Exemplo n.º 1
0
/*
 * We want the task to sleep while waiting for next job to become
 * ready, so we set the timer to the release instant and try to activate it.
 */
void start_timer_rtws(struct rq *rq, struct sched_rtws_entity *rtws_se)
{
    ktime_t now, act;
    ktime_t soft, hard;
    unsigned long range;
    s64 delta;

    /*
     * We want the timer to fire at given release time, but considering
     * that it is actually coming from rq->clock and not from
     * hrtimer's time base reading.
     */
    act = ns_to_ktime(rtws_se->job.release);
    now = hrtimer_cb_get_time(&rtws_se->timer);
    delta = ktime_to_ns(now) - rq->clock;
    act = ktime_add_ns(act, delta);

    hrtimer_set_expires(&rtws_se->timer, act);

    soft = hrtimer_get_softexpires(&rtws_se->timer);
    hard = hrtimer_get_expires(&rtws_se->timer);
    printk(KERN_INFO "expire: %Ld, soft: %Ld, hard: %Ld\n", ktime_to_ns(act), ktime_to_ns(soft), ktime_to_ns(hard));
    range = ktime_to_ns(ktime_sub(hard, soft));
    __hrtimer_start_range_ns(&rtws_se->timer, soft,
                 range, HRTIMER_MODE_ABS, 0);
}
Exemplo n.º 2
0
static int dummy_hrtimer_start(struct snd_pcm_substream *substream)
{
	struct dummy_hrtimer_pcm *dpcm = substream->runtime->private_data;

	dpcm->base_time = hrtimer_cb_get_time(&dpcm->timer);
	hrtimer_start(&dpcm->timer, dpcm->period_time, HRTIMER_MODE_REL);
	atomic_set(&dpcm->running, 1);
	return 0;
}
Exemplo n.º 3
0
static enum hrtimer_restart timer_callback( struct hrtimer* p_hrtimer )
{
    ktime_t now;
    pr_info( "%s\n", __FUNCTION__ );

    // we need to modify the next fire jiffies....else beware :-)
    now = hrtimer_cb_get_time(p_hrtimer);
    hrtimer_forward( p_hrtimer, now, TIMER_INTERVAL_MS*1E6L );
    return HRTIMER_RESTART;
}
Exemplo n.º 4
0
static enum hrtimer_restart lights_timer_cb(struct hrtimer *timer)
{
     
    gpio_set_value(XMAS_OUT_0, lights_toggle);
    lights_toggle = lights_toggle ? 0 : 1; 
    ktime_t kt_now;
    ktime_t kt_period = ktime_set(0, 1000 * (lights_toggle ? 20 : 10));

    kt_now = hrtimer_cb_get_time(&lights_timer);
    hrtimer_forward(&lights_timer, kt_now, kt_period);
    return HRTIMER_RESTART;
}
Exemplo n.º 5
0
static snd_pcm_uframes_t
dummy_hrtimer_pointer(struct snd_pcm_substream *substream)
{
	struct snd_pcm_runtime *runtime = substream->runtime;
	struct dummy_hrtimer_pcm *dpcm = runtime->private_data;
	u64 delta;
	u32 pos;

	delta = ktime_us_delta(hrtimer_cb_get_time(&dpcm->timer),
			       dpcm->base_time);
	delta = div_u64(delta * runtime->rate + 999999, 1000000);
	div_u64_rem(delta, runtime->buffer_size, &pos);
	return pos;
}
Exemplo n.º 6
0
static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}
Exemplo n.º 7
0
static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
{
	struct k_itimer *timr;
	unsigned long flags;
	int si_private = 0;
	enum hrtimer_restart ret = HRTIMER_NORESTART;

	timr = container_of(timer, struct k_itimer, it.real.timer);
	spin_lock_irqsave(&timr->it_lock, flags);

	if (timr->it.real.interval.tv64 != 0)
		si_private = ++timr->it_requeue_pending;

	if (posix_timer_event(timr, si_private)) {
		if (timr->it.real.interval.tv64 != 0) {
			ktime_t now = hrtimer_cb_get_time(timer);

#ifdef CONFIG_HIGH_RES_TIMERS
			{
				ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ);

				if (timr->it.real.interval.tv64 < kj.tv64)
					now = ktime_add(now, kj);
			}
#endif
			timr->it_overrun += (unsigned int)
				hrtimer_forward(timer, now,
						timr->it.real.interval);
			ret = HRTIMER_RESTART;
			++timr->it_requeue_pending;
		}
	}

	unlock_timer(timr, flags);
	return ret;
}
Exemplo n.º 8
0
/*
 * This function gets called when a POSIX.1b interval timer expires.  It
 * is used as a callback from the kernel internal timer.  The
 * run_timer_list code ALWAYS calls with interrupts on.

