that flattening does not mean expansion of short-header varlenas,
 *	so in one sense toasting is allowed within composite datums.
 * ----------
 */
Datum
toast_flatten_tuple_attribute(Datum value,
							  Oid typeId, int32 typeMod)
{
	TupleDesc	tupleDesc;
	HeapTupleHeader olddata;
	HeapTupleHeader new_data;
	int32		new_len;
	int32		new_data_len;
	HeapTupleData tmptup;
	Form_pg_attribute *att;
	int			numAttrs;
	int			i;
	bool		need_change = false;
	bool		has_nulls = false;
	Datum		toast_values[MaxTupleAttributeNumber];
	bool		toast_isnull[MaxTupleAttributeNumber];
	bool		toast_free[MaxTupleAttributeNumber];

	/*
	 * See if it's a composite type, and get the tupdesc if so.
	 */
	tupleDesc = lookup_rowtype_tupdesc_noerror(typeId, typeMod, true);
	if (tupleDesc == NULL)
		return value;			/* not a composite type */

	att = tupleDesc->attrs;
	numAttrs = tupleDesc->natts;

	/*
	 * Break down the tuple into fields.
	 */
	olddata = DatumGetHeapTupleHeader(value);
	Assert(typeId == HeapTupleHeaderGetTypeId(olddata));
	Assert(typeMod == HeapTupleHeaderGetTypMod(olddata));
	/* Build a temporary HeapTuple control structure */
	tmptup.t_len = HeapTupleHeaderGetDatumLength(olddata);
	ItemPointerSetInvalid(&(tmptup.t_self));
	tmptup.t_tableOid = InvalidOid;
	tmptup.t_data = olddata;

	Assert(numAttrs <= MaxTupleAttributeNumber);
	heap_deform_tuple(&tmptup, tupleDesc, toast_values, toast_isnull);

	memset(toast_free, 0, numAttrs * sizeof(bool));

	for (i = 0; i < numAttrs; i++)
	{
		/*
		 * Look at non-null varlena attributes
		 */
		if (toast_isnull[i])
			has_nulls = true;
		else if (att[i]->attlen == -1)
		{
			struct varlena *new_value;

			new_value = (struct varlena *) DatumGetPointer(toast_values[i]);
			if (VARATT_IS_EXTERNAL(new_value) ||
				VARATT_IS_COMPRESSED(new_value))
			{
				new_value = heap_tuple_untoast_attr(new_value);
				toast_values[i] = PointerGetDatum(new_value);
				toast_free[i] = true;
				need_change = true;
			}
		}
	}

	/*
	 * If nothing to untoast, just return the original tuple.
	 */
	if (!need_change)
	{
		ReleaseTupleDesc(tupleDesc);
		return value;
	}

	/*
	 * Calculate the new size of the tuple.  Header size should not change,
	 * but data size might.
	 */
	new_len = offsetof(HeapTupleHeaderData, t_bits);
	if (has_nulls)
		new_len += BITMAPLEN(numAttrs);
	if (olddata->t_infomask & HEAP_HASOID)
		new_len += sizeof(Oid);
	new_len = MAXALIGN(new_len);
	Assert(new_len == olddata->t_hoff);
	new_data_len = heap_compute_data_size(tupleDesc,
										  toast_values, toast_isnull);
	new_len += new_data_len;

	new_data = (HeapTupleHeader) palloc0(new_len);

	/*
	 * Put the tuple header and the changed values into place
	 */
	memcpy(new_data, olddata, olddata->t_hoff);

	HeapTupleHeaderSetDatumLength(new_data, new_len);

	heap_fill_tuple(tupleDesc,
					toast_values,
					toast_isnull,
					(char *) new_data + olddata->t_hoff,
					new_data_len,
					&(new_data->t_infomask),
					has_nulls ? new_data->t_bits : NULL);

	/*
	 * Free allocated temp values
	 */
	for (i = 0; i < numAttrs; i++)
		if (toast_free[i])
			pfree(DatumGetPointer(toast_values[i]));
	ReleaseTupleDesc(tupleDesc);

	return PointerGetDatum(new_data);
}
Exemplo n.º 3
0
/* ----------
 * toast_insert_or_update -
 *
 *	Delete no-longer-used toast-entries and create new ones to
 *	make the new tuple fit on INSERT or UPDATE
 *
 * Inputs:
 *	newtup: the candidate new tuple to be inserted
 *	oldtup: the old row version for UPDATE, or NULL for INSERT
 *	options: options to be passed to heap_insert() for toast rows
 * Result:
 *	either newtup if no toasting is needed, or a palloc'd modified tuple
 *	that is what should actually get stored
 *
 * NOTE: neither newtup nor oldtup will be modified.  This is a change
 * from the pre-8.1 API of this routine.
 * ----------
 */
HeapTuple
toast_insert_or_update(Relation rel, HeapTuple newtup, HeapTuple oldtup,
					   int options)
{
	HeapTuple	result_tuple;
	TupleDesc	tupleDesc;
	Form_pg_attribute *att;
	int			numAttrs;
	int			i;

	bool		need_change = false;
	bool		need_free = false;
	bool		need_delold = false;
	bool		has_nulls = false;

	Size		maxDataLen;
	Size		hoff;

	char		toast_action[MaxHeapAttributeNumber];
	bool		toast_isnull[MaxHeapAttributeNumber];
	bool		toast_oldisnull[MaxHeapAttributeNumber];
	Datum		toast_values[MaxHeapAttributeNumber];
	Datum		toast_oldvalues[MaxHeapAttributeNumber];
	int32		toast_sizes[MaxHeapAttributeNumber];
	bool		toast_free[MaxHeapAttributeNumber];
	bool		toast_delold[MaxHeapAttributeNumber];

	/*
	 * We should only ever be called for tuples of plain relations ---
	 * recursing on a toast rel is bad news.
	 */
	Assert(rel->rd_rel->relkind == RELKIND_RELATION);

	/*
	 * Get the tuple descriptor and break down the tuple(s) into fields.
	 */
	tupleDesc = rel->rd_att;
	att = tupleDesc->attrs;
	numAttrs = tupleDesc->natts;

	Assert(numAttrs <= MaxHeapAttributeNumber);
	heap_deform_tuple(newtup, tupleDesc, toast_values, toast_isnull);
	if (oldtup != NULL)
		heap_deform_tuple(oldtup, tupleDesc, toast_oldvalues, toast_oldisnull);

	/* ----------
	 * Then collect information about the values given
	 *
	 * NOTE: toast_action[i] can have these values:
	 *		' '		default handling
	 *		'p'		already processed --- don't touch it
	 *		'x'		incompressible, but OK to move off
	 *
	 * NOTE: toast_sizes[i] is only made valid for varlena attributes with
	 *		toast_action[i] different from 'p'.
	 * ----------
	 */
	memset(toast_action, ' ', numAttrs * sizeof(char));
	memset(toast_free, 0, numAttrs * sizeof(bool));
	memset(toast_delold, 0, numAttrs * sizeof(bool));

	for (i = 0; i < numAttrs; i++)
	{
		struct varlena *old_value;
		struct varlena *new_value;

		if (oldtup != NULL)
		{
			/*
			 * For UPDATE get the old and new values of this attribute
			 */
			old_value = (struct varlena *) DatumGetPointer(toast_oldvalues[i]);
			new_value = (struct varlena *) DatumGetPointer(toast_values[i]);

			/*
			 * If the old value is an external stored one, check if it has
			 * changed so we have to delete it later.
			 */
			if (att[i]->attlen == -1 && !toast_oldisnull[i] &&
				VARATT_IS_EXTERNAL(old_value))
			{
				if (toast_isnull[i] || !VARATT_IS_EXTERNAL(new_value) ||
					memcmp((char *) old_value, (char *) new_value,
						   VARSIZE_EXTERNAL(old_value)) != 0)
				{
					/*
					 * The old external stored value isn't needed any more
					 * after the update
					 */
					toast_delold[i] = true;
					need_delold = true;
				}
				else
				{
					/*
					 * This attribute isn't changed by this update so we reuse
					 * the original reference to the old value in the new
					 * tuple.
					 */
					toast_action[i] = 'p';
					continue;
				}
			}
		}
		else
		{
			/*
			 * For INSERT simply get the new value
			 */
			new_value = (struct varlena *) DatumGetPointer(toast_values[i]);
		}

		/*
		 * Handle NULL attributes
		 */
		if (toast_isnull[i])
		{
			toast_action[i] = 'p';
			has_nulls = true;
			continue;
		}

		/*
		 * Now look at varlena attributes
		 */
		if (att[i]->attlen == -1)
		{
			/*
			 * If the table's attribute says PLAIN always, force it so.
			 */
			if (att[i]->attstorage == 'p')
				toast_action[i] = 'p';

			/*
			 * We took care of UPDATE above, so any external value we find
			 * still in the tuple must be someone else's we cannot reuse.
			 * Fetch it back (without decompression, unless we are forcing
			 * PLAIN storage).	If necessary, we'll push it out as a new
			 * external value below.
			 */
			if (VARATT_IS_EXTERNAL(new_value))
			{
				if (att[i]->attstorage == 'p')
					new_value = heap_tuple_untoast_attr(new_value);
				else
					new_value = heap_tuple_fetch_attr(new_value);
				toast_values[i] = PointerGetDatum(new_value);
				toast_free[i] = true;
				need_change = true;
				need_free = true;
			}

			/*
			 * Remember the size of this attribute
			 */
			toast_sizes[i] = VARSIZE_ANY(new_value);
		}
		else
		{
			/*
			 * Not a varlena attribute, plain storage always
			 */
			toast_action[i] = 'p';
		}
	}

	/* ----------
	 * Compress and/or save external until data fits into target length
	 *
	 *	1: Inline compress attributes with attstorage 'x', and store very
	 *	   large attributes with attstorage 'x' or 'e' external immediately
	 *	2: Store attributes with attstorage 'x' or 'e' external
	 *	3: Inline compress attributes with attstorage 'm'
	 *	4: Store attributes with attstorage 'm' external
	 * ----------
	 */

	/* compute header overhead --- this should match heap_form_tuple() */
	hoff = offsetof(HeapTupleHeaderData, t_bits);
	if (has_nulls)
		hoff += BITMAPLEN(numAttrs);
	if (newtup->t_data->t_infomask & HEAP_HASOID)
		hoff += sizeof(Oid);
	hoff = MAXALIGN(hoff);
	Assert(hoff == newtup->t_data->t_hoff);
	/* now convert to a limit on the tuple data size */
	maxDataLen = TOAST_TUPLE_TARGET - hoff;

	/*
	 * Look for attributes with attstorage 'x' to compress.  Also find large
	 * attributes with attstorage 'x' or 'e', and store them external.
	 */
	while (heap_compute_data_size(tupleDesc,
								  toast_values, toast_isnull) > maxDataLen)
	{
		int			biggest_attno = -1;
		int32		biggest_size = MAXALIGN(TOAST_POINTER_SIZE);
		Datum		old_value;
		Datum		new_value;

		/*
		 * Search for the biggest yet unprocessed internal attribute
		 */
		for (i = 0; i < numAttrs; i++)
		{
			if (toast_action[i] != ' ')
				continue;
			if (VARATT_IS_EXTERNAL(DatumGetPointer(toast_values[i])))
				continue;		/* can't happen, toast_action would be 'p' */
			if (VARATT_IS_COMPRESSED(DatumGetPointer(toast_values[i])))
				continue;
			if (att[i]->attstorage != 'x' && att[i]->attstorage != 'e')
				continue;
			if (toast_sizes[i] > biggest_size)
			{
				biggest_attno = i;
				biggest_size = toast_sizes[i];
			}
		}

		if (biggest_attno < 0)
			break;

		/*
		 * Attempt to compress it inline, if it has attstorage 'x'
		 */
		i = biggest_attno;
		if (att[i]->attstorage == 'x')
		{
			old_value = toast_values[i];
			new_value = toast_compress_datum(old_value);

			if (DatumGetPointer(new_value) != NULL)
			{
				/* successful compression */
				if (toast_free[i])
					pfree(DatumGetPointer(old_value));
				toast_values[i] = new_value;
				toast_free[i] = true;
				toast_sizes[i] = VARSIZE(DatumGetPointer(toast_values[i]));
				need_change = true;
				need_free = true;
			}
			else
			{
				/* incompressible, ignore on subsequent compression passes */
				toast_action[i] = 'x';
			}
		}
		else
		{
			/* has attstorage 'e', ignore on subsequent compression passes */
			toast_action[i] = 'x';
		}

		/*
		 * If this value is by itself more than maxDataLen (after compression
		 * if any), push it out to the toast table immediately, if possible.
		 * This avoids uselessly compressing other fields in the common case
		 * where we have one long field and several short ones.
		 *
		 * XXX maybe the threshold should be less than maxDataLen?
		 */
		if (toast_sizes[i] > maxDataLen &&
			rel->rd_rel->reltoastrelid != InvalidOid)
		{
			old_value = toast_values[i];
			toast_action[i] = 'p';
			toast_values[i] = toast_save_datum(rel, toast_values[i], options);
			if (toast_free[i])
				pfree(DatumGetPointer(old_value));
			toast_free[i] = true;
			need_change = true;
			need_free = true;
		}
	}