 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
 */
static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
{
	struct k_itimer *timr;
	unsigned long flags;
	int si_private = 0;
	enum hrtimer_restart ret = HRTIMER_NORESTART;

	timr = container_of(timer, struct k_itimer, it.real.timer);
	spin_lock_irqsave(&timr->it_lock, flags);

	if (timr->it.real.interval.tv64 != 0)
		si_private = ++timr->it_requeue_pending;

	if (posix_timer_event(timr, si_private)) {
		/*
		 * signal was not sent because of sig_ignor
		 * we will not get a call back to restart it AND
		 * it should be restarted.
		 */
		if (timr->it.real.interval.tv64 != 0) {
			ktime_t now = hrtimer_cb_get_time(timer);

			/*
			 * FIXME: What we really want, is to stop this
			 * timer completely and restart it in case the
			 * SIG_IGN is removed. This is a non trivial
			 * change which involves sighand locking
			 * (sigh !), which we don't want to do late in
			 * the release cycle.
			 *
			 * For now we just let timers with an interval
			 * less than a jiffie expire every jiffie to
			 * avoid softirq starvation in case of SIG_IGN
			 * and a very small interval, which would put
			 * the timer right back on the softirq pending
			 * list. By moving now ahead of time we trick
			 * hrtimer_forward() to expire the timer
			 * later, while we still maintain the overrun
			 * accuracy, but have some inconsistency in
			 * the timer_gettime() case. This is at least
			 * better than a starved softirq. A more
			 * complex fix which solves also another related
			 * inconsistency is already in the pipeline.
			 */
#ifdef CONFIG_HIGH_RES_TIMERS
			{
				ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ);

				if (timr->it.real.interval.tv64 < kj.tv64)
					now = ktime_add(now, kj);
			}
#endif
			timr->it_overrun += (unsigned int)
				hrtimer_forward(timer, now,
						timr->it.real.interval);
			ret = HRTIMER_RESTART;
			++timr->it_requeue_pending;
		}
	}

	unlock_timer(timr, flags);
	return ret;
}
Exemplo n.º 9
0
__BEGIN_PROGRAM

/*
 *  kernel/sched/core.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
#include <linux/uaccess.h>
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
#include <linux/capability.h>
#include <linux/completion.h>
#include <linux/kernel_stat.h>
#include <linux/debug_locks.h>
#include <linux/perf_event.h>
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
#include <linux/freezer.h>
#include <linux/vmalloc.h>
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/pid_namespace.h>
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/sysctl.h>
#include <linux/syscalls.h>
#include <linux/times.h>
#include <linux/tsacct_kern.h>
#include <linux/kprobes.h>
#include <linux/delayacct.h>
#include <linux/unistd.h>
#include <linux/pagemap.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/debugfs.h>
#include <linux/ctype.h>
#include <linux/ftrace.h>
#include <linux/slab.h>
#include <linux/init_task.h>
#include <linux/binfmts.h>

#include <asm/switch_to.h>
#include <asm/tlb.h>
#include <asm/irq_regs.h>
#include <asm/mutex.h>
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif

#include "sched.h"
#include "../workqueue_sched.h"
#include "../smpboot.h"

#define CREATE_TRACE_POINTS
#include <trace/events/sched.h>

void start_bandwidth_timer(struct hrtimer period_timer , int period)
{
	unsigned long delta;
	int soft, hard, now;

	for (;;) {
		if (hrtimer_active(period_timer))
			break;

		now = hrtimer_cb_get_time(period_timer);
		hrtimer_forward(period_timer, now, period);

		soft = hrtimer_get_softexpires(period_timer);
		hard = hrtimer_get_expires(period_timer);
		delta = into_ns(ktime_sub(hard, soft));
		hrtimer_start_range_ns(period_timer, soft, delta,
					 HRTIMER_MODE_ABS_PINNED, 0);
	}
}