	/*
	 * Second we look for attributes of attstorage 'x' or 'e' that are still
	 * inline.	But skip this if there's no toast table to push them to.
	 */
	while (heap_compute_data_size(tupleDesc,
								  toast_values, toast_isnull) > maxDataLen &&
		   rel->rd_rel->reltoastrelid != InvalidOid)
	{
		int			biggest_attno = -1;
		int32		biggest_size = MAXALIGN(TOAST_POINTER_SIZE);
		Datum		old_value;

		/*------
		 * Search for the biggest yet inlined attribute with
		 * attstorage equals 'x' or 'e'
		 *------
		 */
		for (i = 0; i < numAttrs; i++)
		{
			if (toast_action[i] == 'p')
				continue;
			if (VARATT_IS_EXTERNAL(DatumGetPointer(toast_values[i])))
				continue;		/* can't happen, toast_action would be 'p' */
			if (att[i]->attstorage != 'x' && att[i]->attstorage != 'e')
				continue;
			if (toast_sizes[i] > biggest_size)
			{
				biggest_attno = i;
				biggest_size = toast_sizes[i];
			}
		}

		if (biggest_attno < 0)
			break;

		/*
		 * Store this external
		 */
		i = biggest_attno;
		old_value = toast_values[i];
		toast_action[i] = 'p';
		toast_values[i] = toast_save_datum(rel, toast_values[i], options);
		if (toast_free[i])
			pfree(DatumGetPointer(old_value));
		toast_free[i] = true;

		need_change = true;
		need_free = true;
	}

	/*
	 * Round 3 - this time we take attributes with storage 'm' into
	 * compression
	 */
	while (heap_compute_data_size(tupleDesc,
								  toast_values, toast_isnull) > maxDataLen)
	{
		int			biggest_attno = -1;
		int32		biggest_size = MAXALIGN(TOAST_POINTER_SIZE);
		Datum		old_value;
		Datum		new_value;

		/*
		 * Search for the biggest yet uncompressed internal attribute
		 */
		for (i = 0; i < numAttrs; i++)
		{
			if (toast_action[i] != ' ')
				continue;
			if (VARATT_IS_EXTERNAL(DatumGetPointer(toast_values[i])))
				continue;		/* can't happen, toast_action would be 'p' */
			if (VARATT_IS_COMPRESSED(DatumGetPointer(toast_values[i])))
				continue;
			if (att[i]->attstorage != 'm')
				continue;
			if (toast_sizes[i] > biggest_size)
			{
				biggest_attno = i;
				biggest_size = toast_sizes[i];
			}
		}

		if (biggest_attno < 0)
			break;

		/*
		 * Attempt to compress it inline
		 */
		i = biggest_attno;
		old_value = toast_values[i];
		new_value = toast_compress_datum(old_value);

		if (DatumGetPointer(new_value) != NULL)
		{
			/* successful compression */
			if (toast_free[i])
				pfree(DatumGetPointer(old_value));
			toast_values[i] = new_value;
			toast_free[i] = true;
			toast_sizes[i] = VARSIZE(DatumGetPointer(toast_values[i]));
			need_change = true;
			need_free = true;
		}
		else
		{
			/* incompressible, ignore on subsequent compression passes */
			toast_action[i] = 'x';
		}
	}

	/*
	 * Finally we store attributes of type 'm' externally.	At this point we
	 * increase the target tuple size, so that 'm' attributes aren't stored
	 * externally unless really necessary.
	 */
	maxDataLen = TOAST_TUPLE_TARGET_MAIN - hoff;

	while (heap_compute_data_size(tupleDesc,
								  toast_values, toast_isnull) > maxDataLen &&
		   rel->rd_rel->reltoastrelid != InvalidOid)
	{
		int			biggest_attno = -1;
		int32		biggest_size = MAXALIGN(TOAST_POINTER_SIZE);
		Datum		old_value;

		/*--------
		 * Search for the biggest yet inlined attribute with
		 * attstorage = 'm'
		 *--------
		 */
		for (i = 0; i < numAttrs; i++)
		{
			if (toast_action[i] == 'p')
				continue;
			if (VARATT_IS_EXTERNAL(DatumGetPointer(toast_values[i])))
				continue;		/* can't happen, toast_action would be 'p' */
			if (att[i]->attstorage != 'm')
				continue;
			if (toast_sizes[i] > biggest_size)
			{
				biggest_attno = i;
				biggest_size = toast_sizes[i];
			}
		}

		if (biggest_attno < 0)
			break;

		/*
		 * Store this external
		 */
		i = biggest_attno;
		old_value = toast_values[i];
		toast_action[i] = 'p';
		toast_values[i] = toast_save_datum(rel, toast_values[i], options);
		if (toast_free[i])
			pfree(DatumGetPointer(old_value));
		toast_free[i] = true;

		need_change = true;
		need_free = true;
	}

	/*
	 * In the case we toasted any values, we need to build a new heap tuple
	 * with the changed values.
	 */
	if (need_change)
	{
		HeapTupleHeader olddata = newtup->t_data;
		HeapTupleHeader new_data;
		int32		new_len;
		int32		new_data_len;

		/*
		 * Calculate the new size of the tuple.  Header size should not
		 * change, but data size might.
		 */
		new_len = offsetof(HeapTupleHeaderData, t_bits);
		if (has_nulls)
			new_len += BITMAPLEN(numAttrs);
		if (olddata->t_infomask & HEAP_HASOID)
			new_len += sizeof(Oid);
		new_len = MAXALIGN(new_len);
		Assert(new_len == olddata->t_hoff);
		new_data_len = heap_compute_data_size(tupleDesc,
											  toast_values, toast_isnull);
		new_len += new_data_len;

		/*
		 * Allocate and zero the space needed, and fill HeapTupleData fields.
		 */
		result_tuple = (HeapTuple) palloc0(HEAPTUPLESIZE + new_len);
		result_tuple->t_len = new_len;
		result_tuple->t_self = newtup->t_self;
		result_tuple->t_tableOid = newtup->t_tableOid;
		new_data = (HeapTupleHeader) ((char *) result_tuple + HEAPTUPLESIZE);
		result_tuple->t_data = new_data;

		/*
		 * Put the existing tuple header and the changed values into place
		 */
		memcpy(new_data, olddata, olddata->t_hoff);

		heap_fill_tuple(tupleDesc,
						toast_values,
						toast_isnull,
						(char *) new_data + olddata->t_hoff,
						new_data_len,
						&(new_data->t_infomask),
						has_nulls ? new_data->t_bits : NULL);
	}
	else
		result_tuple = newtup;

	/*
	 * Free allocated temp values
	 */
	if (need_free)
		for (i = 0; i < numAttrs; i++)
			if (toast_free[i])
				pfree(DatumGetPointer(toast_values[i]));

	/*
	 * Delete external values from the old tuple
	 */
	if (need_delold)
		for (i = 0; i < numAttrs; i++)
			if (toast_delold[i])
				toast_delete_datum(rel, toast_oldvalues[i]);

	return result_tuple;
}
Exemplo n.º 4
0
/*
 * Generate a new on-disk tuple to be inserted in a BRIN index.
 *
 * See brin_form_placeholder_tuple if you touch this.
 */
BrinTuple *
brin_form_tuple(BrinDesc *brdesc, BlockNumber blkno, BrinMemTuple *tuple,
				Size *size)
{
	Datum	   *values;
	bool	   *nulls;
	bool		anynulls = false;
	BrinTuple  *rettuple;
	int			keyno;
	int			idxattno;
	uint16		phony_infomask = 0;
	bits8	   *phony_nullbitmap;
	Size		len,
				hoff,
				data_len;

	Assert(brdesc->bd_totalstored > 0);

	values = (Datum *) palloc(sizeof(Datum) * brdesc->bd_totalstored);
	nulls = (bool *) palloc0(sizeof(bool) * brdesc->bd_totalstored);
	phony_nullbitmap = (bits8 *)
		palloc(sizeof(bits8) * BITMAPLEN(brdesc->bd_totalstored));

	/*
	 * Set up the values/nulls arrays for heap_fill_tuple
	 */
	idxattno = 0;
	for (keyno = 0; keyno < brdesc->bd_tupdesc->natts; keyno++)
	{
		int			datumno;

		/*
		 * "allnulls" is set when there's no nonnull value in any row in the
		 * column; when this happens, there is no data to store.  Thus set the
		 * nullable bits for all data elements of this column and we're done.
		 */
		if (tuple->bt_columns[keyno].bv_allnulls)
		{
			for (datumno = 0;
				 datumno < brdesc->bd_info[keyno]->oi_nstored;
				 datumno++)
				nulls[idxattno++] = true;
			anynulls = true;
			continue;
		}

		/*
		 * The "hasnulls" bit is set when there are some null values in the
		 * data.  We still need to store a real value, but the presence of
		 * this means we need a null bitmap.
		 */
		if (tuple->bt_columns[keyno].bv_hasnulls)
			anynulls = true;

		for (datumno = 0;
			 datumno < brdesc->bd_info[keyno]->oi_nstored;
			 datumno++)
			values[idxattno++] = tuple->bt_columns[keyno].bv_values[datumno];
	}

	/* Assert we did not overrun temp arrays */
	Assert(idxattno <= brdesc->bd_totalstored);

	/* compute total space needed */
	len = SizeOfBrinTuple;
	if (anynulls)
	{
		/*
		 * We need a double-length bitmap on an on-disk BRIN index tuple; the
		 * first half stores the "allnulls" bits, the second stores
		 * "hasnulls".
		 */
		len += BITMAPLEN(brdesc->bd_tupdesc->natts * 2);
	}

	len = hoff = MAXALIGN(len);

	data_len = heap_compute_data_size(brtuple_disk_tupdesc(brdesc),
									  values, nulls);
	len += data_len;

	len = MAXALIGN(len);

	rettuple = palloc0(len);
	rettuple->bt_blkno = blkno;
	rettuple->bt_info = hoff;

	/* Assert that hoff fits in the space available */
	Assert((rettuple->bt_info & BRIN_OFFSET_MASK) == hoff);

	/*
	 * The infomask and null bitmap as computed by heap_fill_tuple are useless
	 * to us.  However, that function will not accept a null infomask; and we
	 * need to pass a valid null bitmap so that it will correctly skip
	 * outputting null attributes in the data area.
	 */
	heap_fill_tuple(brtuple_disk_tupdesc(brdesc),
					values,
					nulls,
					(char *) rettuple + hoff,
					data_len,
					&phony_infomask,
					phony_nullbitmap);

	/* done with these */
	pfree(values);
	pfree(nulls);
	pfree(phony_nullbitmap);

	/*
	 * Now fill in the real null bitmasks.  allnulls first.
	 */
	if (anynulls)
	{
		bits8	   *bitP;
		int			bitmask;

		rettuple->bt_info |= BRIN_NULLS_MASK;

		/*
		 * Note that we reverse the sense of null bits in this module: we
		 * store a 1 for a null attribute rather than a 0.  So we must reverse
		 * the sense of the att_isnull test in br_deconstruct_tuple as well.
		 */
		bitP = ((bits8 *) ((char *) rettuple + SizeOfBrinTuple)) - 1;
		bitmask = HIGHBIT;
		for (keyno = 0; keyno < brdesc->bd_tupdesc->natts; keyno++)
		{
			if (bitmask != HIGHBIT)
				bitmask <<= 1;
			else
			{
				bitP += 1;
				*bitP = 0x0;
				bitmask = 1;
			}

			if (!tuple->bt_columns[keyno].bv_allnulls)
				continue;

			*bitP |= bitmask;
		}
		/* hasnulls bits follow */
		for (keyno = 0; keyno < brdesc->bd_tupdesc->natts; keyno++)
		{
			if (bitmask != HIGHBIT)
				bitmask <<= 1;
			else
			{
				bitP += 1;
				*bitP = 0x0;
				bitmask = 1;
			}

			if (!tuple->bt_columns[keyno].bv_hasnulls)
				continue;

			*bitP |= bitmask;
		}
		bitP = ((bits8 *) (rettuple + SizeOfBrinTuple)) - 1;
	}

	if (tuple->bt_placeholder)
		rettuple->bt_info |= BRIN_PLACEHOLDER_MASK;

	*size = len;
	return rettuple;
}
Exemplo n.º 5
0
/* ----------------
 *		index_form_tuple
 *
 *		This shouldn't leak any memory; otherwise, callers such as
 *		tuplesort_putindextuplevalues() will be very unhappy.
 * ----------------
 */
IndexTuple
index_form_tuple(TupleDesc tupleDescriptor,
				 Datum *values,
				 bool *isnull)
{
	char	   *tp;				/* tuple pointer */
	IndexTuple	tuple;			/* return tuple */
	Size		size,
				data_size,
				hoff;
	int			i;
	unsigned short infomask = 0;
	bool		hasnull = false;
	uint16		tupmask = 0;
	int			numberOfAttributes = tupleDescriptor->natts;

#ifdef TOAST_INDEX_HACK
	Datum		untoasted_values[INDEX_MAX_KEYS];
	bool		untoasted_free[INDEX_MAX_KEYS];
#endif

	if (numberOfAttributes > INDEX_MAX_KEYS)
		ereport(ERROR,
				(errcode(ERRCODE_TOO_MANY_COLUMNS),
				 errmsg("number of index columns (%d) exceeds limit (%d)",
						numberOfAttributes, INDEX_MAX_KEYS)));

#ifdef TOAST_INDEX_HACK
	for (i = 0; i < numberOfAttributes; i++)
	{
		Form_pg_attribute att = tupleDescriptor->attrs[i];

		untoasted_values[i] = values[i];
		untoasted_free[i] = false;

		/* Do nothing if value is NULL or not of varlena type */
		if (isnull[i] || att->attlen != -1)
			continue;

		/*
		 * If value is stored EXTERNAL, must fetch it so we are not depending
		 * on outside storage.  This should be improved someday.
		 */
		if (VARATT_IS_EXTERNAL(DatumGetPointer(values[i])))
		{
			untoasted_values[i] =
				PointerGetDatum(heap_tuple_fetch_attr((struct varlena *)
												DatumGetPointer(values[i])));
			untoasted_free[i] = true;
		}

		/*
		 * If value is above size target, and is of a compressible datatype,
		 * try to compress it in-line.
		 */
		if (!VARATT_IS_EXTENDED(DatumGetPointer(untoasted_values[i])) &&
		VARSIZE(DatumGetPointer(untoasted_values[i])) > TOAST_INDEX_TARGET &&
			(att->attstorage == 'x' || att->attstorage == 'm'))
		{
			Datum		cvalue = toast_compress_datum(untoasted_values[i]);

			if (DatumGetPointer(cvalue) != NULL)
			{
				/* successful compression */
				if (untoasted_free[i])
					pfree(DatumGetPointer(untoasted_values[i]));
				untoasted_values[i] = cvalue;
				untoasted_free[i] = true;
			}
		}
	}
#endif

	for (i = 0; i < numberOfAttributes; i++)
	{
		if (isnull[i])
		{
			hasnull = true;
			break;
		}
	}

	if (hasnull)
		infomask |= INDEX_NULL_MASK;

	hoff = IndexInfoFindDataOffset(infomask);
#ifdef TOAST_INDEX_HACK
	data_size = heap_compute_data_size(tupleDescriptor,
									   untoasted_values, isnull);
#else
	data_size = heap_compute_data_size(tupleDescriptor,
									   values, isnull);
#endif
	size = hoff + data_size;
	size = MAXALIGN(size);		/* be conservative */

	tp = (char *) palloc0(size);
	tuple = (IndexTuple) tp;

	heap_fill_tuple(tupleDescriptor,
#ifdef TOAST_INDEX_HACK
					untoasted_values,
#else
					values,
#endif
					isnull,
					(char *) tp + hoff,
					data_size,
					&tupmask,
					(hasnull ? (bits8 *) tp + sizeof(IndexTupleData) : NULL));

#ifdef TOAST_INDEX_HACK
	for (i = 0; i < numberOfAttributes; i++)
	{
		if (untoasted_free[i])
			pfree(DatumGetPointer(untoasted_values[i]));
	}
#endif

	/*
	 * We do this because heap_fill_tuple wants to initialize a "tupmask"
	 * which is used for HeapTuples, but we want an indextuple infomask. The
	 * only relevant info is the "has variable attributes" field. We have
	 * already set the hasnull bit above.
	 */
	if (tupmask & HEAP_HASVARWIDTH)
		infomask |= INDEX_VAR_MASK;

	/* Also assert we got rid of external attributes */
#ifdef TOAST_INDEX_HACK
	Assert((tupmask & HEAP_HASEXTERNAL) == 0);
#endif

	/*
	 * Here we make sure that the size will fit in the field reserved for it
	 * in t_info.
	 */
	if ((size & INDEX_SIZE_MASK) != size)
		ereport(ERROR,
				(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
				 errmsg("index row requires %zu bytes, maximum size is %zu",
						size, (Size) INDEX_SIZE_MASK)));

	infomask |= size;

	/*
	 * initialize metadata
	 */
	tuple->t_info = infomask;
	return tuple;
}
Exemplo n.º 6
0
/* ----------
 * toast_insert_or_update -
 *
 *	Delete no-longer-used toast-entries and create new ones to
 *	make the new tuple fit on INSERT or UPDATE
 *
 * Inputs:
 *	newtup: the candidate new tuple to be inserted
 *	oldtup: the old row version for UPDATE, or NULL for INSERT
 * Result:
 *	either newtup if no toasting is needed, or a palloc'd modified tuple
 *	that is what should actually get stored
 *
 * NOTE: neither newtup nor oldtup will be modified.  This is a change
 * from the pre-8.1 API of this routine.
 * ----------
 */
HeapTuple
toast_insert_or_update(Relation rel, HeapTuple newtup, HeapTuple oldtup)
{
	HeapTuple	result_tuple;
	TupleDesc	tupleDesc;
	Form_pg_attribute *att;
	int			numAttrs;
	int			i;

	bool		need_change = false;
	bool		need_free = false;
	bool		need_delold = false;
	bool		has_nulls = false;

	Size		maxDataLen;

	char		toast_action[MaxHeapAttributeNumber];
	bool		toast_isnull[MaxHeapAttributeNumber];
	bool		toast_oldisnull[MaxHeapAttributeNumber];
	Datum		toast_values[MaxHeapAttributeNumber];
	Datum		toast_oldvalues[MaxHeapAttributeNumber];
	int32		toast_sizes[MaxHeapAttributeNumber];
	bool		toast_free[MaxHeapAttributeNumber];
	bool		toast_delold[MaxHeapAttributeNumber];

	/*
	 * Get the tuple descriptor and break down the tuple(s) into fields.
	 */
	tupleDesc = rel->rd_att;
	att = tupleDesc->attrs;
	numAttrs = tupleDesc->natts;

	Assert(numAttrs <= MaxHeapAttributeNumber);
	heap_deform_tuple(newtup, tupleDesc, toast_values, toast_isnull);
	if (oldtup != NULL)
		heap_deform_tuple(oldtup, tupleDesc, toast_oldvalues, toast_oldisnull);

	/* ----------
	 * Then collect information about the values given
	 *
	 * NOTE: toast_action[i] can have these values:
	 *		' '		default handling
	 *		'p'		already processed --- don't touch it
	 *		'x'		incompressible, but OK to move off
	 *
	 * NOTE: toast_sizes[i] is only made valid for varlena attributes with
	 *		toast_action[i] different from 'p'.
	 * ----------
	 */
	memset(toast_action, ' ', numAttrs * sizeof(char));
	memset(toast_free, 0, numAttrs * sizeof(bool));
	memset(toast_delold, 0, numAttrs * sizeof(bool));

	for (i = 0; i < numAttrs; i++)
	{
		varattrib  *old_value;
		varattrib  *new_value;

		if (oldtup != NULL)
		{
			/*
			 * For UPDATE get the old and new values of this attribute
			 */
			old_value = (varattrib *) DatumGetPointer(toast_oldvalues[i]);
			new_value = (varattrib *) DatumGetPointer(toast_values[i]);

			/*
			 * If the old value is an external stored one, check if it has
			 * changed so we have to delete it later.
			 */
			if (att[i]->attlen == -1 && !toast_oldisnull[i] &&
				VARATT_IS_EXTERNAL(old_value))
			{
				if (toast_isnull[i] || !VARATT_IS_EXTERNAL(new_value) ||
					old_value->va_content.va_external.va_valueid !=
					new_value->va_content.va_external.va_valueid ||
					old_value->va_content.va_external.va_toastrelid !=
					new_value->va_content.va_external.va_toastrelid)
				{
					/*
					 * The old external stored value isn't needed any more
					 * after the update
					 */
					toast_delold[i] = true;
					need_delold = true;
				}
				else
				{
					/*
					 * This attribute isn't changed by this update so we reuse
					 * the original reference to the old value in the new
					 * tuple.
					 */
					toast_action[i] = 'p';
					toast_sizes[i] = VARATT_SIZE(toast_values[i]);
					continue;
				}
			}
		}
		else
		{
			/*
			 * For INSERT simply get the new value
			 */
			new_value = (varattrib *) DatumGetPointer(toast_values[i]);
		}

		/*
		 * Handle NULL attributes
		 */
		if (toast_isnull[i])
		{
			toast_action[i] = 'p';
			has_nulls = true;
			continue;
		}

		/*
		 * Now look at varlena attributes
		 */
		if (att[i]->attlen == -1)
		{
			/*
			 * If the table's attribute says PLAIN always, force it so.
			 */
			if (att[i]->attstorage == 'p')
				toast_action[i] = 'p';

			/*
			 * We took care of UPDATE above, so any external value we find
			 * still in the tuple must be someone else's we cannot reuse.
			 * Expand it to plain (and, probably, toast it again below).
			 */
			if (VARATT_IS_EXTERNAL(new_value))
			{
				new_value = heap_tuple_untoast_attr(new_value);
				toast_values[i] = PointerGetDatum(new_value);
				toast_free[i] = true;
				need_change = true;
				need_free = true;
			}

			/*
			 * Remember the size of this attribute
			 */
			toast_sizes[i] = VARATT_SIZE(new_value);
		}
		else
		{
			/*
			 * Not a varlena attribute, plain storage always
			 */
			toast_action[i] = 'p';
		}
	}

	/* ----------
	 * Compress and/or save external until data fits into target length
	 *
	 *	1: Inline compress attributes with attstorage 'x'
	 *	2: Store attributes with attstorage 'x' or 'e' external
	 *	3: Inline compress attributes with attstorage 'm'
	 *	4: Store attributes with attstorage 'm' external
	 * ----------
	 */
	maxDataLen = offsetof(HeapTupleHeaderData, t_bits);
	if (has_nulls)
		maxDataLen += BITMAPLEN(numAttrs);
	maxDataLen = TOAST_TUPLE_TARGET - MAXALIGN(maxDataLen);

	/*
	 * Look for attributes with attstorage 'x' to compress
	 */
	while (MAXALIGN(heap_compute_data_size(tupleDesc,
										   toast_values, toast_isnull)) >
		   maxDataLen)
	{
		int			biggest_attno = -1;
		int32		biggest_size = MAXALIGN(sizeof(varattrib));
		Datum		old_value;
		Datum		new_value;

		/*
		 * Search for the biggest yet uncompressed internal attribute
		 */
		for (i = 0; i < numAttrs; i++)
		{
			if (toast_action[i] != ' ')
				continue;
			if (VARATT_IS_EXTENDED(toast_values[i]))
				continue;
			if (att[i]->attstorage != 'x')
				continue;
			if (toast_sizes[i] > biggest_size)
			{
				biggest_attno = i;
				biggest_size = toast_sizes[i];
			}
		}

		if (biggest_attno < 0)
			break;

		/*
		 * Attempt to compress it inline
		 */
		i = biggest_attno;
		old_value = toast_values[i];
		new_value = toast_compress_datum(old_value);

		if (DatumGetPointer(new_value) != NULL)
		{
			/* successful compression */
			if (toast_free[i])
				pfree(DatumGetPointer(old_value));
			toast_values[i] = new_value;
			toast_free[i] = true;
			toast_sizes[i] = VARATT_SIZE(toast_values[i]);
			need_change = true;
			need_free = true;
		}
		else
		{
			/*
			 * incompressible data, ignore on subsequent compression passes
			 */
			toast_action[i] = 'x';
		}
	}

	/*
	 * Second we look for attributes of attstorage 'x' or 'e' that are still
	 * inline.
	 */
	while (MAXALIGN(heap_compute_data_size(tupleDesc,
										   toast_values, toast_isnull)) >
		   maxDataLen && rel->rd_rel->reltoastrelid != InvalidOid)
	{
		int			biggest_attno = -1;
		int32		biggest_size = MAXALIGN(sizeof(varattrib));
		Datum		old_value;

		/*------
		 * Search for the biggest yet inlined attribute with
		 * attstorage equals 'x' or 'e'
		 *------
		 */
		for (i = 0; i < numAttrs; i++)
		{
			if (toast_action[i] == 'p')
				continue;
			if (VARATT_IS_EXTERNAL(toast_values[i]))
				continue;
			if (att[i]->attstorage != 'x' && att[i]->attstorage != 'e')
				continue;
			if (toast_sizes[i] > biggest_size)
			{
				biggest_attno = i;
				biggest_size = toast_sizes[i];
			}
		}

		if (biggest_attno < 0)
			break;

		/*
		 * Store this external
		 */
		i = biggest_attno;
		old_value = toast_values[i];
		toast_action[i] = 'p';
		toast_values[i] = toast_save_datum(rel, toast_values[i]);
		if (toast_free[i])
			pfree(DatumGetPointer(old_value));

		toast_free[i] = true;
		toast_sizes[i] = VARATT_SIZE(toast_values[i]);

		need_change = true;
		need_free = true;
	}

	/*
	 * Round 3 - this time we take attributes with storage 'm' into
	 * compression
	 */
	while (MAXALIGN(heap_compute_data_size(tupleDesc,
										   toast_values, toast_isnull)) >
		   maxDataLen)
	{
		int			biggest_attno = -1;
		int32		biggest_size = MAXALIGN(sizeof(varattrib));
		Datum		old_value;
		Datum		new_value;

		/*
		 * Search for the biggest yet uncompressed internal attribute
		 */
		for (i = 0; i < numAttrs; i++)
		{
			if (toast_action[i] != ' ')
				continue;
			if (VARATT_IS_EXTENDED(toast_values[i]))
				continue;
			if (att[i]->attstorage != 'm')
				continue;
			if (toast_sizes[i] > biggest_size)
			{
				biggest_attno = i;
				biggest_size = toast_sizes[i];
			}
		}

		if (biggest_attno < 0)
			break;

		/*
		 * Attempt to compress it inline
		 */
		i = biggest_attno;
		old_value = toast_values[i];
		new_value = toast_compress_datum(old_value);

		if (DatumGetPointer(new_value) != NULL)
		{
			/* successful compression */
			if (toast_free[i])
				pfree(DatumGetPointer(old_value));
			toast_values[i] = new_value;
			toast_free[i] = true;
			toast_sizes[i] = VARATT_SIZE(toast_values[i]);
			need_change = true;
			need_free = true;
		}
		else
		{
			/*
			 * incompressible data, ignore on subsequent compression passes
			 */
			toast_action[i] = 'x';
		}
	}

	/*
	 * Finally we store attributes of type 'm' external
	 */
	while (MAXALIGN(heap_compute_data_size(tupleDesc,
										   toast_values, toast_isnull)) >
		   maxDataLen && rel->rd_rel->reltoastrelid != InvalidOid)
	{
		int			biggest_attno = -1;
		int32		biggest_size = MAXALIGN(sizeof(varattrib));
		Datum		old_value;

		/*--------
		 * Search for the biggest yet inlined attribute with
		 * attstorage = 'm'
		 *--------
		 */
		for (i = 0; i < numAttrs; i++)
		{
			if (toast_action[i] == 'p')
				continue;
			if (VARATT_IS_EXTERNAL(toast_values[i]))
				continue;
			if (att[i]->attstorage != 'm')
				continue;
			if (toast_sizes[i] > biggest_size)
			{
				biggest_attno = i;
				biggest_size = toast_sizes[i];
			}
		}

		if (biggest_attno < 0)
			break;

		/*
		 * Store this external
		 */
		i = biggest_attno;
		old_value = toast_values[i];
		toast_action[i] = 'p';
		toast_values[i] = toast_save_datum(rel, toast_values[i]);
		if (toast_free[i])
			pfree(DatumGetPointer(old_value));

		toast_free[i] = true;
		toast_sizes[i] = VARATT_SIZE(toast_values[i]);

		need_change = true;
		need_free = true;
	}

	/*
	 * In the case we toasted any values, we need to build a new heap tuple
	 * with the changed values.
	 */
	if (need_change)
	{
		HeapTupleHeader olddata = newtup->t_data;
		HeapTupleHeader new_data;
		int32		new_len;

		/*
		 * Calculate the new size of the tuple.  Header size should not
		 * change, but data size might.
		 */
		new_len = offsetof(HeapTupleHeaderData, t_bits);
		if (has_nulls)
			new_len += BITMAPLEN(numAttrs);
		if (olddata->t_infomask & HEAP_HASOID)
			new_len += sizeof(Oid);
		new_len = MAXALIGN(new_len);
		Assert(new_len == olddata->t_hoff);
		new_len += heap_compute_data_size(tupleDesc,
										  toast_values, toast_isnull);

		/*
		 * Allocate and zero the space needed, and fill HeapTupleData fields.
		 */
		result_tuple = (HeapTuple) palloc0(HEAPTUPLESIZE + new_len);
		result_tuple->t_len = new_len;
		result_tuple->t_self = newtup->t_self;
		result_tuple->t_tableOid = newtup->t_tableOid;
		result_tuple->t_datamcxt = CurrentMemoryContext;
		new_data = (HeapTupleHeader) ((char *) result_tuple + HEAPTUPLESIZE);
		result_tuple->t_data = new_data;

		/*
		 * Put the existing tuple header and the changed values into place
		 */
		memcpy(new_data, olddata, olddata->t_hoff);

		heap_fill_tuple(tupleDesc,
						toast_values,
						toast_isnull,
						(char *) new_data + olddata->t_hoff,
						&(new_data->t_infomask),
						has_nulls ? new_data->t_bits : NULL);
	}
	else
		result_tuple = newtup;

	/*
	 * Free allocated temp values
	 */
	if (need_free)
		for (i = 0; i < numAttrs; i++)
			if (toast_free[i])
				pfree(DatumGetPointer(toast_values[i]));

	/*
	 * Delete external values from the old tuple
	 */
	if (need_delold)
		for (i = 0; i < numAttrs; i++)
			if (toast_delold[i])
				toast_delete_datum(rel, toast_oldvalues[i]);

	return result_tuple;
}
Exemplo n.º 7
0
/*
 * heap_form_tuple
 *		construct a tuple from the given values[] and isnull[] arrays,
 *		which are of the length indicated by tupleDescriptor->natts
 *
 * The result is allocated in the current memory context.
 */
HeapTuple
heaptuple_form_to(TupleDesc tupleDescriptor, Datum *values, bool *isnull, HeapTuple dst, uint32 *dstlen)
{
	HeapTuple	tuple;			/* return tuple */
	HeapTupleHeader td;			/* tuple data */
	Size		actual_len;
	Size		len,
				data_len;
	int			hoff;
	bool		hasnull = false;
	Form_pg_attribute *att = tupleDescriptor->attrs;
	int			numberOfAttributes = tupleDescriptor->natts;
	int			i;

	if (numberOfAttributes > MaxTupleAttributeNumber)
		ereport(ERROR,
				(errcode(ERRCODE_TOO_MANY_COLUMNS),
				 errmsg("number of columns (%d) exceeds limit (%d)",
						numberOfAttributes, MaxTupleAttributeNumber)));

	/*
	 * Check for nulls and embedded tuples; expand any toasted attributes in
	 * embedded tuples.  This preserves the invariant that toasting can only
	 * go one level deep.
	 *
	 * We can skip calling toast_flatten_tuple_attribute() if the attribute
	 * couldn't possibly be of composite type.  All composite datums are
	 * varlena and have alignment 'd'; furthermore they aren't arrays. Also,
	 * if an attribute is already toasted, it must have been sent to disk
	 * already and so cannot contain toasted attributes.
	 */
	for (i = 0; i < numberOfAttributes; i++)
	{
		if (isnull[i])
			hasnull = true;
		else if (att[i]->attlen == -1 &&
				 att[i]->attalign == 'd' &&
				 att[i]->attndims == 0 &&
				 !VARATT_IS_EXTENDED(DatumGetPointer(values[i])))
		{
			values[i] = toast_flatten_tuple_attribute(values[i],
													  att[i]->atttypid,
													  att[i]->atttypmod);
		}
	}

	/*
	 * Determine total space needed
	 */
	len = offsetof(HeapTupleHeaderData, t_bits);

	if (hasnull)
		len += BITMAPLEN(numberOfAttributes);

	if (tupleDescriptor->tdhasoid)
		len += sizeof(Oid);

	hoff = len = MAXALIGN(len); /* align user data safely */

	data_len = heap_compute_data_size(tupleDescriptor, values, isnull);

	len += data_len;

	if (dstlen && (*dstlen) < (HEAPTUPLESIZE + len))
	{
		*dstlen = HEAPTUPLESIZE + len;
		return NULL;
	}

	if (dstlen)
	{
		*dstlen = HEAPTUPLESIZE + len;
		tuple = dst;
		memset(tuple, 0, HEAPTUPLESIZE + len);
	}
	else
		tuple = (HeapTuple) palloc0(HEAPTUPLESIZE + len);

	/*
	 * Allocate and zero the space needed.	Note that the tuple body and
	 * HeapTupleData management structure are allocated in one chunk.
	 */
	tuple->t_data = td = (HeapTupleHeader) ((char *) tuple + HEAPTUPLESIZE);

	/*
	 * And fill in the information.  Note we fill the Datum fields even though
	 * this tuple may never become a Datum.
	 */
	tuple->t_len = len;
	ItemPointerSetInvalid(&(tuple->t_self));

	HeapTupleHeaderSetDatumLength(td, len);
	HeapTupleHeaderSetTypeId(td, tupleDescriptor->tdtypeid);
	HeapTupleHeaderSetTypMod(td, tupleDescriptor->tdtypmod);

	HeapTupleHeaderSetNatts(td, numberOfAttributes);
	td->t_hoff = hoff;

	if (tupleDescriptor->tdhasoid)		/* else leave infomask = 0 */
		td->t_infomask = HEAP_HASOID;

	actual_len = heap_fill_tuple(tupleDescriptor,
								 values,
								 isnull,
								 (char *) td + hoff,
								 data_len,
								 &td->t_infomask,
								 (hasnull ? td->t_bits : NULL));

	Assert(data_len == actual_len);
	Assert(!is_heaptuple_memtuple(tuple));

	return tuple;
}
Exemplo n.º 8
0
/*
 * heap_form_minimal_tuple
 *		construct a MinimalTuple from the given values[] and isnull[] arrays,
 *		which are of the length indicated by tupleDescriptor->natts
 *
 * This is exactly like heap_form_tuple() except that the result is a
 * "minimal" tuple lacking a HeapTupleData header as well as room for system
 * columns.
 *
 * The result is allocated in the current memory context.
 */
MinimalTuple
heap_form_minimal_tuple(TupleDesc tupleDescriptor,
						Datum *values,
						bool *isnull)
{
	MinimalTuple tuple;			/* return tuple */
	Size		len,
				data_len;
	int			hoff;
	bool		hasnull = false;
	Form_pg_attribute *att = tupleDescriptor->attrs;
	int			numberOfAttributes = tupleDescriptor->natts;
	int			i;

	if (numberOfAttributes > MaxTupleAttributeNumber)
		ereport(ERROR,
				(errcode(ERRCODE_TOO_MANY_COLUMNS),
				 errmsg("number of columns (%d) exceeds limit (%d)",
						numberOfAttributes, MaxTupleAttributeNumber)));

	/*
	 * Check for nulls and embedded tuples; expand any toasted attributes in
	 * embedded tuples.  This preserves the invariant that toasting can only
	 * go one level deep.
	 *
	 * We can skip calling toast_flatten_tuple_attribute() if the attribute
	 * couldn't possibly be of composite type.  All composite datums are
	 * varlena and have alignment 'd'; furthermore they aren't arrays. Also,
	 * if an attribute is already toasted, it must have been sent to disk
	 * already and so cannot contain toasted attributes.
	 */
	for (i = 0; i < numberOfAttributes; i++)
	{
		if (isnull[i])
			hasnull = true;
		else if (att[i]->attlen == -1 &&
				 att[i]->attalign == 'd' &&
				 att[i]->attndims == 0 &&
				 !VARATT_IS_EXTENDED(values[i]))
		{
			values[i] = toast_flatten_tuple_attribute(values[i],
													  att[i]->atttypid,
													  att[i]->atttypmod);
		}
	}

	/*
	 * Determine total space needed
	 */
	len = offsetof(MinimalTupleData, t_bits);

	if (hasnull)
		len += BITMAPLEN(numberOfAttributes);

	if (tupleDescriptor->tdhasoid)
		len += sizeof(Oid);

	hoff = len = MAXALIGN(len); /* align user data safely */

	data_len = heap_compute_data_size(tupleDescriptor, values, isnull);

	len += data_len;

	/*
	 * Allocate and zero the space needed.
	 */
	tuple = (MinimalTuple) palloc0(len);

	/*
	 * And fill in the information.
	 */
	tuple->t_len = len;
	HeapTupleHeaderSetNatts(tuple, numberOfAttributes);
	tuple->t_hoff = hoff + MINIMAL_TUPLE_OFFSET;

	if (tupleDescriptor->tdhasoid)		/* else leave infomask = 0 */
		tuple->t_infomask = HEAP_HASOID;

	heap_fill_tuple(tupleDescriptor,
					values,
					isnull,
					(char *) tuple + hoff,
					data_len,
					&tuple->t_infomask,
					(hasnull ? tuple->t_bits : NULL));

	return tuple;
}